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Abstract

Background: Asthma is a chronic pulmonary disease with multiple triggers. It can be managed by strict adherence to an asthma
care plan and by avoiding these triggers. Clinicians cannot continuously monitor their patients’ environment and their adherence
to an asthma care plan, which poses a significant challenge for asthma management.

Objective: In this study, pediatric patients were continuously monitored using low-cost sensors to collect asthma-relevant
information. The objective of this study was to assess whether kHealth kit, which contains low-cost sensors, can identify
personalized triggers and provide actionable insights to clinicians for the development of a tailored asthma care plan.

Methods: The kHealth asthma kit was developed to continuously track the symptoms of asthma in pediatric patients and monitor
the patients’ environment and adherence to their care plan for either 1 or 3 months. The kit consists of an Android app–based
questionnaire to collect information on asthma symptoms and medication intake, Fitbit to track sleep and activity, the Peak Flow
meter to monitor lung functions, and Foobot to monitor indoor air quality. The data on the patient’s outdoor environment were
collected using third-party Web services based on the patient’s zip code. To date, 107 patients consented to participate in the
study and were recruited from the Dayton Children’s Hospital, of which 83 patients completed the study as instructed.

Results: Patient-generated health data from the 83 patients who completed the study were included in the cohort-level analysis.
Of the 19% (16/83) of patients deployed in spring, the symptoms of 63% (10/16) and 19% (3/16) of patients suggested pollen
and particulate matter (PM2.5), respectively, to be their major asthma triggers. Of the 17% (14/83) of patients deployed in fall,
symptoms of 29% (4/17) and 21% (3/17) of patients suggested pollen and PM2.5, respectively, to be their major triggers. Among
the 28% (23/83) of patients deployed in winter, PM2.5 was identified as the major trigger for 83% (19/23) of patients. Similar
correlations were not observed between asthma symptoms and factors such as ozone level, temperature, and humidity. Furthermore,
1 patient from each season was chosen to explain, in detail, his or her personalized triggers by observing temporal associations
between triggers and asthma symptoms gathered using the kHealth asthma kit.

Conclusions: The continuous monitoring of pediatric asthma patients using the kHealth asthma kit generates insights on the
relationship between their asthma symptoms and triggers across different seasons. This can ultimately inform personalized asthma
management and intervention plans.

(JMIR Pediatr Parent 2019;2(1):e14300)   doi:10.2196/14300

KEYWORDS

personalized digital health; medical internet of things; asthma management; patient-generated health data; pediatric asthma;
asthma control; medication adherence; childhood asthma; understanding and treatment of asthma

JMIR Pediatr Parent 2019 | vol. 2 | iss. 1 | e14300 | p.1http://pediatrics.jmir.org/2019/1/e14300/
(page number not for citation purposes)

Venkataramanan et alJMIR PEDIATRICS AND PARENTING

XSL•FO
RenderX

mailto:amit@knoesis.org
http://dx.doi.org/10.2196/14300
http://www.w3.org/Style/XSL
http://www.renderx.com/


Introduction

Background
Asthma is a chronic inflammatory lung disease affecting 26
million people in the United States, of which 6 million are
children [1]. It is a multifactorial disease, with exposure to
different triggers manifesting as symptoms of varying intensities,
which demands a personalized diagnosis and management plan
[2]. Timely feedback and intervention are not possible with
infrequent clinical visits because most of the
asthma-exacerbating factors are in the patient’s environment
and are not tracked meticulously [3,4] or because of the lack of
medication adherence [5]. Continuous tracking and assessment
of a patient’s condition, environment, and adherence to a
prescribed care plan can improve asthma control and quality of
life [6].

Although many studies have shown the effectiveness of
continuous monitoring, only a few are being evaluated to benefit
traditional health care practices [7,8]. Propeller Health [9]
provides personalized alerts based on inhaler usage and location
to primarily improve medication adherence. ENVIROFI [10]
and azma.com [11] send a notification to subscribed users when
the outdoor environment forecast is poor. Chu et al [12]
developed a ubiquitous warning system that sends alerts to
health care providers based on a patient’s location if the outdoor
environment is poor. Finkelstein et al [13] developed a
Web-based approach that captures the patient’s forced vital
capacity test and asthma symptoms and sends alerts to hospitals
when these parameters are abnormal. AsthmaGuide [14], a home
management ecosystem, enables doctors to observe the
correlation between symptoms and environmental data. They
have classified wheezing sounds as asthmatic wheezing and
nonasthmatic wheezing. They also send personalized alerts to
patients based on pollen and air quality forecast, but no causal
relationships are identified. The existing studies analyze the
data pertaining to the outdoor environment to identify the causes
of asthma symptoms or improve medication adherence, but
these studies have not used a large cohort of pediatric patients
in a clinical setting and have not monitored and analyzed a
comprehensive set of factors such as the lung function
measurements, activity limitation, and data pertaining to the
indoor environment to personalize asthma management plan.

kHealth Asthma Framework
The researchers at Knoesis (Ohio Center of Excellence in
BioHealth and Innovations) developed kHealth [15] (Multimedia
Appendix 1), a multisensory framework for continuous
monitoring of patients’ health signals and environmental data.
The kHealth kit collects multimodal data using low-cost sensors
and mobile apps, and kHealth methodology analyzes them for
personalized health management plan. kHealth asthma [16] is
an adaptation of kHealth framework and methodology for
asthma, which monitors the pediatric patients receiving asthma
care at the Dayton Children’s Hospital (DCH). The motivations

behind kHealth asthma kit are to (1) identify the personalized
triggers from the comprehensive data collected by kHealth kit
and rank their influence on asthma, which the paper focuses on,
and (2) provide actionable insights to clinicians for better
decision making related to asthma management based on
specific patient data. It is designed to assist patients in
self-monitoring and self-appraisal of asthma care, with an intent
to incorporate self-management, prediction, and intervention
[17]. This paper presents a cohort-level analysis of patients
deployed over the entire year to evaluate the ability of low-cost
sensors in identifying the major triggers for their asthma
symptoms. Specifically, 1 patient from each season was chosen
to illustrate the personalized determination of triggers by
gathering anecdotal evidence.

Methods

The kHealth asthma framework consists of the kHealth kit,
kHealth cloud, and kHealth Dashboard. The study design,
including these components, their use for data collection, and
the data analysis are discussed below. Other applications for
which kHealth has been adapted include postbariatric surgery
monitoring, postsurgery monitoring of acute decompensated
heart failure, and dementia.

kHealth Components

kHealth Kit
The kHealth kit components are shown in Figure 1. The list of
components are as follows: (1) tablet with an Android app; (2)
Fitbit; (3) Peak Flow meter; (4) Foobot, the indoor air quality
monitor; and (5) Web services to collect data on outdoor
environment based on the patient’s zip code. The questionnaire
presented by the kHealth Android app on the tablet collects the
following data: (1) 6 types of symptoms: cough, wheeze, chest
tightness, hard and fast breathing, cannot talk in full sentences,
and nose opens wide [18]; (2) medication intake (rescue inhaler
and controller medication) with yes or no option, (3) nighttime
awakenings because of asthma symptoms, and (4) activity
limitation because of asthma symptoms. The data on symptoms
and medications are collected twice a day, and data on nighttime
awakenings and activity limitation are collected once a day
(Multimedia Appendix 2). Furthermore, Fitbit is used to collect
more granular data for sleep and activity [19]. The lung function
measurements (peak expiratory flow [PEF] and forced expiratory
volume in 1 second [FEV1]) are recorded by the Microlife peak
flow meter [20] twice every day. For a given patient’s zip code,
outdoor environmental parameters are collected at different
intervals—pollen is collected every 12 hours, whereas
particulate matter (PM2.5), ozone, temperature, and humidity
are collected every hour. Pollen is collected from pollen.com
[21], PM2.5 and ozone from EPA AIRNow [22], and
temperature and humidity from Weather Underground [23].
Foobot collects indoor temperature, humidity, PM2.5, volatile
compounds, carbon dioxide, and global pollution index every
5 min.
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Figure 1. The kHealth framework with the kHealth kit, kHealth cloud, and kHealth Dashboard, showing the frequency of data collection, the number
of parameters collected, and the total number of data points collected per day per patient. (A) Dark blue; the kHealth kit components that are given to
patients. (B) Light blue; the kHealth kit components that collect patient-generated health data. (C) Green; the outdoor environmental parameters and
their sources. (D) The kHealth cloud (gray). (E) The kHealth Dashboard. Throughout the kHealth ecosystem, all data are anonymized and associated
with respective randomly assigned patient IDs. FEV1: forced expiratory volume in 1 second; PEF: peak expiratory flow; PM2.5: particulate matter.

Validation of Kit Components
Our tablet questionnaire is based on the Asthma Control Test
(ACT) questionnaire [24] adapted for Android app and was
developed under the supervision of the clinician (the question
text was adjusted to make it user friendly). The questions were
tested with the patients and iteratively refined using the
preliminary work of the evaluation. While recruiting and
consenting young patients, the nurse educates both the patient
or guardian and the child on the correct way to use the kHealth
kit. Given that the child is using kHealth kit under adult
supervision and the sensors are reasonably robust, we expect
the data to be reliable, and the parent and child team to be
trustworthy. Our data and experience suggest that peak flow
values measured by Peak Flow meter can vary dramatically in
the 3 trials conducted before picking the maximum value.
However, it was possible to distinguish normal state from
asthmatic state using the max peak flow value so obtained.
Previous studies have reported feasibility of peak flow
measurement in 5-year-old children [25,26]. The outdoor
environmental parameters are collected from EPA AIRNow,
Weather Underground, and pollen.com, which are reputed
sources, and already published works have used their data
[27-29]. We have relied on existing feasibility studies for Fitbit
[30,31], but we performed our own for Foobot [32]. In our recent
data collection, all the components of the kHealth kit except
Foobot (indoor air quality monitor) worked as advertised by
the vendor. Although Foobot gave reliable results in our
feasibility study, the device suffered electronic interference in
the patient’s environment, leading to unreliable results.

kHealth Cloud
The multimodal data collected from various sources are brought
together on the secure kHealth cloud store. The data on outdoor

environment, indoor air quality, activity, and sleep are collected
from their respective application programming interface (API)
server and stored directly in the kHealth cloud. The data
collected using the kHealth app, which includes the patient’s
symptoms, medication intake, PEF, and FEV1 readings, are
synced in real time with Firebase, a Google cloud database [33].
Firebase provides active data listener for client side, which
offers data persistence over the network failure and resyncs to
the cloud when the network is restored. Data security is
maintained in Firebase using a set of data access rules and user
authentication. Data synced to Firebase are then fetched and
stored into the kHealth cloud. This process forms a pipeline for
seamless and reliable data streaming from the kHealth app to
the kHealth cloud. All data stored in the kHealth cloud are then
made available to Knoesis researchers and clinicians for
real-time analysis. Each patient’s identity is anonymized by the
nurse coordinator who obtains the patient’s consent; no
patient-identifiable data are stored anywhere in the kHealth
framework.

kHealth Dashboard
Because the kHealth kit collects multimodal data at different
frequencies, integration and visualization of these data are
essential to derive useful insights. kHealth Dashboard [34]
(Figure 2) is a visualization and analysis tool designed for use
by a clinician and a researcher to review individual and
aggregated data and explore the potential association between
patient’s asthma symptoms and their environments. With
real-time data available in the kHealth cloud, kHealth Dashboard
allows real-time monitoring of a patient’s asthma condition.
This granularity of data presents the clinician with a better
picture about patient’s asthma condition than in traditional
episodic clinical visits (see Multimedia Appendix 1 for demo
video).
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Figure 2. A screenshot of the kHealth Dashboard visualizing patient A’s data. FEV1: forced expiratory volume in 1 second; PEF: peak expiratory flow.

Study Design and Participants
The children within the age group of 5 to 17 years and diagnosed
with asthma (through standard clinical procedures) by our
clinician were recruited from the DCH. The research nurse
practitioner, under the guidance of the clinician, approached
the parent of the child to participate in our study. The parent,
along with the child, was consented to participate in our study.
The recruitment for the study was random, with the motive of
maximizing participation and done on a first-come-first-serve
basis. The tablet with Android app, Peak Flow meter, Fitbit,
and Foobot were given to each patient, and based on the
patient’s zip code, outdoor environmental data were collected.
The part of data collection, which requires the patient to be
actively involved (such as responding to Android app
questionnaire and taking Peak Flow meter readings), was
referred to as active sensing. The data collection from Fitbit,
Foobot, and outdoor Web services, which do not require active
patient involvement, was referred to as passive sensing.

Inclusion criteria [35] were children (1) diagnosed with asthma
through standard clinical procedure by our clinician from DCH,
(2) aged between 5 and 17 years, and (3) willing to participate
in this study.

Of 107 patients, 24 patients were excluded from the analysis,
as they did not complete the study, allowing us to analyze data
from the remaining 83 patients. Both our National Institutes of
Health (NIH) and National Institute of Child Health and Human
Development (NICHD) proposal and our approved institutional
review board (IRB) protocol explicitly indicate 2 populations:
(1) consented patients and (2) a subgroup of patients who
completed the evaluation (with adequate compliance in data
collection). These 24 patients were ignored because they did
not complete the study and did not provide adequate data for
us to perform any meaningful analysis and offer sensible
conclusions. We have explicitly mentioned in our approved
IRB protocol that only the patients who consented and patients

who completed the study will be included in our analysis. There
has been no selection bias based on data provided by or collected
from a patient in either the protocol or the study presented in
this paper. No patients who completed the study were ignored
from this analysis. Of the 83 patients who completed the study,
63 were recruited for a month, and 20 were recruited for a
3-month period. The 1-month study was designed to validate
the efficacy of this method, and the 3-month study was included
to obtain sufficient data and determine the association between
various asthma-relevant factors and asthma symptoms. The
enrollment of a patient for 1 or 3 months depended on their
willingness.

This Health Insurance Portability and Accountability
Act–compliant study has been approved by DCH’s IRB. Given
the multifactorial nature of asthma, we sought to monitor as
many variables as practically possible, subject to our constraints
of practical implementation (eg, using technology that can be
deployed at the patient’s home) and cost (our NIH and NICHD
proposal and protocol called for purchasing 30 kits for proposed
patient evaluation at approximately US $500 per kit).

Preliminary work for this effort was done in 2014 when mobile
apps and low-cost sensors became viable [36]. When the NIH
and NICHD proposal was written following the preliminary
work, there were no reported efforts involving the use of
multiple sensors (that can be used outside a clinical facility and
at a patient’s home) and mobile apps (to record patient’s
symptoms and collect sensor data). The wearables were just
becoming popular, and the concept of patient-generated health
data (PGHD) was relatively new. For the studies reporting on
the collection and evaluation of personalized data for pediatric
asthma patients, our study collects more extensive types of data
at a higher frequency. Specifically, evaluation in the study by
Merchant et al [37] involved 89 patients, with 2 types of data
or parameters (medication and ACT score) observed for 12
months per patient, and Bender et al [38] involved 27 patients,
with 1 parameter observed for 2 months. Our study involves 83
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patients (63 patients for a 1-month duration and 20 patients for
a 3-month duration), with 10 data types (not including Foobot
and Fitbit), with each data type collected between 2 and 24
times a day.

Study Procedures
Henceforth, the 6 asthma symptoms (cough, wheeze, chest
tightness, hard and fast breathing, cannot talk in full sentences,
and nose opens wide), nighttime awakenings, activity limitation,
rescue medication intake, and abnormal PEF or FEV1 value will
be collectively referred to as asthma episodes, a usage that is
consistent with 2 previous studies [39,40]. Specifically, asthma
can affect lung function and can manifest as lower values for
PEF and FEV1 parameters [41]. Therefore, the reduction of PEF
and FEV1 values beyond 1 standard deviation of the mean is
treated as an episode of asthma. The duration of the seasons has
been chosen to aid the analysis based on the historical pollen
data. Although the deployments started in December 2016 and
are still ongoing, the data only from December 2016 to February
2019 have been included in the analysis.

Maximum values of outdoor environmental data (ozone and
PM2.5) over a day were considered to identify the correlation
between triggers and asthma episodes. The healthy range for
each outdoor parameter is as follows: 0 to 2.4 for pollen [42]
and 0 to 50 for ozone and PM2.5 [43]. Any value above or
below the healthy range on the day with asthma episodes, or
the previous day, is counted as a contributor to the patient’s
asthma episodes. We chose a 48-hour window because
inflammation and late allergic reaction in asthma are
characterized by prominent participation of eosinophils, and
previous studies have demonstrated an exaggerated response in
asthma patients up to 48 hours after exposure [44]. We analyzed
concrete patient cases to obtain insights about asthma triggers,
patient behavior, and their condition from evidence collected
by kHealth Asthma technology in different seasons.

Results

Cohort-Level Analysis
Although we collected extensive Foobot data, the results on the
influence of indoor environment were inconclusive because of

deficiencies in our instructions such as (1) clarity on the
placement of Foobot and (2) potential for electrical interference
when some patients did not power the device as required by the
manufacturer. In the study results recorded thus far, the outside
environmental data provide the most reliable signals for asthma
control. Furthermore, the sleep and activity data from Fitbit did
not provide corroborative evidence for asthma signs because of
several confounding factors (could be due to asthma symptoms
or school routine or that Fitbit was not worn or powered). In
contrast, self-reported data regarding activity limitation obtained
through the Android app–based questionnaire proved to be more
reliable. The results of cohort-level data analysis for all the
completed patients (n=83) deployed in each season for the
detection of a wide variety of triggers for asthma episodes using
kHealth kit are shown in Table 1.

Among the 19% (16/83) of the patients deployed in spring, 63%
(10/16) of the patients were affected by pollen, 16% (3/16) were
affected by PM2.5, and 5% (1/16) were affected by pollen and
PM2.5 (being present together). In addition, 17% (14/83) of the
patients were deployed in fall, of which pollen turned out to be
the major contributor for 29% (4/14), PM2.5 for 21% (3/14),
and pollen and PM2.5 (being present together) for 14% (2/14).
For 28% (23/83) of the patients deployed in winter, PM2.5
turned out to be the contributor for 83% (19/23). The 3-month
deployments across 2 seasons enabled us to study the patient’s
asthma in 2 different environments. For 29% (24/83) of the
patients deployed across seasons, 50% (12/24) did not exhibit
any symptoms. Moreover, 13% (3/24) indicated PM2.5 as their
major trigger, 13% (3/24) indicated combination of pollen and
PM2.5 to be the trigger, and 25% (6/24) of the patients had
varying environment and too few symptoms to arrive at a
conclusion. We observed meaningful (and useful according to
our clinical partner) correlation between asthma symptoms and
factors such as pollen and PM2.5. However, similar correlations
were not observed for factors such as ozone level, temperature,
and humidity. Personalized insights gathered using the kHealth
kit are explained in detail in the Discussion section by choosing
1 patient from each season for illustration. The cohort-level and
adherence statistics have already been presented in our previous
study [45].

Table 1. Significant triggers captured by kHealth for each season at cohort level (N=83).

Redeployment
required, %

No symptoms, %Temperature, %Pollen and
PM2.5, %

Ozone, %PM2.5a, %Pollen, %n (%)Season

—12—6—b196316 (19)Spring

—17—33—33176 (7)Summer

—36—14—212914 (17)Fall

—49—483—23 (28)Winter

2550—33—12—24 (29)Between seasons

aPM2.5: particulate matter.
bNot applicable.
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Personalized Analysis
The probability of symptoms, given the triggers for patient A,
is shown in Table 2. Patient A was monitored for 3 months from
winter to spring; thus, the deployment duration is divided into
2, based on the presence and absence of pollen. The patient
experienced symptoms in the presence of PM2.5, suggesting
that PM2.5 was contributing to the patient’s asthma. In the
presence of both pollen and PM2.5, the patient experienced
higher number of severe symptoms such as chest tightness and
nighttime awakenings, that is, the combination of pollen and
PM2.5 aggravated patient’s asthma, as evidenced by cumulative
increase in asthma symptoms. The rescue medication has also
been included, as it could prevent or suppress the symptoms
that could have occurred otherwise, such as wheezing. The
Discussion section provides detailed patient information and
calculations (see Figure 3 for formulas and Multimedia
Appendix 3 for terms and definitions).

The probability of symptoms, given the triggers, for patient B,
are shown in Table 3. Patient B was monitored in winter for 3

months when pollen was absent, and ozone was in a healthy
range. The values suggest that PM2.5 was contributing to
patient’s asthma, but the probabilities calculated are low as the
patient took controller medication to reduce symptoms. The
rescue medication is also included, as it can prevent or suppress
the other symptoms. Discussion section provides detailed patient
information and calculation (see Figure 3 for formulas and
Multimedia Appendix 3 for terms and definitions).

The probability of symptoms, given the triggers for patient C,
are shown in Table 4. Patient C was monitored for 36 days in
fall when pollen, PM2.5, and ozone were in an unhealthy range.
All the 3 triggers appear to be contributing to patient’s asthma.
The patient was on an oral steroid that controlled the asthma
episodes in the later part of the deployment, which explains the
low probability values. The rescue medication is also included,
as it can prevent or suppress the other symptoms that could have
occurred. The Discussion section provides detailed patient
information and calculation (see Figure 3 for formulas and
Multimedia Appendix 3 for terms and definitions).

Table 2. Probability of symptoms, given the triggers, for patient A.

Probability (symptoms | no pollen and PM2.5)Probability (symptoms | pollen and PM2.5a)Symptoms

0.520.66Cough

0.880.72Wheeze

0.120.28Chest tightness

0.640.28Activity limitation

0.040.33Nighttime awakenings

0.480.55Rescue medication intake

aPM2.5: particulate matter.

Figure 3. Formulae used to calculate the personalized triggers for patient-A, patient-B, and patient-C. PM2.5: particulate matter.
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Table 3. Probability of symptoms, given the triggers, for patient B.

Probability (symptoms | PM2.5a)Symptom

0.51Wheeze

0.25Activity limitation

0.02Nighttime awakenings

0.54Rescue medication

aPM2.5: particulate matter.

Table 4. Probability of symptoms, given the triggers, for patient C.

Probability (symptoms | PM2.5a, pollen and ozone)Symptoms

0Cough

0.22Wheeze

0.11Activity limitation

0.22Rescue medication intake

aPM2.5: particulate matter.

Discussion

Principal Findings
The kHealth kit is able to identify personalized triggers for each
season for all the patients. As expected, pollen was the major
contributor for the patients with asthma who were deployed in
spring and fall. In winter, PM2.5 was the major contributor for
most patients.

To illustrate the determination of personalized triggers and its
dependence on the seasons, 1 patient with a relatively high
number of asthma episodes was chosen for each season. Patient
A’s deployment period straddled 2 seasons, winter and spring,
which permitted the study of asthma in both the presence and
absence of pollen. The other 3 patients were deployed
exclusively within 1 season: patient B in winter, patient C in
fall, and patient D in summer. The days the patients did not
answer the questionnaire were excluded from the analysis. We
identified the most likely trigger for the patient’s asthma
episodes. Once a reliable personalized model associating triggers
with asthma episode is developed, it can be used to guide an
action plan including preventive or remedial measures, as well
as design targeted evaluations for better personalized care. IRB
protocol defined 2 classes of users with access to patient data.
The first class consisting of the physician and nurse who already
had the patient’s clinical and personally identifiable information
continued to have that access, in addition to the
kHealth-collected data. The second class consisted of researchers
who have access to the data collected by kHealth kit, but all
privately identifiable data that clinician or nurse have access to
was replaced by a serially chosen identifier. Specifically, the
researchers also did not have access to the patient’s address or
location. In fact, the gender, the weight, and the age information
of the individual patient were intentionally deleted from the
paper to remove personally identifiable data as stipulated in the
approved IRB protocol.

Winter to Spring
Patient A was diagnosed with severe asthma and monitored for
13 weeks, encompassing winter to spring 2018, and answered
the questionnaire for 46 days, enough to identify the
personalized triggers. The patient was prescribed albuterol and
Atrovent (as rescue medication), as well as Dulera and Singulair
(as controller medication). The patient took rescue medication
for 24 days; experienced cough, wheeze, or chest tightness for
39 days; had limited activity for 26 days; showed abnormal PEF
or FEV1 for 2 days; and was 15% adherent in taking controller
medication. During the deployment period, PM2.5 was varying
throughout, pollen was absent in the first half and present in the
second half, and ozone was in a healthy range throughout. On
the basis of the presence and absence of triggers in the patient’s
environment, we calculated the probability of PM2.5 and pollen
or PM2.5 alone being the trigger for the given symptom.

The patient experienced symptoms in the absence of pollen,
indicating that PM2.5 is contributing to the patient’s asthma
symptoms (Table 2). In the presence of pollen, the patient
experienced higher number of severe symptoms such as chest
tightness (chest tightness is more severe than wheeze [46]) and
nighttime awakenings. The rescue medication intake was higher
in the presence of pollen, which could have suppressed
wheezing. For this patient, the presence of pollen or PM2.5 in
the unhealthy range appears to be the primary contributing factor
for asthma episodes. The combined presence of pollen and
PM2.5 is associated with increased intensity of asthma episodes
as evidenced by cumulative increase in number of symptoms.
The pollen was in an unhealthy range for 20 days and PM2.5
for 41 days out of the 46 days the patient experienced asthma
episodes. When validated with the clinician, the patient was
identified to be allergic to pollen using the skin test. The ACT
scores before and after the deployment confirmed that the
patient’s asthma control was suboptimal.

Through continuous monitoring, we found that PM2.5 and
pollen were the contributors to the patient’s asthma episodes,
and the patient had poor adherence to controller medication. To
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improve asthma management, the intervention can be
personalized by alerting the patient about high pollen and PM2.5
forecast. Furthermore, notification can be sent to improve the
adherence to the controller medication. If asthma episodes recur
even after being adherent toward controller medication, the
clinician can intervene with a modified asthma action plan.

Winter
Patient B was classified as having moderate asthma and
monitored for 13 weeks in winter of 2017-2018. But data from
only the first 9 weeks were available for analysis, as the patient
did not answer for 4 weeks toward the end of the deployment.
The patient was prescribed albuterol (as rescue medication) and
Singulair (as controller medication) and answered the
questionnaire for 50 days, of which the patient experienced
asthma episodes for 45 days. Patient B experienced wheezing
for 27 days, activity limitation for 15 days, nighttime
awakenings on 1 day, took rescue medication for 24 days, had
abnormal PEF or FEV1 values for 6 days, and was 50% adherent
toward controller medication. Only PM2.5 was in an unhealthy
range during the deployment period, whereas ozone was in a
healthy range, and pollen was absent.

From Table 3, it can be observed that PM2.5 contributed to the
patient’s wheeze and led to the intake of rescue medication. The
patient did not experience symptoms on all the days the PM2.5
was in an unhealthy range because of patient’s adherence to
controller medication, which was 50%. In consequence, the
patient can be proactively notified when PM2.5 is forecast to
be in the unhealthy range and may also be reminded to take
prescribed medication. Of the 45 days the patient experienced
asthma episodes, PM2.5 was in an unhealthy range for 40 days.
To enhance asthma management, the patient can improve
adherence toward controller medication and avoid exposure to
PM2.5 when it is high. If this does not help, the patient should
be reevaluated to adjust the asthma control plan. To identify
the patient’s reaction to other triggers, the experiment needs to
be repeated in other seasons.

Fall
Patient C was diagnosed with moderate asthma and monitored
for 5 weeks and 4 days in the fall of 2017. The patient answered
the questionnaire 33 out of 36 days of deployment, of which
the patient showed asthma episodes for 17 days. The patient
was prescribed albuterol (as rescue medication), Symbicort and
Singulair (as controller medications), and prednisone (oral
steroid). The patient had cough and wheeze for 11 days, had
activity limitation for 4 days, took rescue medication for 6 days,
showed abnormal PEF or FEV1 for 9 days, and had an adherence
of 63% toward controller medication. The outdoor environment
remained uniform with respect to pollen, ozone, and PM2.5
throughout the deployment.

Higher intake of wheeze and rescue medication was observed
in the initial stages of the deployment. Because pollen, PM2.5,
and ozone were present throughout the deployment, all the 3
triggers appear to be contributing to the patient’s asthma
symptoms (see Table 4, and we were not able to separate the
triggers on the basis of the data we have). The patient also took
oral steroids to control the asthma episodes, which reflected in

the later part of the deployment by significant reduction in the
number of asthma episodes. Of the 17 days the patient
experienced asthma episodes, PM2.5 was in an unhealthy range
for 13 days, pollen for 16 days, and ozone for 7 days. The
kHealth framework has the potential to aid patient C in
self-management of asthma by alerting the patient when pollen
or PM2.5 can exacerbate asthma and reminding the patient to
take medication to improve adherence. Furthermore, the
clinician can also be notified when the patient takes the oral
steroid, an indication of poor asthma control, to enable timely
intervention. To exonerate some factors and identify triggers
precisely, the experiment should be repeated in the season when
pollen is absent.

Summer
Patient D had mild asthma and was monitored for 4 weeks and
3 days in the summer of 2018. The patient was prescribed
albuterol (as rescue medication) and Asmanex and Singulair
(as controller medications). Patient D had answered the
questionnaire for 29 out of 30 days and experienced asthma
episodes for 6 days. The patient experienced cough, wheeze,
chest tightness, or hard and fast breathing for 5 days; activity
limitation and nighttime awakenings on 1 day; and the adherence
toward the controller medication was 70%. The lung function
measurements were normal throughout the study period. Out
of the 6 days the patient suffered from asthma episodes, pollen
was in an unhealthy range for 3 days, ozone for 4 days, and
PM2.5 for 6 days. On the basis of observations, PM2.5 is
suspected to be the major contributor, followed by ozone and
pollen. However, this patient had sparse asthma episodes to
identify the triggers precisely. In general, none of the patients
deployed in summer had sufficient asthma episodes.

Limitations
The objective of this study was to show the ability of kHealth
kit to identify personalized triggers for each asthma patient and
demonstrate the statistical significance of our findings for each
patient across different seasons. However, to maximize
participation in the study, all eligible pediatric patients who
volunteered were enrolled on a first-come-first-serve basis to
test the efficacy of continuous monitoring using low-cost sensors
for asthma management. Therefore, the period of observation
of patients did not necessarily coincide with season transitions.
This turned out to be a limitation for contrasting the patient’s
lung function and asthma episodes in allergy and nonallergy
seasons. Furthermore, as the deployment was on a rolling basis,
the patient deployment periods did not coincide. As such, we
were unable to combine results from several patients for the
same period and provide statistical significance. However, we
are optimistic that we can repeat our experiments considering
various allergy seasons and patients’ susceptibilities, especially
given the 63% kit adherence that shows that this technology is
acceptable to the patients and can monitor their asthma behavior
in different seasons. Because of electrical interference, the data
from the Foobot had to be excluded. Although the Fitbit data
were reliable, the reason for reduced activity measured by Fitbit
could be due to asthma or school routine or because Fitbit was
not worn or powered. Hence, Fitbit did not provide originally
envisioned insights in our analysis. Our observational study

JMIR Pediatr Parent 2019 | vol. 2 | iss. 1 | e14300 | p.8http://pediatrics.jmir.org/2019/1/e14300/
(page number not for citation purposes)

Venkataramanan et alJMIR PEDIATRICS AND PARENTING

XSL•FO
RenderX

http://www.w3.org/Style/XSL
http://www.renderx.com/


involved collection of the largest variety of PGHD (sensor data
and mobile app answers) and environmental data, offering us
the possibility of identifying likely, but not definitive, triggers
for an individual patient. However, we are at best able to make
inferences based on co-occurrence of symptoms and triggers
and hesitate to make any claims about causality beyond saying
these correlations provide a good basis for generating a
hypothesis for a more extensive randomized controlled trial
(RCT). Determining the true causes is beyond the scope of this
paper.

Conclusions
The infrequent clinical visits, as practiced by traditional health
care protocol, are unable to provide timely feedback and enable
intervention. Through continuous monitoring, kHealth kit can
provide detailed insights to the clinician about the personalized
triggers for asthma patients and their adherence toward the
prescribed asthma control protocol. Specifically, for patients
such as patient A whose deployment spanned 2 seasons, the
kHealth kit suggested, with evidence, the relevant triggers along
with the patient’s adherence to the prescribed asthma action
plan. This can aid the clinician in tailoring the asthma control
protocols for a patient, thereby leading to better asthma
management. Furthermore, kHealth kit was able to capture
triggers across different seasons, which was evident from the
determination of the variety of personalized triggers for the
patients chosen from different seasons.

Future Work
We plan to repeat the observational trial for different seasons
for each patient. Redeployment will be carried out for winter

patients to discover potential triggers in other seasons and also
for spring and fall patients to disambiguate among multiple
triggers by exonerating some. In addition, 2 separate 1-month
deployments in 2 different seasons (allergic and nonallergic)
will be attempted again as the earlier experiments yielded sparse
data, and 1-month deployments that straddle across 2 seasons
will be avoided in future. Moreover, 25% (21/23) of the entire
patient cohort did not experience any asthma episodes.
Eventually, with the kHealth system, we expect to identify for
each patient triggers across seasons that cause worsening of the
patient’s asthma and thereby aid the clinician with insights about
triggers and patient adherence for a personalized action plan.

This study has also helped us design a future study involving
self-management and intervention. As Foobot was giving
unreliable data, it will be discontinued in our future studies with
a replacement that will provide a reliable measure of indoor air
quality that is sensitive to secondhand smoke exposure. The
Android questionnaire will be updated to disambiguate the
reason for reduced activity as it could have been due to asthma
or normal school routine without extracurriculars or because of
the Fitbit not being worn or powered. The data from the Peak
Flow meter proved to be reliable, and a clear distinction could
be observed between asthmatic and nonasthmatic days. As the
data sources for outdoor environmental data were also reliable,
it will be continued. Android app questionnaire will be replaced
with a chatbot to improve ease of use [47,48]. As to our future
study, we are now working with the School of Medicine at the
University of South Carolina that has access to a larger cohort
of patients under the care of a larger number of clinicians and
specialists. This study will provide a better foundation to
formulate a hypothesis for an RCT, which is our next step.
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Abbreviations
ACT: Asthma Control Test
DCH: Dayton Children’s Hospital
FEV1: forced expiratory volume in 1 second
IRB: institutional review board
NICHD: National Institute of Child Health and Human Development
NIH: National Institutes of Health
PEF: peak expiratory flow
PGHD: patient-generated health data
PM2.5: particulate matter with diameter less than 2.5 micrometers
RCT: randomized controlled trial
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