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Chemotherapy-induced nausea and vomiting (CINV) is a common and painful side effect that occurs in cancer patients receiving
chemotherapeutic drugs. Although an abundance of agents are applied to prevent CINV, there is still lack of effective control in
delayed nausea and vomiting. Ginger (Zingiber officinale Rosc.), a traditional antiemetic herb, draws attention due to its
therapeutic effect in treating acute and delayed CINV. Its main bioactive pungent constituents, gingerols, contribute to the
antiemetic effect against CINV primarily. A growing number of reports have made progress in investigating the mechanisms of
gingerols and their single ingredients against CINV. In this review, we searched for relevant studies in PubMed database to
summarize the mechanism of gingerols in the prevention of CINV and provided a preliminary prediction on the potential targets
and signaling pathways using network pharmacology, laying a foundation for further researches.

1. Introduction

Chemotherapy-induced nausea and vomiting (CINV) is a
side effect that occurs in antineoplastic chemotherapies and
severely affects the compliance as well as life quality of
cancer patients [1]. The underlying mechanisms of CINV
have not been fully clarified yet. The major mechanism of
CINV is concerned with the alteration of neurotransmitters
in central and peripheral, such as 5-hydroxytryptamine (5-
HT), substance P (SP), and dopamine (DA) [2]. Through
binding with 5-HT type 3 receptor (5-HT;R) and neuro-
kinin-1 receptor (NK-1R), 5-HT and SP are closely related to
the onset of acute phase and delayed phase of CINV, re-
spectively. The 5-HT;R antagonist like ondansetron and
NK-1R antagonist like aprepitant are the basic clinical
prophylaxis to treat CINV [3, 4]. Although the antiemetic
effect of these antagonists seems promising, adverse effects
like headache, constipation, and fatigue commonly occur
[2]. Besides, 5-HT;R antagonist alone is less effective in
relieving delayed CINV, while combining with the NK-1R
antagonist is effective in treating delayed emesis, it calls for
large medical cost to patients [2]. Therefore, CINV remains
as a great restriction for the usage of chemotherapy agents in

clinical cancer treatments. There is an urgent need for
further investigating the mechanism of CINV, as well as
exploring novel medicines with less side effects and
promising antiemetic property in controlling delayed nausea
and vomiting.

Ginger (Zingiber officinale Rosc.), a traditional and
common herb in Asia and Europe, has been used as a vital
approach in mitigating nausea and vomiting for more than
2000 years [5]. Clinical trial had proven the antiemetic effect
of ginger against acute and delayed phases of CINV. Pillai
etal. [6] and Uthaipaisanwong et al. [7] indicated that ginger
capsules were effective in acute and/or delayed phase of
CINV and that ginger could be an additional therapy to
standard nausea and vomiting prophylaxis protocol. Also,
oral intake of ginger or given ginger with high-protein meals
markedly reduced delayed nausea and vomiting [8, 9].
Preclinical studies indicated that the inhibition of 5-HT;R
largely contributed to the antiemetic effect of ginger, which
largely depends on its pharmacological active constituent
gingerols [10, 11]. Gingerols, consisting of various structural
analogs including 6-, 8-, 10-gingerol and 6-, 8-, 10-shogaol,
are the major pungent constituents and fraction of ginger
[12]. Konmun et al. conducted a phase II clinical study and
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showed that 6-gingerol significantly reduced CINV in pa-
tients receiving highly emetogenic chemotherapy [13]. And
there are a growing number of reports that have made
progress in revealing the underlying mechanism of gingerols
against CINV in animal models [14, 15].

Up to date, only 5 manuscripts are searched out when
using the terms “gingerols or 6-gingerol” and “CINV” in
PubMed. Among these studies, there are one review on the
mechanisms of ginger against CINV, one clinical trial on the
effect of 6-gingerol against chemotherapy-induced emesis in
cancer patients, one mechanism study of gingerols on cis-
platin-induced emesis, and two in silico studies. However,
other studies that investigated the antiemetic mechanism of
ginger also involved the antiemetic mechanism of gingerols
or its monomers, which have not been systemically sum-
marized. By using the terms “ginger”, “gingerols”, “6-gin-
gerol”, “8-gingerol”, “10-gingerol”, “6-shogaol”, “8-
shogaol”, “10-shogaol” and “chemotherapy”, “cisplatin”, “5-
HT?, “SP”, “DA”, and “gastrointestinal”, we searched for
studies in PubMed database from inception until Nov 13,
2021, based on the following criteria and consistencies: (1)
The keywords include ginger and/or Zingiber officinale
Rosc., gingerols, shogaols, 6-, 8-, 10-gingerol, 6-, 8-, 10-
shogaol, chemotherapy, and nausea and/or vomiting. (2)
The clinical trials of gingerols or its monomers against
CINV. (3) The mechanism studies of gingerols or its
monomers against CINV, especially on the mediation of 5-
HT, SP, DA signaling pathways, and gastrointestinal func-
tion. In this review, we summarized the mechanism studies
of gingerols in treating CINV and used network pharma-
cology to predict potential targets and pathways, providing
new prospects on the basic of previous investigations.

2. The Pathological Mechanisms of CINV

Depending on the occurrence time of nausea and sickness
after chemotherapy, CINV is classified into 5 types: acute,
delayed, anticipatory, breakthrough, and refractory [16].
Acute CINV usually occurs minutes or hours after che-
motherapy and reaches the peak at 5-6 hours, mainly
concerns with 5-HT in central and gastrointestinal tract.
Delayed CINV often occurs 24 hours after chemotherapy
and reaches the peak at 72 hours and is primarily mediated
by SP in central. Anticipatory CINV refers to the nausea and
vomiting due to the anxiety and tension before next che-
motherapy, for the poor control of sickness occurred in the
previous chemotherapy. Breakthrough CINV is the sickness
in spite of proper prophylaxis after chemotherapy, and
refractory CINV happens following breakthrough CINV in
the subsequent chemotherapy cycles. Both breakthrough
and refractory CINV result in nausea and vomiting in re-
sponse to the latest chemotherapeutic treatment [17, 18].
The mechanisms of CINV have not been fully under-
stood; it has been reported to interact between central
nervous system and gastrointestinal tract mediated by
neurotransmitters, like 5-HT and SP [19]. Chemotherapeutic
agents damage intestinal mucosa through oxidative stimu-
lation and via irritating enterochromaffin (EC) cells to re-
lease 5-HT. And 5-HT combines with 5-HT;R; then, the
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vagal afferent depolarizes and transmits nervous impulse to
the vomiting center (VC), triggering vomiting behaviors.
Besides, chemotherapy drugs also directly cause emesis via
upregulating SP level and increasing the expression of NK-
IR in the chemoreceptor trigger zone (CTZ) and VC [20].
Therefore, current CINV prophylaxes are mostly concerned
with the blockage of neurotransmitters from binding to
corresponding receptors.

3. The Major Bioactive
Constituents of Gingerols

The bioactive compounds in ginger are varied [12, 21]. Li
et al. established a qualitive analysis to reveal the phyto-
chemical constituents of ginger rhizomes extract, and the
compounds were mainly characteristic as diarylheptanoids,
gingerols, and others [22]. Gingerols are the main pungent
constituents and important nutraceutical principles of
ginger and can be divided into different constituents based
on the different chains connected with the functional group,
such as gingerols, shogaols, zingerones, gingerdiones, and
gingerdiones [21].

As a mixture of various analogs, gingerols refer to the
ingredients that all contain 3-methoxy-4-hydroxyphenyl
functional group [23]. The structure of different monomers
in gingerols is formulated based on the amounts of meth-
ylene in the unbranched alkyl chains [24]. When the amount
of methylene varies from 2, 4, 5, 6 to 8, diverse monomers
like 4-, 6-, 7-, 8-, 10-gingerol are composed (Figure 1). For
instance, 6-gingerol is formed with the existence of 4
methylenes, whose structure is 1-[4'-hydroxy-3'-methox-
yphenyl]-5-hydroxy-3-decanone [25]. According to the
Chinese Pharmacopoeia of the People’s Republic of China
(version 2020), 6-, 8-, 10-gingerol are the quality marker of
ginger. In high temperature or under pH 2.5-7.2, gingerols
are dehydrated and transformed into shogaols [26]. After
eliminating the hydroxide radical at C-5 and formulating a
double bond at C-4 and C-5 [27], shogaols are formed from
the corresponding gingerols with highly similar structure: 1-
[4-hydroxy-3'-methoxyphenyl]-4-decen-3-one (Figure 2).

The 6-gingerol and 6-shoagol are the representative
single ingredients in gingerols [12], which mainly contribute
to the antiemetic effect against CINV. Therefore, gingerols,
shogaols, and its monomers are primarily concerned in this
review.

4. The Antiemetic Mechanisms of
Gingerols against CINV

Nausea and vomiting can be modeled in species with or
without vomiting response. While vomiting can be directly
observed in emetic models such as minks, in models like
rodents that lack emetic response, the consumption of
nonnutritive substances like kaolin clay (i.e., pica behavior)
indicates the severity of vomiting [28]. Multiple studies
investigated the antiemetic effect of gingerols against CINV
in the vomiting model of minks or the pica model of rats
induced by chemotherapeutic agents.
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FiGure 1: The structure of gingerols.

4.1. Mediating 5-HT Signaling Pathway. 5-HT is a mono-
amine neurotransmitter; about 90% of 5-HT are produced in
the intestinal EC cells [29]. Chemotherapy agents stimulate
EC cells to release 5-HT, then evoke 5-HT3R and transmit
stimulus to the brain causing nausea or vomiting [30].
Tryptophan hydroxylase (TPH) is the rate-limiting enzyme
that initiates 5-HT synthesis. TPH catalyzes tryptophan to
form 5-hydroxytryptophane, with the effect of dehydroge-
nase, 5-hydroxytryptophane dehydrates and forms 5-HT
[31]. Monoamine oxidase A (MAO-A) is the key degrading
enzyme of 5-HT, transforming 5-HT into 5-hydroxyindol-
acetic acid (5-HIAA) [32]. And serotonin reuptake trans-
porter (SERT) controls the reuptake progress of extracellular
5-HT [33]. Therefore, estimating TPH, MAO-A, and SERT
levels is crucial in evaluating 5-HT expression.

In the vomiting model of mink, studies had indicated
that gingerols, which consisted of analogs with 3-methoxy-
4-hydroxyphenyl functional group, significantly ameliorated
vomitting behaviour via inhibiting central and peripheral 5-
HT systems, suggesting that gingerols significantly amelio-
rated CINV [14]. Gingerols significantly reduced 5-HT level
and 5-HT;R expression, which were related to the decrease
of TPH that limited 5-HT synthesis, and the increase of
SERT that promoted 5-HT degradation in central and pe-
ripheral [34]. It is worth noting that gingerols used in the
studies mentioned above were purchased from different
companies (i.e., Baoji Hongyuan Biotech Co., Ltd. and Xi’an
Biotechnology), whose purity and composition proportion
were not given. Thus, though the results seem convincing, its
reproducibility and reliability are significantly affected. As
recorded in the Chinese Pharmacopoeia of the People’s
Republic of China (version 2020), the total amount of 6-
gingerol should not be less than 0.050% and the total
amounts of 8-gingerol and 10-gingerol should not be less
than 0.040% in ginger. Similarly, the reliability of the studies
using gingerols might be improved by defining the total
amounts of 6-gingerol, 8-gingerol, 10-gingerol, and other
monomers in gingerols.

By isolating pure compounds 6-, 8-, 10-gingerol and 6-
shogaol from ginger hexane extract, Abdel-Aziz et al.
identified the property of the single ingredients in gingerols
on 5-HT systems in N1E-115 cells, isolated rat, and guinea-
pig ileum, and equilibrium competition binding studies. It
was found that the 5-HT;R blocking property of 6-shogaol
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FIGURE 2: The structure of shogaols.

was the best, followed by 8-shogaol, 8-gingerol, and 10-
gingerol, and the effect of 6-gingerol was the second smallest,
only greater than 4-gingerol [35, 36]. Besides, the inhibition
of pure compound 6-shogaol against emetic signal trans-
mission activated by 5-HT in vagal afferent neurons was
better than pure compound 6-gingerol [37]. In vitro study
using HEK293 cells and human colon tissue also pointed out
that the 5-HT;R inhibition of 6-gingerol and 6-shogaol was
mainly due to the restriction of 5-HT induced Ca** influx
through 5-HT3R [10]. Moreover, a recent study found out
that the pure ingredient 6-gingerol ameliorated cisplatin-
induced pica and suppressed 5-HT systems in rats. By de-
creasing the TPH level and increasing the MAO-A, SERT
level, 6-gingerol inhibited 5-HT synthesis and facilitated 5-
HT metabolism, thereby downregulating 5-HT level as well
as inhibiting 5-HT3R activation in central and peripheral
[15].

In summary, the mechanism of CINV is closely con-
cerned with the activation of 5-HT3R, which mediates
vomiting behaviors. Gingerols and its single ingredients
significantly ameliorate CINV through decreasing 5-HT
level and inhibiting 5-HT3R expression.

4.2. Mediating SP Signaling Pathway. The peptide substance
P (SP) presents in area postrema (AP) and nucleus tractus
solitarius (NTS). When SP binds to the neurokinin-1 re-
ceptor (NK-IR), it results in vomiting [38]. Pre-
protachykinin-A (PPTA) is the precursor during SP
synthesis, and the neprilysin (NEP) is the major tachykinin-
degrading enzyme of SP metabolism [39]. Thus, the ex-
pression level of PPTA and NEP indicates the anabolic level
of SP.

Studies indicated that in the vomiting model of minks
and pica model of rats, gingerols significantly ameliorated
cisplatin-induced vomiting in mink and kaolin intake in rats
through decreasing SP level and inhibiting NK-1R expres-
sion in central and peripheral [14, 34, 40]. The inhibition of
SP systems is mainly due to the reduction of PPTA, which
limited SP synthesis, and the improvement of NEP, which
accelerated SP degradation [34]. Similarly, gingerols used in
these researches lacked detailed purity and composition
proportion, which made the results less convincing.
Therefore, further investigation using gingerols with detailed



definition on its constituents or pure monomers to study the
effect of gingerols on mediating SP system is required.

Taken together, the upregulation of SP and the activation
of NK-1R induce CINV. Through reducing PPTA and in-
creasing NEP, gingerols significantly reduce SP level and
suppress NK-1R to alleviate CINV.

4.3. Mediating DA Signaling Pathway. Besides 5-HT and SP
systems, the activation of DA signaling pathway also con-
tributes to CINV. Through dopamine transporter (DAT),
DA activates D,-like dopamine receptors (D,R) that locates
in the dorsal vagal complex, central pattern generator, en-
teric nervous system, gastrointestinal tract, and vagus nerve
and then evokes emetic behaviors [41]. Tyrosine hydroxylase
(TH) is the rate-limiting enzyme in DA synthesis [42].

In the pica model of rats and vomiting model of minks,
studies reported that gingerols significantly ameliorated
CINV by inhibiting cisplatin-induced TH increase and DAT
reduction and decreasing DA level as well as D,R expression
in central and peripheral [14, 34, 43]. Likewise, the detailed
proportion and purity of gingerols were not given in these
studies; further investigation on the effect of gingerols with
detailed definition on its constituents or monomers in
gingerols on DA system is required.

In summary, the mechanism of CINV is concerned with
the activation of DA signaling pathway, and the effect of
gingerols against CINV is partly due to the inhibition of DA
synthesis, D,R activation, and the accumulation of DA
metabolism.

44. Modulating Gastrointestinal Function.
Chemotherapeutic treatments not only disturb the level of
various neurotransmitters, but also influence gastrointesti-
nal motility. Chemotherapy agents stimulate EC cells to
release 5-HT, and the basic physiology of gastrointestinal
function depends on 5-HT related signaling pathways
[1, 2, 30]. The activation of 5-HT;R induced by 5-HT further
activates extrinsic nerves and conveys a discomfort signal to
the brain to trigger emesis, which could be a potential
mechanism of CINV [30]. Besides, chemotherapy agents
usually result in delayed gastric emptying. To date, various
studies have proven that chemotherapy drug cisplatin sig-
nificantly reduced gastric emptying and food intake in rats,
indicating that the delayed gastric emptying induced by
chemotherapy might also be an important factor accounting
for CINV [44-46]. Therefore, evaluating the gastrointestinal
function after chemotherapy treatment is possible to indi-
cate the severity of CINV.

It was reported that the compound gingerols dose-de-
pendently improved delayed gastric emptying induced by
cisplatin and ameliorated chemotherapy-agent induced
gastric dysfunctions [43]. Further investigation suggested
that pure ingredients 6-, 8-, 10-gingerol and 6-shogaol
inhibited 5-HT agonist induced guinea-pig ileum contrac-
tion in a dose-dependent manner [36]. And in guinea-pig
ileum segment, all these four pure monomers significantly
inhibited carbachol response through suppressing cholin-
ergic M3 receptor and 5-HT;R [47].

Evidence-Based Complementary and Alternative Medicine

Taken together, the antiemetic effect of gingerols may
probably via inhibiting chemotherapy agents induce gas-
trointestinal dysfunctions.

4.5. Others. Apart from interacting with neurotransmitters
and modulating gastrointestinal function, chemotherapy
agents result in oxidative stress, inflammation, and gas-
trointestinal dysbacteriosis, which contribute to CINV as
well [48-50]. Studies reported that 6-, 8-, 10-gingerol and 6-
shogaol exerted antioxidant and anti-inflammation activity,
but further investigation is needed to explore the anti-
oxidative effect of gingerols against chemotherapy-induced
oxidative stress or inflammation [51, 52]. What is more, 16s
rDNA gene analysis of ileum showed that 6-gingerol in-
creased Bacteroidetes amounts and decreased Firmicutes
amounts in cisplatin-induced pica model of rats, presenting
potential property in gut microbiota adjustment against
chemotherapy-induced dysbacteriosis [53].

In summary, it is possible that the antioxidative, anti-
inflammation, and gut microbiota adjustment effects of
gingerols are novel mechanisms in treating CINV. The
underlying effects and mechanisms still need further
investigations.

5. The Potential Mechanisms of
Gingerols against CINV Based on Network
Pharmacology Prediction

Since gingerols indicate the compounds that all contain 3-
methoxy-4-hydroxyphenyl functional group [23], their
single ingredients are complex, and their interactions with
multiple targets and pathways are varied, it is difficult to
investigate the entire mechanism simply using classical
pharmacology experiments. With the development of net-
work pharmacology, the connections between ingredients,
targets, biological function, and signaling pathways of
gingerols against CINV could be clearly demonstrated.
The single ingredients of gingerols obtained from the
Traditional Chinese Medicine Systems Pharmacology Da-
tabase and Analysis Platform (TCMSP, http://tcmspw.com/
temsp.php) are 6-gingerol and 6-shogaol, whose oral bio-
availability (OB) > 30% and drug likeness (DL) > 0.14. Other
common ingredients including 8-gingerol, 10-gingerol, 8-
shogaol, and 10-shogaol are added as well, according to the
phytochemical constituents of ginger [12, 22, 23]. Then, the
ingredients are imported into the Swiss Target Prediction
database (http://www.swisstargetprediction.ch/) to obtain
targets. A total of 294 gene targets are obtained and the
ingredient-targets network is constructed as shown in
Figure 3(a). The DisGeNET database (https://www.disgenet.
org/), TTD database (http://db.idrblab.net/ttd/), and
DrugBank database (https://www.drugbank.ca/) are utilized
to screen out disease targets. There are 405 targets of CINV
in total, and the disease network is constructed (Figure 3(b)).
The duplicate values are determined to elucidate the com-
mon targets of ingredients and CINV; the network of 57
intersected targets is constructed (Figure 3(c)). The details of
57 targets are presented in Table 1. Results suggest that single
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FiGgure 3: Continued.
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F1GuRre 3: Targets and PPI network of gingerols against CINV. A total of 294 targets of ingredients in gingerols (a) and 405 targets of CINV
(b) are screened out. And 57 inserted targets of ingredients and CINV are filtered (c). In these three networks, ingredients are in pink and
symbols are in purple. The PPI network of these 57 targets is shown in (d).

ingredients like 6-gingerol are able to act on different se-
rotonin receptors and MAO-A, which is consistent with
previous reports [10]. The protein-protein interaction (PPI)
network is built by STRING database (https://www.string-
db.org/) (Figure 3(d)); the top 10 genes according to degree
and its relevant effects are shown in Table 2. Through
interacting with these genes, the effect of gingerols against
CINV may be partly on account of ameliorating cytotoxicity,
inflammation, and gastrointestinal dysfunctions induced by
chemotherapy agents.

By using the Database for Annotation, Visualization and
Integrated Discovery (DAVID) v 6.8 (https://david.ncifcrf.
gov/), the biological process (BP), cellular component (CC),
molecular function (MF), and Kyoto Encyclopedia of Genes
and Genomes (KEGG) pathways are predicted. There are
235 BP, 37 CC, 39 MF, and 99 KEGG pathways in total. By
using the ImageGP online mapping software (http://www.
ehbio.com/ImageGP/), GO analyses are performed. Net-
works and GO enrichment plots of top 20 BP (Figure 4(a)),

CC (Figure 4(b)), and MF (Figure 4(c)) according to p-value
are shown. Also, the network and GO enrichments of top 20
signaling pathways are constructed, after excluding path-
ways irrelevant to CINV (Figure 5). Interestingly, the KEGG
enrichment predicts the PI3K-AKT signaling pathway,
which is correlative to the intestinal inflammation [61, 69].
Luettig et al. had proven that 6-shogaol was able to ame-
liorate intestinal inflammation by affecting PI3K-AKT sig-
naling pathway [70]. Therefore, the alleviation of intestinal
damages through PI3K-AKT signaling pathway could be a
novel mechanism of gingerols against chemotherapy-in-
duced intestinal inflammation, which might ameliorate
CINV. Besides, the results of KEGG prediction also include
Rapl and Ras signaling pathway, all of which interact with
downstream ERK/MAPK signaling pathway [71]. Previous
study reported that the increased level of ERK contributed to
the cell proliferation in intestinal mucosa and accelerated the
repair of chemotherapy-induced intestinal damages, thus
ameliorating inflammation consequently [72]. Therefore, the
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TaBLE 1: The 57 intersected targets of CINV and gingerols.
Number  Symbol Targets Ingredients
1 ABL1 Tyrosine-protein kinase ABL1 8-Gingerol, 10-gingerol, 6-shogaol, 8-shogaol
2 ADORA2A Adenosine A2a receptor 8-Shogaol, 10-shogaol
3 ALK ALK tyrosine kinase receptor 6-Gingerol, 6-shogaol, 8-shogaol, 10-shogaol
6-Gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-
4 AR Androgen receptor & gs h (g);gaol, 1 0—§h0ggaol &
5 BRAF Serine/threonine-protein kinase B-RAF 6-Shogaol, 8-shogaol, 10-shogaol
6 CASP8 Caspase-8 6-Gingerol
7 CDK2 Cyclin-dependent kinase 2/cyclin E1 6-Gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-
shogaol, 10-shogaol
8 CDK4 Cyclin-dependent kinase 4 6-Shogaol, 10-shogaol
9 CDKS8 Cyclin-dependent kinase 8 6-Gingerol, 8-gingerol, 10-shogaol
10 CNR1 Cannabinoid receptor 1 6-Gingerol, 8-gingerol, 10-gingerol, 10-shogaol
11 CTSD Cathepsin D 10-Gingerol
12 CXCR2 C-X-C chemokine receptor type 2 6-Gingerol, 10-gingerol
13 CYP19A1 Cytochrome P450 19A1 6-Gingerol
14 CALCA Calcitonin gene-related peptide 1 10-Shogaol
15 CYP2C19 Cytochrome P450 2C19 6-Shogaol
16 CYP3A4 Cytochrome P450 3A4 6-Shogaol
17 DHFR Dihydrofolate reductase 8-Shogaol, 10-shogaol
18 ELANE Neutrophil elastase 6-Shogaol, 8-shogaol
19 ERBB2 Receptor protein-tyrosine kinase ERBB-2 6-Gingerol, 8-gingerol, 10-gingerol, 8-shogaol
6-Gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-
20 ESR1 Estrogen receptor 8 g‘s h ggaol, 1 O_ghogg a0l 5
21 F3 Coagulation factor VII/tissue factor 10-Shogaol
22 EZH2 Histone-lysine N-methyltransferase EZH2 8-Gingerol
23 FGFR1 Fibroblast growth factor receptor 1 6-Shogaol, 8-shogaol
24 GSK3B Glycogen synthase kinase-3 beta 6-Gingerol
25 HSP90AA1 Heat shock protein HSP 90-alpha 6-Gingerol, 10-gingerol
26 HTR4 Serotonin 4 (5-HT4) receptor 10-Shogaol
27 HTRIA Serotonin 1a (5-HTIa) receptor 6-Gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-
shogaol, 10-shogaol
28 HTR6 Serotonin 6 (5-HT6) receptor 8-Shogaol
29 IGFIR Insulin-like growth factor I receptor 6-Gingerol, 8-gingerol, 10-gingerol, 10-shogaol
30 INSR Insulin receptor 8-Gingerol, 10-gingerol
31 JAK2 Tyrosine-protein kinase JAK2 6-Gingerol, 10-gingerol
32 MAO-A Monoamine oxidase A 6-Gingerol, 10-gingerol
33 MAP2K1 Dual specificity mitogen-activated protein kinase 1 6-Gingerol, 8-gingerol, 10-gingerol
34 VDR Vitamin D3 receptor 10-Shogaol
35 RPS6KB1 Ribosomal protein S6 kinase beta-1 10-Shogaol
36 MAPK14 Mitogen-activated protein kinase 14 6-Shogaol, 8-shogaol
37 MAPK3 Mitogen-activated protein kinase 3 6-Gingerol, 8-gingerol, 10-gingerol, 8-shogaol
38 MCHRI1 Melanin-concentrating hormone receptor 1 10-Gingerol, 10-shogaol
39 MDM2 E3 ubiquitin-protein ligase Mdm?2 8-Gingerol, 10-gingerol
40 MMP9 Matrix metalloproteinase-9 6-Shogaol, 8-shogaol, 10-shogaol
41 MTOR Serine/threonine-protein kinase mTOR 6-Gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-
shogaol, 10-shogaol
42 NOS2 Nitric oxide synthase 6-Gingerol
43 NTRK1 High-affinity nerve growth factor receptor 6-Gingerol
44 MAPKS8 Mitogen-activated protein kinase 8 10-Shogaol
45 PARPI Poly[ADP-ribose] polymerase-1 6-Gingerol, S'gmger‘s’ﬁoz':i’l"ga‘)l’ 8-shogaol, 10-
46 PDGFRA Platelet-derived growth factor receptor alpha 6-Shogaol, 8-shogaol
47 PDGFRB Platelet-derived growth factor receptor beta 6-Shogaol, 10-shogaol
48 PIK3CA Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic ~ 6-Gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-
subunit alpha isoform shogaol, 10-shogaol
49 PIK3CG Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic ~ 6-Gingerol, 8-gingerol, 10-gingerol, 6-shogaol, 8-
subunit gamma isoform shogaol, 10-shogaol
50 PPARG Peroxisome proliferator-activated receptor gamma 6-Gingerol, 8-gingerol, 10-gingerol
51 PRKCA PRKCA-binding protein 6-Shogaol
52 RAF1 RAF protooncogene serine/threonine-protein kinase 8-Shogaol, 10-shogaol
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TaBLE 1: Continued.

Number  Symbol Targets Ingredients

53 RELA Nuclear factor NF-kappa-B p65 subunit 8-Shogaol

54 RET Protooncogene tyrosine-protein kinase receptor RET 6-Gingerol, 8-gingerol, 10-gingerol
55 SMARCA2 Probable global transcription activator SNF2L2 6-Shogaol

56 SMARCA4 Transcription activator BRG1 6-Shogaol

57 TRPV1 Transient receptor potential cation channel subfamily V 8-Shogaol, 10-shogaol

member 1

TasLE 2: The top 10 genes and their relevant effects.

Betweenness Closeness
Gene name Degree . . Relevant effects
centrality centrality
MAPK3 38 0.133309434 0.756756757 Relates to the gastric emptying process [54]
Regulates cell proliferation, survival, motility, apoptosis, and concerned with
MTOR 38 0104807106 0.736842105 °® P lom . ¥ 3pop oS,
the expression of appetite regulating peptides [55, 56]
ESR1 34 0.06775269 0.717948718  Encodes estrogen «/f3 that involve in the regulation of feeding behavior [57]
HSP90AA1l 31 0.032249982 0.666666667 Mediates cell autophagy [58, 59]
Modulates cell apoptosis and autophagy via PI3K-AKT signaling pathwa
PIK3CA 31 0.047945105  0.666666667 . o APOpIosts, phagy gnamg pa 1wey,
which ameliorates intestinal cytotoxicity of chemotherapy agents [60, 61]
The inhibition of MDM2 via Notch/hesl or NF-«B pathway improves
MDM2 30 0.030363847 0.658823529 . ..
chemotherapy agents-induced cytotoxicity [62, 63]
MAPKS8 28 0.03301698 0.643678161  Intensifies the inflammatory and apoptotic of intestinal epithelial cells [64, 65]
ERBB2 27 0.019357326 0.658823529  Associates with DNA repair and the cytotoxicity of chemotherapy agents [66]
AR 27 0.03325207 0.636363636 Ameliorates early mortality through regulating gut microbiota [67]
JAK2 26 0.018936076 0.629213483 Mediates leptin level and regulates food intake [68]
positive’  responseto  POsitive
_ regulation of qryg  regulation of
postive cell MAP kinase  positive
reguiation of pqjfork Gty regulation of
nitric oxide CRI signal transduction [ )
sisitive POSTRNEG _ER fascade . protein phosphorylation o
regulation of pm‘*’sﬁ\ | regulauon o positive regulation of cell proliferation )
cyiggRie. \ protein autophosphorylation o
CelciNOITS > { éxpression peptidyl-tyrosine phosphorylation [ ) Qualue
N S S Bositivé positive regulation of transcription, DNA-templated o l(mmmﬂ
MAPK \ z E 1 [ regdlation of response to drug [ ] =
% : e BT B ;;:ﬁl,‘n?s;::.zn MAPK cascade [ ] (0000020
s %‘f"Ng‘é’;ﬁ%&; ¥ C;‘C“R’}WW" o B phosphatidylinositol-mediated signaling ™Y o 0000025
N AR T positive positive regulation of gene expression
signal—=—r—— CDka > CDK3 \5 ‘/HTRG ~fegulation of positive regulation of cell migration
transdu ) ERBB2 'gingerols GSK3B / phospiiglipase positive regulation of ERK1 and ERK2 cascade ® Count
IS XSRS B Ml XY C activity
BRAF ng\TRh‘} LA JCYP3AY X\ positive regulation of cytosolic calcium ion concentration ° .4
e NiNSR positive regulation of protein phosphorylation ®:
phosphatidylinosit AN VA LANABIAN 0 pepidyl-serine peptidyl-serine phosphorylation P
signalin o) e 73 N R FHoqpraos regulation of phosphatidylinositol 3-kinase signaling ° @
| /55 KB j’;',(G N Vbositive positive regulation of MAP Kinase activity °
prote{n////é{ %-gingercﬁ' S Odulation of positive regulation of nitric oxide biosynthentic process °
autophosphorylation | /// \ / protein peptidyl-tyrosine autophosphyorylation °
“‘ // A \\ A ,r\eé\ula(ion"(:"°s"“°'y'a"°“ positive regulation of phospholipase C activity
peptidyl-tyrosin | pfosphatidyiinositol 010 015 020 025 030
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FiGure 4: Continued.
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F1GURE 4: The BP, CC, and MF networks and GO plots of gingerols against CINV. In these three networks, single ingredients of gingerols are
in pink and gene symbols in purple. The biological process of BP network (a) is in light pink, the cellular components of CC network (b) in
yellow, and the molecular functions of MF (c) network in green. The GO-BP, GO-CC, and GO-MF are presented; red presents higher and

green presents lower p-value.

effect of gingerols against CINV may also concern with the
intestinal injuries repair acceleration via Rapl and Ras
signaling pathway.

By using network pharmacology, the interaction be-
tween multiple targets and pathways of gingerols is clearly
displayed. The anti-inflammation activity of gingerols
through acting on PI3K-AKT signaling pathway, Rapl

signaling pathway, and Ras signaling pathway could be a
novel mechanism in preventing CINV. However, although
the gingerols isolated from ginger extract might contain all
monomers as network pharmacology predicted [22], their
potential effects on CINV might be absent since the con-
centrations of some monomers in gingerols might be below
the minimum effect dose. Therefore, future studies focusing
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FiGuRre 5: The KEGG pathway network and GO plot of gingerols against CINV. In the network, single ingredients of gingerols are in pink,
gene symbols are in purple, and pathway is in red. The GO-KEGG is presented in (b); red presents higher and green presents lower p-value.

on the effect of both monomers in gingerols and gingerols
themselves to treat CINV may further identify the under-
lying antiemetic mechanism.

6. Conclusion and Prospect

CINV is still a great challenge in oncotherapy, and the
mechanisms of CINV remain incompletely clarified. It is
essential to further investigate the underlying mechanisms of
CINV and to develop new approaches that have promising
effect and few adverse reactions at the same time.

Ginger is a traditional herb that has a promising effect
against nausea and vomiting [73]. Gingerols are the major
pungent ingredients in ginger, and studies have proven the
effect of gingerols in treating CINV. The single ingredients
contained in gingerols include 6-, 8-, 10-gingerol, 6-, 8-, 10-
shogaol, and others, with 6-gingerol and 6-shogaol being the
most abundant. Gingerols distribute widely in the digestive
system and could penetrate the blood-brain barrier, which
make it a viable approach in treating CINV, a disease closely
related to the gastrointestinal tract and brain [74]. The
mechanisms of gingerols in ameliorating CINV have not
been fully demonstrated yet. Previous studies proved that
gingerols effectively prevented CINV via neurotransmitters
(including 5-HT, SP, and DA) regulation, gastrointestinal
function improvements, gut microbiota adjustment, and
anti-inflammation and antioxidative properties.

Through network pharmacology analysis, we predict
potential mechanisms of gingerols against CINV. The results
concisely exhibit integrated and systematic networks of the
interaction between gingerols and disease, demonstrating
possible targets and signaling pathways. Network pharma-
cology carries out novel prospects that gingerols may pre-
vent CINV via reducing inflammation and modulating
gastrointestinal function. Future studies may focus on the

anti-inflammation property, gastric emptying modulation,
and the adjustment of gut microbiota to explore novel
mechanisms of gingerols in treating CINV.
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