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A B S T R A C T   

Epilepsy, a prevalent chronic disorder of the central nervous system, is typified by recurrent seizures. Present 
treatments predominantly offer symptomatic relief by managing seizures, yet fall short of influencing epi-
leptogenesis. This study endeavored to identify novel phytochemicals with potential therapeutic efficacy against 
S100B, an influential protein in epileptogenesis, through an innovative application of machine learning-enabled 
virtual screening. Our study incorporated the use of multiple machine learning algorithms, including Support 
Vector Machine (SVM), k-Nearest Neighbors (kNN), Naive Bayes (NB), and Random Forest (RF). These algo-
rithms were employed not only for virtual screening but also for essential feature extraction and selection, 
enhancing our ability to distinguish between active and inactive compounds. Among the tested machine learning 
algorithms, the RF model outshone the rest, delivering an impressive 93.43 % accuracy on both training and test 
datasets. This robust RF model was leveraged to sift through the library of 9,000 phytochemicals, culminating in 
the identification of 180 potential inhibitors of S100B. These 180 active compounds were than docked with the 
active site of S100B proteins. The results of our study highlighted that the 6-(3,12-dihydroxy-4,10,13-trimethyl- 
7,11-dioxo-2,3,4,5,6,12,14,15,16,17-decahydro-1H cyclopenta[a] phenanthren − 17-yl)-2-methyl-3-methyl-
ideneheptanoic acid, rhinacanthin K, thiobinupharidine, scopadulcic acid, and maslinic acid form significant 
interactions within the binding pocket of S100B, resulting in stable complexes. This underscores their potential 
role as S100B antagonists, thereby presenting novel therapeutic possibilities for epilepsy management. To sum 
up, this study’s deployment of machine learning in conjunction with virtual screening not only has the potential 
to unearth new epilepsy therapeutics but also underscores the transformative potential of these advanced 
computational techniques in streamlining and enhancing drug discovery processes.   

1. Introduction 

Epilepsy is a prevalent neurological disorder, characterized by 
recurrent, unprovoked seizures due to disturbances in the normal 
pattern of neuronal activity (Blume et al., 2001). This alteration in brain 
function leads to periods of unusual behavior and sensations, sometimes 
involving loss of consciousness. Globally, epilepsy affects over 50 
million individuals, with the majority (80 %) living in low and middle- 
income country (Carpio and Hauser 2009). Seizures, the primary 
symptom of epilepsy, are diverse in their manifestation - ranging from 
focal onset seizures, where only one area of the brain is affected, to 
generalized seizures, which involve all areas of the brain (Elshoff et al., 
2013). The experience of seizures can include transient confusion, 
staring spells, uncontrollable jerking movements, and sometimes loss of 
consciousness or awareness (Josephson et al., 2017). Furthermore, 

epilepsy can significantly affect the quality of life of patients, with im-
pacts on mental health, social relationships, and even employment op-
portunities. Epilepsy’s complex etiology involves genetic influences, 
structural changes in the brain, and functional changes in how neurons 
behave (Wong 2005). The pathophysiology of epilepsy, or epilepto-
genesis, is a process where a normal brain is altered to become epileptic 
due to inciting factors like brain injury, stroke, or prolonged seizures 
(Pitkänen and Lukasiuk 2009). Despite advances in medical research, no 
current antiepileptic drugs can inhibit this process of epileptogenesis. 

Epilepsy stems from the hyperactivity of neurons, characterized by 
excessive firing and bursting, as a result of interruptions in the transport 
of crucial ions like Ca, Na, and K ions through ion channels controlled by 
voltage and ligands. Furthermore, active phytomolecules that influence 
K+/Ca++ channels have been utilized in managing several neurological 
disorders (Richard 2001). Throughout the progression of epilepsy, there 
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has been noted an overproduction of S100B, a protein that binds to 
calcium. S100B belongs to S100 protein family, is found within the 
nucleus and cytoplasm of various cell types and plays a crucial role in 
controlling a wide range of cellular functions. It plays a significant role 
in processes like the progression of the cell cycle and differentiation. 
Furthermore, its link with numerous diseases such as Alzheimer’s dis-
ease, acute inflammation, cardiomyopathies, rheumatoid arthritis, and 
cancer has been extensively recorded (Van Eldik and Griffin 1994, 
Donato 2001). The potential therapeutic benefit of downregulating 
S100B in epilepsy management has been suggested (Liu et al., 2012). 

Computer-assisted drug discovery (CADD) tools have emerged as 
powerful accelerators in drug discovery processes, bringing down costs 
considerably (Macalino et al., 2015, Noor et al., 2021). This approach, 
coupled with the introduction of supercomputing capabilities, novel 
algorithms, and cutting-edge tools, has significantly elevated the effec-
tiveness of lead discovery in pharmaceutical research (Macalino et al., 
2018, Noor et al., 2022). With the integration of artificial intelligence 
(AI) and machine learning techniques, the analysis of vast data sets 
related to pharmaceuticals in drug discovery has become more efficient 
(Floresta et al., 2022, Tahir ul Qamar et al., 2022, Sadaqat et al., 2023). 
The structure-centric drug development strategy has proved to be 
particularly useful and effective in identifying and optimizing lead 
compounds, deepening our molecular understanding of diseases (Yang 
et al., 2022). In this study, an array of machine learning models was 
employed to conduct a virtual screening of phytochemicals against the 
S100B protein, a known drug target in epilepsy. The active hits identi-
fied through machine learning were further evaluated using the Lip-
inski’s rule of five, a computational tool to assess their drug-like 
properties. Phytochemicals demonstrating promising characteristics 
were further subjected to molecular docking analyses. The results 
highlighted these phytochemicals as potential inhibitors of the S100B 
protein, relevant to epilepsy. This research not only opens avenues for 
the discovery of novel epilepsy therapeutics but also underscores the 
significant role machine learning can play in expediting and refining 
drug discovery processes. Nevertheless, in vitro validation of these 
compounds is essential in future studies to elucidate their specific 
mechanisms of action and validate their potential in addressing this 
pervasive health challenge. 

2. Methodology 

2.1. Preparing and cleaning dataset 

The BindingDB database was employed to extract a total of 56 
molecules related to the S100B drug target in epilepsy (Sandhu et al., 
2022). A further 1801 decoy molecules, also called inactive molecules, 
were generated utilizing the Database of Useful Decoys (DUDE) 
(Mysinger et al., 2012). Thus, a collection of 1858 compounds was 
amassed. From these, 57 molecules sourced from the BindingDB data-
base were tagged as “1″ to signify they were active, and conversely, the 
1801 decoy compounds were assigned a “0” label indicating their 
inactive status. While initial dataset was notably imbalanced, having 56 
active compounds compared to 1801 inactive ones, careful consider-
ations were made during data splitting. This ensured an equal distri-
bution of both active and inactive compounds in the training and test 
sets. Such a balanced representation was imperative for the models to 
achieve a comprehensive understanding of both types of compounds. To 
further address this inherent imbalance, we utilized the Synthetic Mi-
nority Over-sampling Technique (SMOTE). SMOTE helps in creating 
synthetic samples within the feature space by interpolating between 
existing instances. This method not only ensures a balanced represen-
tation for both classes but also potentially enhances the model’s ability 
to generalize on unseen data. 

2.2. Data preprocessing and feature extraction 

The assembled dataset, consisting of compounds retrieved from the 
BindingDB database and decoy molecules from the DUDE database, was 
loaded into a pandas DataFrame in Python (Santos et al., 2020). The 
compiled dataset was categorized into two primary sections: the features 
and the target variable. The features were defined by the molecules’ 
SMILES notation, and the target variable was designated to signify the 
activity status of each molecule, either ’active’ labeled as ’1′ or ’inactive’ 
labeled as ’0′. Post this categorization, the dataset was further divided 
into training and test subsets for model training and validation. This split 
was accomplished using the train_test_split function from the Scikit- 
learn library (Kramer and Kramer 2016), ensuring an equal distribu-
tion of inactive along with active compounds in both sets. The SMILES 
notation of each molecule was transformed into quantifiable features 
using the RDKit library (Lovrić et al., 2019). This involved computing 33 
features indlucing LogP (lipophilicity), Molecular Weight (MW) and 
others. 

2.3. Chemical space and diversity analysis 

In addition to the machine learning models and the physicochemical 
distribution analysis, further investigation into the chemical diversity 
and similarity among the compounds in the dataset was conducted 
through a molecular similarity analysis using Tanimoto coefficients. 
This approach quantifies the degree of similarity between two mole-
cules, based on their molecular fingerprints. First, molecular finger-
prints for each compound were computed using the RDKit’s Morgan 
fingerprint algorithm (Bae et al., 2021), capturing the molecular struc-
ture information into a binary vector representation. Tanimoto simi-
larity coefficients, metrics that measure the similarity between two 
molecular fingerprints, were calculated for every pair of molecules in 
the dataset. These coefficients range from 0, representing completely 
dissimilar molecules, to 1, signifying identical molecules. 

After computing the Tanimoto coefficients for all pairs of molecules, 
the distribution of these scores was analyzed. Key statistics such as the 
mean and standard deviation were calculated to understand the overall 
level and variability of molecular similarity in the dataset. Furthermore, 
this distribution was visualized using a histogram to get a clearer picture 
of the diversity in the chemical space of the dataset. This analysis was 
crucial to ensure the diversity of the dataset and its suitability for 
training machine learning models. Diverse datasets help prevent over-
fitting and improve the generalization of the models to unseen data. This 
comprehensive approach integrating machine learning with chemical 
space and diversity analysis forms a robust strategy for the development 
of predictive models in chemoinformatics. 

2.4. Principle component analysis (PCA) 

Next, feature scaling was performed to ensure that all features had a 
similar scale. This is critical when working with machine learning al-
gorithms that use a distance measure, like K-Nearest Neighbors (KNN). 
Subsequently, feature extraction was performed using Principal 
Component Analysis (PCA) to reduce the dimensionality of the data, 
thereby concentrating the variability of the data into fewer features. 
PCA a popular technique used for dimensionality reduction and feature 
extraction, was performed on our data. PCA converts the initial variables 
into a novel group of variables, referred to as the principal components. 
These components are uncorrelated and encapsulate the variability 
observed in the original variables (Prada Gori et al., 2022). In the Scikit- 
learn implementation (Kramer and Kramer 2016), a PCA object was 
initialized with the number of components set to 2. This object was fitted 
on our selected features, and the resulting principal components were 
used for further processing. 
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2.5. Machine learning models 

Several machine learning models were trained on the processed 
dataset to classify compounds as either active or inactive. The algo-
rithms used for this included Support Vector Machine (SVM), K-Nearest 
Neighbors (KNN), Naive Bayes (NB), and Random Forest (RF). Each 
model was tuned and validated using cross-validation and GridSearchCV 
from the Scikit-learn library. 

2.5.1. Support Vector Machine (SVM) 
SVM is a dynamic and flexible Machine Learning model. It’s capable 

of executing regression, linear/nonlinear classification, and more. It 
operates by creating a hyperplane in a multidimensional space to 
differentiate among various classes (Noor et al., 2023). The Scikit- 
learn’s svm.SVC() function was used to implement the SVM, with the 
’gamma’ parameter set to ’scale’. This parameter defines how far the 
influence of a single training example reaches, with low values meaning 
’far’ and high values meaning ’close’. We employed ’scale’ as it auto-
matically scales the ’gamma’ value according to the number of features 
in the dataset. The kernel parameters being ’linear’ and ’rbf’ were fed 
into a grid search for hyperparameter tuning. 

2.5.2. K-Nearest Neighbors (KNN) 
KNN is a non-parametric algorithm that memorizes all extant data 

points and classifies novel instances according to a specified metric of 
proximity or similarity (Prada Gori et al., 2022). In this study, the Scikit- 
learn’s neighbors.KNeighborsClassifier() function was used to imple-
ment the KNN algorithm. The number of neighbors was varied from 1 to 
10, and these were fed into a grid search for optimizing the number of 
neighbors. 

2.5.3. Naive Bayes (NB) 
Naive Bayes classifiers represent a group of basic “probabilistic 

classifiers” that apply Bayes’ theorem, predicated on the substantial 
assumption of independence among the features (Patel et al., 2020). The 
Scikit-learn’s naive_bayes.GaussianNB() function was used to imple-
ment the Gaussian Naive Bayes algorithm, with no hyperparameters 
being tuned since Naive Bayes doesn’t typically require this. 

2.5.4. Random Forest (RF) 
Random Forests is a robust machine learning technique that can 

undertake both classification and regression tasks. It employs numerous 
decision trees during the training phase, and for classification tasks, it 
delivers the class that represents the mode of the classes. In the context 
of regression tasks, it generates the average prediction derived from 
each individual tree (Breiman 2001). The Scikit-learn’s ensemble.Ran-
domForestClassifier() function was used to implement the RF. The 
number of trees in the forest, controlled by the ’n_estimators’ parameter, 
was set to 100 for our initial model but was subsequently tuned using 
grid search, with values ranging from 50 to 200. A ’random_state’ 
parameter was also set to 1 to ensure the reproducibility of our results. 

2.6. Model evaluation 

Each model was trained using the processed dataset and evaluated 
using 5-fold cross-validation in order to analyze the reliability of result 
as well as to check the results are not dependent on the specific 
arrangement of the training data. The hyperparameters of each model 
were tuned using the GridSearchCV function from Scikit-learn, which 
performs exhaustive search over specified parameter values for an 
estimator. Hyperparameters play a pivotal role in defining and refining 
the performance of machine learning models. Unlike model parameters 
which are learned during training, hyperparameters are set beforehand. 
To optimize these for each of our models, we employed the Grid-
SearchCV function from the Scikit-learn library. GridSearchCV 
methodically searches over a predefined range of hyperparameters, 

exhaustively trying out each possible combination. This rigorous process 
ensures that the best possible set of hyperparameters is chosen, ulti-
mately leading to optimal model performance. The assessment of the 
models was performed using various metrics, such as recall, precision, 
F1-score, accuracy, as well as the Area Under the Receiver Operating 
Characteristic Curve, often abbreviated as AUC-ROC (Ahmad et al., 
2021). In addition, the Receiver Operating Characteristic (ROC) curve 
was constructed, which graphically delineates the effectiveness of the 
classification model at all possible thresholds. The AUC-ROC, an 
aggregate measure of the model’s performance across all thresholds, was 
also determined. This metric conveys an overall impression of the 
model’s capacity to discriminate between the different categories, spe-
cifically the active and inactive compounds. 

2.7. Model serialization 

Once the model was trained and evaluated, the final model was 
saved using Python’s pickle module for later use. This step, known as 
model serialization, involved exporting the trained model into a file that 
could be stored and loaded in the future to make predictions without 
needing to retrain the model. 

2.8. Making predictions on a new dataset 

Upon the successful serialization of our optimal model, it was 
deployed to make prognostic evaluations on a novel dataset comprising 
nearly 9000 phytochemicals of undetermined activity. The library of 
9,000 phytochemicals utilized in this research was compiled from 
various open-source chemical databases, including PubChem (Kim et al., 
2019), ChEMBL (Gaulton et al., 2012), and ZINC (Irwin and Shoichet 
2005). These databases provide comprehensive information about the 
structure, properties, and biological activities of small molecules, mak-
ing them ideal resources for virtual screening and drug discovery 
studies. The initial dataset’s preprocessing and feature extraction stra-
tegies were mirrored for this analysis. This preprocessed data was then 
subjected to the previously trained model, leading to the categorization 
of each compound into either ’active’ or ’inactive’. To refine these re-
sults and increase the potential drug-likeness of the selected compounds, 
we incorporated Lipinski’s Rule of Five - a commonly used metric in 
pharmaceutical research that gauges the likelihood of a chemical com-
pound being an orally active drug in humans (Bashir et al., 2023). This 
layered approach allowed us to narrow down our list to those phyto-
chemicals which were not only predicted as potentially active but also 
adhered to the parameters of Lipinski’s Rule. 

2.9. Molecular docking study 

2.9.1. Preprocessing and validation of target protein 
The three-dimensional configuration of the S100B protein, a well- 

recognized therapeutic target in epilepsy, was obtained from the RCSB 
Protein Data Bank (Rose et al., 2016). The selected protein structure 
(PDB ID: [2H61]; Resolution: [1.90 Å]; Organism: [Homo sapiens]; 
Determination Method: X-ray diffraction) comprised various peptide 
chains, out of which, Chain A was singled out as the target receptor for 
our analysis. To begin with, the protein structure was prepared for 
docking procedures. This involved the removal of undesired water 
molecules and any linked ligands from the protein structure. Addition-
ally, polar H-atoms were introduced to the structure using the Discovery 
Studio Visualizer (Systèmes 2019). 

2.9.2. Molecular docking analysis 
Using the machine learning model, the phytochemicals classified as 

active were docked into the S100B protein’s active site to facilitate 
detailed molecular interaction studies. For the docking simulations, we 
targeted this specific inhibitor binding site. The PyRx tool (Kondapuram 
et al., 2021), a front-end for AutoDock Vina, was used to conduct these 
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simulations using a combination of rigid and flexible docking parame-
ters. The docking grid was defined with dimensions of (x = 20, y = 20, z 
= 20) and positioned to enclose the entire binding site with the co-
ordinates at (x = 112.015, y = 106.402, and z = 131.8428). Autodock 
vina utilized an empirical scoring function to determine the affinity of 
protein-compound binding, which was calculated by aggregating con-
tributions from various individual terms. The docked complex with the 
lowest root mean square deviation (RMSD), was considered the optimal 
complex, and the binding energies among ligand and target protein were 
evaluated based on their affinity. A good binding strength was indicated 
by a value < -5.00 kcal/mol, while value < − 7.00 kcal/mol indicated 
very good affinity. These top 5 phytochemicals havinf highest binding 
affinity (kcal/mol) were than selected. These top phytochemicals 
exhibited structural diversity and promising potential as potent in-
hibitors of the S100B protein, as suggested by their docking scores and 
interaction patterns. 

3. Results 

3.1. Dataset characteristics and preprocessing 

The assembled initial dataset encompassed a total of 1857 com-
pounds. Specifically, 56 molecules known to exhibit activity against the 
S100B protein target associated with epilepsy were incorporated. The 
remaining 1801 compounds were decoy molecules. Detailed informa-
tion pertaining to these 56 active molecules available in Supplemen-
tary File 1:Table S1. A thorough assessment of the dataset confirmed its 
high quality, with no missing values or duplicate entries, hence, quali-
fying it for further analysis. In the preprocessing stage, each molecule 
was quantitatively characterized through the transformation of the 
SMILES notation into numerical descriptors using the RDKit library. A 
total of 33 features were generated for use in the current study. These 
features’ statistical properties are summarized in Table 1. 

Post preprocessing, the dataset was split into training and test sets. 
Both of these sets were judiciously represented with active and inactive 
compounds. The compiled datasets for these training and test sets are 
respectively detailed in Supplementary File 2: Table S1 and Supple-
mentary File 3: Table S1. Within these supplementary files, the SMILES 
notation, binary activity labels, and all extracted features for each 
molecule are documented, thereby providing complete transparency of 
our computational workflow and dataset construction. 

3.2. Principle component analysis 

In our study, we employed Principal Component Analysis (PCA) to 
transform the original 33 descriptors, which represent the distinct 
characteristics of the compounds, into two principal components. These 
components were observed to capture a significant proportion of the 
variance in our dataset. The eigenvalues, a measure of the variance 
explained by each principal component, were 3.27111643e + 04 for the 
first component and 2.64810671e + 00 for the second component. 
These values indicate the amount of variance each component accounts 
for in the dataset. The larger the eigenvalue, the more variance (infor-
mation) that component captures from the dataset. In our case, the first 
principal component, with a significantly larger eigenvalue, explained 
approximately 46.60 % of the variance, encapsulating nearly half of the 
critical information embedded in our original high-dimensional data. 
The second component contributed an additional 10.17 % to the 
explained variance. The eigenvalues illustrate that these two principal 
components effectively retain a substantial proportion of the essential 
information from the dataset. This highlights the power of PCA as a 
dimensionality reduction technique, especially beneficial in managing 
high-dimensional data in our study. 

In Fig. 1, a scatter plot of these two principal components displays a 
distinct separation between the active and inactive phytochemical 
compounds. This visual differentiation reveals that the PCA-derived 

Table 1 
Descriptive statistics of features extracted from SMILES notation.  

Feature Description Mean Standard Deviation Min Max 

MaxEStateIndex Maximum electron state indices  12.24435  2.877905 3.449366 15.89941 
MinEStateIndex Minimum electron state indices  − 1.65521  2.126304 − 8.89218 1.049444 
MaxAbsEStateIndex Maximum absolute electron state indices  12.24435  2.877905 3.449366 15.89941 
MinAbsEStateIndex Minimum absolute electron state indices  0.143983  0.175193 0.000205 1.564815 
qed Quantitative Estimation of Drug-likeness  0.336721  0.255879 0.026506 0.917744 
MolWt Molecular weight  531.7295  180.852 166.288 884.158 
HeavyAtomMolWt Molecular weight of heavy atoms  501.5868  174.5467 146.128 858.161 
ExactMolWt Exact molecular weight  531.0794  180.6201 166.159 883.4894 
NumValenceElectrons Number of valence electrons  193.3242  65.53219 64 338 
MaxPartialCharge Maximum partial charge  0.290576  0.09857 0.036967 0.572618 
MinPartialCharge Minimum partial charge  − 0.44589  0.103825 − 0.87236 − 0.19716 
MaxAbsPartialCharge Maximum absolute partial charge  0.454735  0.098555 0.240389 0.87236 
MinAbsPartialCharge Minimum absolute partial charge  0.281731  0.088753 0.036967 0.467962 
BalabanJ Balaban topological index  1.745196  0.608013 0.686564 6.220887 
BertzCT Bertz molecular complexity index  1285.799  611.2487 119.2587 3136.19 
MolLogP Partition coefficient between octanol and water  5.183181  2.522943 − 4.0758 15.0614 
MolMR Molecular molar refractivity  138.8478  48.9564 25.7661 259.0877 
HeavyAtomCount Number of heavy atoms  36.58365  12.75426 11 66 
NHOHCount Number of hydroxyl and amine groups  2.206802  1.224305 1 8 
NumHDonors Number of hydrogen bond donors  1.860121  1.011279 0 8 
NumHAcceptors Number of hydrogen bond acceptors  5.878223  3.123946 0 13 
NumRotatableBonds Number of rotatable bonds  8.279759  4.326629 0 23 
NumHeteroatoms Number of non-carbon atoms  9.281953  4.797838 1 34 
NumAromaticRings Number of aromatic rings  2.877126  1.844158 0 8 
NumSaturatedRings Number of saturated rings  0.686231  1.171966 0 8 
NumAliphaticRings Number of aliphatic rings  1.234229  1.291062 0 8 
NumAromaticHeterocycles Number of aromatic heterocyclic rings  0.809106  0.885165 0 5 
NumSaturatedHeterocycles Number of saturated heterocyclic rings  0.312671  0.771962 0 6 
NumAliphaticHeterocycles Number of aliphatic heterocyclic rings  0.729018  0.935967 0 6 
NumAromaticCarbocycles Number of aromatic carbocyclic rings  2.06802  1.491941 0 6 
NumSaturatedCarbocycles Number of saturated carbocyclic rings  0.37356  0.844887 0 8 
NumAliphaticCarbocycles Number of aliphatic carbocyclic rings  0.505211  0.942269 0 8 
FractionCSP3 Fraction of carbons that are sp3 hybridized  0.404419  0.262591 0 1  
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components can serve as robust discriminative features to distinguish 
between the two classes of compounds. The variance explained by these 
components, along with the clear classification in the scatter plot, re-
inforces the utility of PCA in unearthing critical, non-redundant infor-
mation in high-dimensional data. This transformation not only 
simplified the complexity of our data but also facilitated a more efficient 
and streamlined analysis. The successful reduction of dimensions using 

PCA will enable the construction of subsequent machine learning 
models with enhanced interpretability and potentially improved per-
formance, particularly in predicting the activity of phytochemical 
compounds. Our findings illuminate the promise of PCA in extracting 
meaningful insights from high-dimensional chemical descriptor data, 
paving the way for future studies in this exciting intersection of chem-
istry and data science. 

Fig. 1. Scatter plot of the two principal components derived from PCA. Active compounds are marked in red, and inactive compounds are marked in blue.  

Fig. 2. The distribution of chemical space and diversity within the training set. The parameters defining the chemical space include the LogP molecular weight.  
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3.3. Chemical space and diversity analysis 

The efficiency of machine learning models is predominantly affected 
by the chemical heterogeneity of the samples in both the training and 
test datasets. Models trained on a diverse set of samples are more likely 
to generalize well to unseen data. In framework of current study, we 
conducted a physicochemical distribution analysis of the training and 
test sets with respect to the two principal components: molecular weight 
(MW) and LogP. The MW in our dataset ranges from 50 to 500 Da 
(Daltons) and LogP varies from − 2 to 15. 

The analysis of the chemical space occupied by the training set 
(Fig. 2) reveals that active compounds, represented in blue, tend to 
cluster in regions with higher values of the first principal component, 
suggesting a higher molecular weight. Inactive compounds, represented 
in red, spread more evenly across the first principal component, indi-
cating a wider range of molecular weights. The distribution of LogP 
values, represented by the second principal component, is also varied 
within each group, indicating a wide range of lipophilicity among the 
compounds. The test set (Fig. 3) demonstrates a similar distribution, 
validating the representativeness of our training set and ensuring that 
our model is evaluated on a test set that shares the same chemical space 
as the training data. 

We also performed a molecular similarity analysis by calculating the 
Tanimoto coefficients for pairs of molecules in our dataset (Fig. 4). 
Tanimoto coefficient is a popular metric in chemoinformatics for 
quantifying the similarity between two molecules based on their mo-
lecular fingerprints. The coefficients range from 0 (no similarity) to 1 
(identical molecules). Our analysis yielded a mean Tanimoto score of 
~0.12, suggesting that, on average, the molecules in our dataset share 
about 12 % of their features. This implies a moderate level of similarity 
among the molecules in our dataset. The standard deviation of ~0.07 
reveals a significant variability in molecular similarity within our 
dataset, implying a considerable diversity among the molecules. This 
diversity is beneficial for training robust machine learning models as it 
allows the models to learn and capture a wide range of molecular 
characteristics. 

The compounds (inactive and active) in both the training and test 
sets exhibit a wide range of values for the two principal components 
(Table 2). The mean values indicate that active compounds in the 
training set generally have higher molecular weight and are less lipo-
philic than inactive compounds. However, the standard deviation shows 
substantial variability within each group. These findings underline the 

complex relationship between the molecular properties of compounds 
and their biological activity, necessitating the use of sophisticated ma-
chine learning techniques for accurate prediction. 

3.4. Model generation and validation 

To categorize the active inhibitors against S100B, our study utilized 
various machine learning algorithms, namely kNN, SVM, RF, and NB. 
These models were developed utilizing the Python sklearn library and 
trained on a dataset extracted from the Binding DB database. The 
effectiveness of these models was evaluated using various statistical 
metrics, including accuracy, recall (sensitivity), specificity, MCC, and 
the AUC. The performance of each model on the test set is demonstrated 
in Table 3. 

The results demonstrate that the RF model displayed superior per-
formance across all metrics. It achieved an specificity of 0.947653, 
sensitivity of 0.920152, accuracy of 0.934259, MCC of 0.868600, and 
AUC of 0.980117 (Supplementary File 4). This indicates that the RF 
model provides an excellent balance between predicting true positives 
(active compounds) and true negatives (inactive compounds), thus 
making it the most reliable model among the ones tested. 

Meanwhile, the kNN model also performed well with a fairly high 
accuracy of 0.851852 and a satisfactory MCC of 0.705018, indicating its 
utility as a good secondary model for this classification task. The SVM 
and GNB models, on the other hand, demonstrated a high sensitivity but 
lagged in terms of specificity and MCC. These models, while good at 
identifying true positives, have a higher rate of false positives. There-
fore, while these models can be useful in contexts where missing a 
positive case would be detrimental, they are not as efficient in general 
classification tasks for this specific dataset. In comparison to other 
employed machine learning models, the RF model emerged as superior 
in terms of both accuracy and the MCC. It is worth-noting that the 
performance of a model is directly correlated with the AUC. Notably, the 
RF model displayed the highest AUC, trailed by the SVM model, as 
evidenced in Fig. 5 depicting performance on both the training and test 
sets. 

Following that, the RF model was employed to classify the active 
phytochemicals that are effective against S100B. Remarkably, from li-
brary of 9000 active compounds a total of 584 phytochemicals were 
predicted to be active for S100B protein. This highlights the utility and 
accuracy of the RF model in predicting active compounds in this context. 

Fig. 3. The distribution of chemical space and diversity within the test set. The parameters defining the chemical space include the LogP molecular weight.  
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3.5. Analyzing drug-like potential of active compounds 

Following the determination of the active phytochemicals, we pro-
ceeded to analyze their drug-likeness, a vital parameter in evaluating 
potential therapeutic agents. Utilizing RDKit’s Lipinski module, we 
computed key molecular properties including MW, HBD, HBA, and the 
LogP for these active compounds. Our drug-likeness criteria were 
established based on Lipinski’s Rule of Five, which asserts that a com-
pound is likely to have favorable absorption or permeation character-
istics if it possesses a MW < 500 Daltons, < 5H-bonds donors, < 10H- 
bonds acceptors, and a LogP value < five. Remarkably, out of the 584 
active phytochemicals, 180 fulfilled these criteria, demonstrating sig-
nificant potential for further docking studies and exploration as drug 
candidates. To comprehend the relationships and correlation among 
these molecular properties, we generated a heatmap of the correlation 
matrix (Fig. 6). This heatmap provides a visual representation of the 
correlation coefficients between each pair of properties (MW, HBD, 
HBA, LogP). In this heatmap, the strength and nature of correlations are 
visualized with varying color intensities, ranging from deep red (indi-
cating a strong negative correlation) to deep blue (indicating a strong 
positive correlation). A value closer to zero, such as the correlation be-
tween HBA and MW at − 0.013, is visualized in a neutral color. 

To visualize the distribution of these drug-like properties among the 
selected compounds, we generated a scatter matrix plot (Fig. 7). This 
plot, demonstrated by the seaborn pairplot function, provides a pairwise 
relationship for an array of variables. Each data point represents a 
specific compound, plotted in a multidimensional space of molecular 
properties. The kernel density estimation (KDE) on the diagonal allows 
us to see the distribution of values for each property. 

Overall, the scatter matrix reveals notable clusters, suggesting that 
our selection of potential drug-like phytochemicals shares similar mo-
lecular properties, which is promising for further pharmaceutical 
development. These observations, combined with the machine learning 
prediction results, provide a compelling foundation for future experi-
mental validation and potential therapeutic applications. 

Fig. 4. Histogram of the Tanimoto scores provides a visual representation of the distribution of pairwise molecular similarities in our dataset. The broad spread of the 
histogram indicates a diverse chemical space, which is essential for avoiding overfitting in machine learning models. 

Table 2 
Summary statistics for the principal components.  

Datasets Statistics Principal 
Component 1 

Principal 
Component 2 

Train Active Mean  13.23591  − 1.00004 
Standard 
Deviation  

234.9012  0.646442 

Min  − 246.599  − 3.20646 
Max  353.4598  1.25585 

Train 
Inactive 

Mean  4.30182  − 0.04584 
Standard 
Deviation  

183.2961  1.592324 

Min  − 352.438  − 7.50709 
Max  365.4606  8.652066 

Test Active Mean  − 1.62929  − 1.04072 
Standard 
Deviation  

230.2291  0.651726 

Min  − 247.196  − 3.24771 
Max  352.6287  1.19385 

Test Inactive Mean  − 9.94967  0.147748 
Standard 
Deviation  

172.438  1.706272 

Min  − 352.438  − 6.61844 
Max  349.4086  6.666681  

Table 3 
Performance evaluation metrics of predicted models.  

Model Accuracy Sensitivity Specificity MCC AUC 

kNN  0.851852  0.876426  0.82852  0.705018  0.904505 
SVM  0.769444  0.918251  0.628159  0.568288  0.842096 
RF  0.934259  0.920152  0.947653  0.8686  0.980117 
NB  0.731481  0.914449  0.557762  0.502821  0.827147  
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3.6. Molecular docking analysis 

In our rigorous investigation, we executed an extensive molecular 
docking analysis with the S100B protein utilizing a sophisticated ma-
chine learning-based virtual screening technique. A comprehensive li-
brary of 180 phytochemicals was subjected to this screening, and the 
quintet of compounds displaying the most robust binding affinity were 
earmarked for further scrutiny. The phytochemical with the highest 
binding affinity was the complex compound 6-(3,12-dihydroxy-4,10,13- 

trimethyl-7,11-dioxo-2,3,4,5,6,12,14,15,16,17-decahydro-1H-cyclo-
penta[a] phenanthren-17-yl)-2-methyl-3-methylideneheptanoic acid. 
This compound exhibited a binding affinity of − 8.55412 and an RMSD 
(Root Mean Square Deviation) value of 1.538235 Å (Table 4). Its potent 
interaction was majorly with Glu F:58 and Lys F:29 residues. Next 
Rhinacanthin K, showing a binding affinity of − 8.13617 and an RMSD of 
3.478616 Å. The residues involved in its interplay with the S100B pro-
tein were Lys F:29 and Asp F:61. Thiobinupharidine was the third- 
highest binder, possessing a binding affinity of − 8.09721 and RMSD 

Fig. 5. The ROC-AUC curve of all the models on (A)Test set (B) Train set. The graph shows the TP against FP rate.  

Fig. 6. Heatmap of the correlation matrix for molecular properties. The heatmap provides a visual representation of the correlation coefficients between each pair of 
properties (MW, HBD, HBA, LogP). Darker colors indicate stronger correlations. 
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value of 3.133208 Å, engaging principally with Asp F:61 residue. Sco-
padulcic Acid, the fourth compound, displayed a binding affinity of 
− 7.75486 and an RMSD of 2.324887 Å, predominantly interacting with 
the Asp F:62 residue. Lastly, Maslinic Acid, with a binding affinity of 
− 7.29647 and RMSD of 3.182368 Å, was found to interact with Gly F:64 
residue (Fig. 8). In conclusion, this intricate docking analysis elucidated 
specific interactions of these phytochemicals with the S100B protein, 
unearthing their potential as novel therapeutic candidates. 

4. Discussion 

Epilepsy, a chronic neurological disorder, is characterized by 
recurring seizures, and it affects millions of individuals worldwide (Hu 
et al., 2023). The etiology of epilepsy is multifaceted, encompassing 
genetic mutations, brain injuries, and imbalances in neurotransmitter 

function (Helbig et al., 2017). Despite significant advances in under-
standing the disorder’s pathophysiology, effective treatment options 
remain limited, particularly for drug-resistant epilepsy. Therefore, the 
development of novel, effective therapeutic strategies for epilepsy is 
crucial. S100B, a protein predominantly expressed in astrocytes, plays a 
significant role in epilepsy. Abnormally high levels of S100B have been 
detected in the cerebrospinal fluid and serum of patients with epilepsy, 
indicating its potential as a therapeutic target (Liang et al., 2019, Langeh 
and Singh 2021). The functional relevance of S100B in epilepsy, com-
bined with the absence of closely related human homologs, makes 
S100B an attractive target for the development of antiepileptic 
medications. 

Traditionally, the development of new drugs targeting specific pro-
teins such as S100B has been a lengthy and costly endeavor. However, 
the advances in CADD, now offer a rapid and precise methodology for 

Fig. 7. Scatter matrix of molecular properties. This scatter matrix presents a pairwise comparison of molecular properties (MW, HBD, HBA, LogP) for the selected 
phytochemicals. The diagonal plots indicate the kernel density estimate of each property. 
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screening extensive libraries of active phytomolecules. This approach 
holds the potential to hasten the discovery and development of novel 
therapeutic agents targeting S100B, thus significantly influencing epi-
lepsy treatment. The incorporation of machine learning techniques has 
further revolutionized this approach, by offering an efficient method for 
classifying prospective active and inactive compounds against protein 
targets. This study intends to harness the power of these machine 
learning algorithms to enhance the drug discovery process, focusing 
particularly on the identification of novel inhibitors against the S100B 
protein. The emphasis on machine learning not only aids in improving 
the precision of virtual screening but also aids in reducing the frequency 
of false-positive hits. This dual advantage significantly boosts the overall 
efficiency and accuracy of drug discovery endeavors. As a result, ma-
chine learning brings a new level of sophistication and capability to the 
drug discovery process, reinforcing its importance in modern medicinal 
chemistry. 

A comprehensive dataset of 1857 compounds, inclusive of 56 known 
active agents against S100B and 1801 decoy molecules was use in cur-
rent study. Following the identification of active and inactive com-
pounds, it was imperative to comprehend the characteristics or features 
that make certain compounds effective against the S100B protein in 
treating epilepsy. For this, we implemented a feature extraction and 

selection process, including the analysis of physicochemical properties, 
topological descriptors, and structural fingerprints. These features, 
essential in drug discovery, provide insights into the compound’s reac-
tivity, stability, and interactions with the target protein. 

PCA was performed to reduce the complexity of our multidimen-
sional dataset while preserving its variance. This process yielded key 
insights into the main features contributing to compound activity. 
Following PCA, we constructed machine learning models using KNN, 
SVM, and RF algorithms, employing the selected features as input. Each 
model was trained and validated on the curated dataset, with the aim to 
distinguish active from inactive compounds. These models’ perfor-
mances were assessed based on accuracy, precision, recall, F1-score, and 
AUC-ROC. 

Among the three, the RF model outperformed others in predicting 
active compounds, which could be due to its capability to handle high 
dimensional data, consider interaction effects, and mitigate overfitting. 
Notably, RF model also provides feature importance, offering insight 
into which features were most influential in classifying a compound as 
active or inactive. This feature relevance information is pivotal in un-
derstanding the characteristics crucial for a compound’s effectiveness 
against S100B protein. 

After establishing the RF model as the most reliable one, it was used 

Table 4 
Binding affinity and RMSD values of docked complexes.  

PubChem 
ID 

Phytochemical name Binding 
affinity 
(kcal/mol) 

RMSD 
(Å) 

2D structures 

10,838,646 6-(3,12-dihydroxy-4,10,13-trimethyl-7,11-dioxo-2,3,4,5,6,12,14,15,16,17-decahydro- 
1H-cyclopenta[a]phenanthren-17-yl)-2-methyl-3-methylideneheptanoic acid  

− 8.55412  1.538235 

10,765,714 Rhinacanthin K  − 8.13617  3.478616 

442,554 Thiobinupharidine  − 8.09721  3.133208 

11,729,855 Scopadulcic Acid  − 7.75486  2.324887 

73,659 Maslinic Acid  − 7.29647  3.182368 
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to screen a library of 9000 phytochemicals, revealing 584 compounds 
predicted as active against the S100B protein. This provided a broad 
pool of potential candidates for drug development in the treatment of 
epilepsy. Further examination of these 584 compounds was undertaken 
with a specific focus on their drug-likeness, using the Lipinski’s Rule of 
Five. This rule is a well-accepted guideline in the field of drug discovery, 
utilized to predict the oral bioavailability of a compound. Upon the 
utilization of Lipinski’s Rule, we narrowed down our list to 180 com-
pounds that met these criteria and thus, were likely to be well-absorbed 
in the human body. 

Molecular docking was performed with these 180 compounds to 
simulate their interactions with the S100B protein. Our study identified 
five with superior binding affinity towards the S100B protein, which 
could potentially contribute to the development of novel therapeutics 
for epilepsy. The phytochemical demonstrating the most potent binding 
affinity was the elaborately structured 6-(3,12-dihydroxy-4,10,13-tri-
methyl-7,11-dioxo-2,3,4,5,6,12,14,15,16,17-decahydro-1H-cyclopenta 
[a]phenanthren-17-yl)-2-methyl-3-methylideneheptanoic acid. Rhina-
canthin K, a well-known compound with documented medicinal bene-
fits, was a close contender. Thiobinupharidine, Scopadulcic Acid, and 
Maslinic Acid were also among the top performing compounds. 

Samad et al. (Samad et al., 2023) integrated machine learning with 
virtual screening and unveiled potential inhibitor against 3CLpro of 
SARS-CoV-2. To sum up, our study has considerable implications for the 

field of drug discovery, particularly in terms of finding therapeutics for 
epilepsy. Epilepsy has remained a complex condition to manage, and 
current treatments only aim at managing symptoms without funda-
mentally altering the disease course. Our study’s utilization of a machine 
learning-based approach has allowed us to screen an extensive library of 
phytochemicals and identify potential lead compounds that interact 
with the S100B protein, a critical target for epilepsy. This targeted 
approach could potentially lead to the discovery of drugs that can 
impact the disease’s underlying mechanisms, rather than just control-
ling the symptoms. Furthermore, this study can streamline the drug 
discovery process, which traditionally has been time-consuming and 
resource-intensive, by integrating computational methods to pinpoint 
potential candidates for further study. 

Our study leveraged machine learning and virtual screening to 
identify several compounds with demonstrated efficacy in epilepsy 
management. The diverse pharmacological properties of compounds 
predicted in current study, including antioxidant and anti-inflammatory 
effects, emphasize their potential for future research to explore its 
impact on neurological conditions. While it’s speculative at this point, 
compounds with antioxidant and anti-inflammatory properties could 
play a role in neuroprotection or modulation of neural pathways, which 
could have implications for conditions like epilepsy. As with any po-
tential treatment, rigorous scientific investigation would be essential to 
establish efficacy, safety, and appropriate application. 

Fig. 8. 3D visualization of active compounds with target proteins.  
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Additionally, this also has some limitation, as for instance one major 
constraint is the reliance on the quality and diversity of our data set. 
Although we used a broad phytochemical library, the effectiveness of 
our machine learning models is dependent on the training dataset’s 
quality and diversity. Therefore, any bias or lack of diversity may limit 
the prediction outcomes. Moreover, the interactions identified via in 
silico methods are theoretical and must be validated through in vivo and 
in vitro experimental studies. These findings need to be further evaluated 
in cell-based assays and animal models to establish their therapeutic 
relevance. Also, pharmacokinetic and pharmacodynamic studies are 
necessary to ensure the efficacy and safety of the identified compounds 
in humans. Moving forward, the future prospects of this research involve 
expanding the phytochemical library and incorporating more diverse 
datasets for training and testing our machine learning models. Addi-
tionally, improving our understanding of the molecular mechanisms 
underlying the interactions between the identified phytochemicals and 
the S100B protein could provide valuable insights into the design of 
novel drugs for epilepsy. Further experimental validation, including in 
vitro and in vivo studies, is critical to affirm the therapeutic potential of 
these compounds. Finally, the findings from this study could stimulate 
similar research approaches for other diseases, thereby promoting the 
integration of machine learning in drug discovery pipelines across 
various therapeutic areas. 

While our study adopted a sequential approach for drug design, 
focusing on potency first and then other drug-like properties, it’s 
essential to note that drug design can benefit from a multi-objective 
approach. By simultaneously considering multiple properties, the drug 
discovery process can potentially be streamlined, improving efficiency 
and reducing costs associated with trial and error. Such an approach can 
also increase the chances of identifying trustworthy candidates from the 
onset. In our machine learning-based virtual screening, the selection of 
33 features, including molecular weight, MlogP, and counts of hydrogen 
bond acceptors and donors, demonstrates our detailed and compre-
hensive approach to identifying potential candidates. In the context of 
our study, while the sequential approach yielded significant findings, 
considering drug-likeness guidelines such as Lipinski’s rule of five early 
in the drug design phase might be advantageous. 

5. Conclusion 

In conclusion, the present study has made significant strides towards 
advancing our understanding of S100B protein as a potential therapeutic 
target in epilepsy. Leveraging the potential of machine learning algo-
rithms and computer-aided drug design, our study have expedited the 
traditionally laborious and time-intensive process of drug discovery. 
Utilizing a comprehensive dataset of compounds, we developed and 
validated machine learning models that efficiently differentiated be-
tween active and inactive compounds against the S100B protein. Among 
the employed algorithms, the Random Forest model outperformed 
others, demonstrating high predictive accuracy and providing valuable 
insights into feature importance. Subsequent application of this model 
enabled the screening of a large library of phytochemicals, culminating 
in the identification of 584 compounds projected to be active against 
S100B. The application of Lipinski’s Rule of Five further refined this list 
to 180 compounds with desirable drug-likeness attributes. Molecular 
docking studies of these 180 compounds revealed five phytochemicals 
with superior binding affinity towards the S100B protein, thus high-
lighting their potential as leads for anti-epileptic drug development. 
Overall, our work shows how combining machine learning with drug 
design can speed up drug discovery. While our findings are promising, 
we understand the need for a broader validation of the proposed CAAD 
workflow. As such, we have accentuated in our discussion the impor-
tance of future studies spanning different datasets and conditions. 
Though our focus was primarily on epilepsy and the S100B protein, we 
believe that our methodology holds potential for other ailments and 
targets. Such endeavors could catalyze the creation of specialized and 

efficient treatments, promising better care for countless epilepsy pa-
tients worldwide. 
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