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Simple Summary: The cancer-immunity cycle (CIC) is a series of self-sustaining stepwise events to
fight cancer growth by the immune system. We hypothesized that immunofunctional phenotyping
that represent the malfunction of the CIC is clinically relevant in breast cancer (BC) utilizing total
of 2979 BC cases; 1075 from TCGA cohort, 1904 from METABRIC cohort were analyzed. The
immunofunctional phenotype was classified as follows: hot T-cell infiltrated, high immune cytolytic
activity (CYT), cold T-cell infiltrated, high frequency of CD8+ T cells and low CYT, and non-inflamed,
low frequency of CD8+ T cells and low CYT. We demonstrated that immunofunctional phenotyping
not only indicated the degree of anti-cancer immune dysfunction, but also served as a prognostic
biomarker and HTI was inversely related to estrogen response.

Abstract: The cancer-immunity cycle (CIC) is a series of self-sustaining stepwise events to fight
cancer growth by the immune system. We hypothesized that immunofunctional phenotyping that
represent the malfunction of the CIC is clinically relevant in breast cancer (BC). Total of 2979 BC
cases; 1075 from TCGA cohort, 1904 from METABRIC cohort were analyzed. The immunofunctional
phenotype was classified as follows: hot T-cell infiltrated (HTI), high immune cytolytic activity
(CYT), Cold T-cell infiltrated (CTI), high frequency of CD8+ T cells and low CYT, and non-inflamed,
low frequency of CD8+ T cells and low CYT. The analysis of tumor immune microenvironment in
the immunofunctional phenotype revealed that not only immunostimulatory factors, but also im-
munosuppressive factors were significantly elevated and immunosuppressive cells were significantly
decreased in HTI. Patients in HTI were significantly associated with better survival in whole cohort
and patients in CTI were significantly associated with worse survival in triple negative. Furthers,
HTI was inversely related to estrogen responsive signaling. We demonstrated that immunofunctional
phenotype not only indicated the degree of anti-cancer immune dysfunction, but also served as a
prognostic biomarker and HTI was inversely related to estrogen response.
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ment; bioinformatics
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1. Introduction

Breast cancer (BC) is the most commonly diagnosed cancer in women worldwide and
the second leading cause of mortality due to cancer in women in the United States. The
current lifetime risk of developing BC is one in every eight women [1]. Tumor infiltrating
lymphocytes (TILs) are immune cells that have migrated to the tumor tissue and the local
microenvironment [2]. TILs are classified into anti- and pro-cancer cells according to their
action against cancer. CD8+ T cells, CD4+ Th1 cells, NK cells, B cells, classically activated
macrophages (M1), and mature dendritic cells (DCs) contribute to anti-cancer functions.
In contrast, CD4+ Th2 cells, regulatory B cells, CD4+ regulatory T cells (Tregs), myeloid-
derived suppressor cells, and alternatively activated macrophages (M2) are pro-cancer
immune cells [3]. TILs play the pivotal role in the initiation and progression of cancer [4].
The infiltration of TILs in breast tumors has been shown to affect survival and response to
chemotherapy [2]. We have shown that the infiltration of TILs in primary breast tumors
has a strong association with the timing of BC recurrence [5].

Recently, it has been revealed that the immune response in tumor tissue reflects a
series of carefully regulated events that can be optimally addressed as a group, rather
than individual cells [6]. The cancer-immunity cycle (CIC) is defined as a series of self-
sustaining stepwise events required to gain efficient control of cancer growth by the
immune system [6]. CIC has seven steps: release of cancer-cell antigens, cancer-antigen
presentation, priming and activation of T cells, trafficking of T cells to tumors, infiltration
of T cells into tumors, recognition of cancer cells by T cells, and killing of cancer cells.
Some of the steps of CIC to modulate the existing activated anti-tumor T cell immune
response have been found to function poorly in some cancer patients [7]. Depending
upon which of the seven steps within the CIC failed, immune profiles can be grouped
into the three immunohistological phenotypes; ‘Immune-desert’, ‘T-cell excluded’, and
‘T-cell inflamed’ [7]. The immune-desert phenotype occurs when the release of cancer-
cell antigens, cancer-antigen presentation, and/or priming and activation of T cells are
impaired. This phenotype is characterized by a paucity of T cells in the parenchyma or the
stroma of the tumor. The T-cell excluded phenotype occurs when trafficking of T cells to
tumors and infiltration of T cells into tumors are impaired. This phenotype is characterized
by the presence of abundant immune cells that do not penetrate the parenchyma of these
tumors, but are retained in the stroma surrounding the nest of tumor cells. The T-cell
inflamed phenotype is characterized by the presence of abundant immune cells.

Although the above classification is focused on the location of the T-cells in cancer
nests, it may be possible to classify based on the infiltration and activity of anti-cancer T
cell response as follows: ‘non-inflamed’, ‘cold T-cell infiltrated’ and ‘hot T-cell infiltrated’.
The ‘non-inflamed’ phenotype is characterized by both the immune-desert phenotype and
the T-cell excluded phenotype, without T cells in cancer nests. The ‘cold T-cell infiltrated’
phenotype is characterized by the presence of abundant immune cells, where tumor-
infiltrating T cell-mediated killing of cancer cells are impaired. The ‘hot T-cell infiltrated’
phenotype is characterized by the presence of abundant immune cells, where tumor-
infiltrating T cell-mediated killing of cancer cells are functional.

However, it is difficult to clarify the immunofunctional phenotype, the CIC phenotyp-
ing classified based on the infiltration and activity of anti-cancer T cells in breast tumors,
by immunohistochemistry, and it has not been fully understood. Recently, advances in
the next-generation sequencing have made it possible to systematically explore the tumor
immune microenvironment (TIME). In fact, researchers are developing some expression
profile–based estimation of the abundance of specific cells in tumor microenvironment,
using RNA sequencing of a bulk tumor tissue [8,9]. Further, it is well established that
the immune cytolytic activity (CYT) scores represent anti-cancer immune activity and the
killing of malignant cells by TILs [10].

We aimed to investigate how immunofunctional phenotype is related to TIME, gene
expression profiles, and survival, utilizing collected data from The Cancer Genome Atlas
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(TCGA) and Molecular Taxonomy of Breast Cancer International Consortium (METABRIC)
BC cohorts.

2. Results
2.1. Classification of Immune Phenotype Using CD8+ T Cells and CYT Score

The transcriptomic data and associated clinical parameters from 1075 women in
the TCGA cohort and 1904 women in the METABRIC cohort were available for analysis.
Correlation between the presence of CD8+ T cells and CYT is shown in Figure 1A. There
was a weak correlation between the presence of CD8+ T cells and CYT in TCGA cohort
(r = 0.518), but no correlation between them in METABRIC cohort (r = 0.379).
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Figure 1. Classification of the immune phenotype based on the number and CYT of tumor-infiltrating
CD8+ T cells in TCGA and METABRIC cohorts. (A) Correlation between the presence of CD8+ T
cells and CYT in TCGA and METABRIC. We classified the immune phenotype into following three
categories: hot T-cell infiltrated, a group of patients who had high CYT, Cold T-cell infiltrated, a
group of patients who had high frequency of CD8+ T cells and low CYT, and Non-inflamed, a group
of patients who had low frequency of CD8+ T cells and low CYT. For this classification, we defined
the presence of CD8+ T cells of more than 85 th percentile of as high frequency of CD8+ T cells in
TCGA and METABRIC cohorts and we defined CYT of more than 40 th percentile of as high CYT in
the TCGA cohort and CYT of more than 8 th percentile of as high CYT in METABRIC cohort (green
broken line). (B) and (C) The box plots of the presence of CD8+ T cells and CYT comparison between
immunofunctional phenotype in TCGA BC cohort and METABRIC cohort. B, CD8+ T cells and C,
CYT scores were shown. **** means p < 0.0001. Abbreviations: CIC, cancer immunity cycle; CYT,
immune cytolytic activity; TCGA, The Cancer Genome Atlas; METABRIC, Molecular Taxonomy of
Breast Cancer International Consortium.
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Based on the levels of CD8+ T cells and CYT, we classified TIME into following three
categories (Figure S1). A group of patients who had high CYT was defined as hot T-cell
infiltrated. A group of patients who had high frequency of CD8+ T cells and low CYT was
defined as Cold T-cell infiltrated. Hot T-cell/Cold T-cell infiltrated corresponds to “T-cell
inflamed” in immunohistological phenotype in the CIC [6,7]. A group of patients who had
low frequency of CD8+ T cells and low CYT was defined as Non-inflamed. Non-inflamed
corresponds to “Immune desert” and “T-cell excluded” in immunohistological phenotype
in the CIC [6,7].

For this classification, we needed to define the CD8+ T cells and CYT cutoffs so that
the presence of CD8+ T cells and CYT were the highest in hot T-cell infiltrated and they
were lowest in non-inflamed in both cohorts. Thus, we defined the presence of CD8+ T
cells of more than 85 th percentile of as high frequency of CD8+ T cells, which was the top
85.3% (917/1075) in TCGA cohort and the top 83.8% (1596/1904) in METABRIC cohort.
We defined CYT of more than 40th percentile of as high CYT, which was the top 40.1%
(431/1075) in the TCGA cohort and CYT of more than 8th percentile of as high CYT, which
was the top 7.9% (150/1904) in METABRIC cohort. The box plots of the presence of CD8+
T cells and CYT compared between CIC phenotypes in TCGA BC cohort and METABRIC
cohort are shown in Figure 1B,C.

2.2. Association of the Immunofunctional Phenotype with Clinical Features in Two Large
BC Cohorts

We studied the relationship between clinical features of the primary tumor and the
immunofunctional phenotype in TCGA BC cohort (Table 1) and METABRIC cohort (Table
2). In the TCGA BC cohort, patients in hot T-cell infiltrated were significantly associated
with invasive lobular carcinoma (p < 0.0001), triple negative (TN) BC (p < 0.0001), and
basal-like (p < 0.0001), compared with other groups. Patients in Cold T-cell infiltrated
were significantly associated with older than 50 years (p = 0.0043), estrogen receptor (ER)
positive (p < 0.0001), and progesterone receptor (PgR) positive (p = 0.011), compared with
other groups. In METABRIC cohort, patients in hot T-cell infiltrated were significantly
associated with higher tumor grade (p < 0.0001), ER negative (p < 0.0001), PgR negative
(p < 0.0001), TN (p < 0.0001), and claudin-low (p < 0.0001), compared with other groups.
These results indicate that hot T-cell infiltrated was related with higher tumor grade and
was inversely related to hormone receptor (HR) positivity.

Table 1. Patients and clinical characteristics associated with the immunofunctional phenotype in TCGA cohort.

Variables

Number of Patients (%)

Total
Immunofunctional Phenotype

Hot T-Cell Infiltrated Cold T-Cell Infiltrated Non-Inflamed p Value(n = 1075) (n = 431) (n = 492) (n = 152)

Age 50≥ 291 (27.1) 130 (30.2) 115 (23.4) 46 (30.3) 0.043 *
50< 784 (72.9) 301 (69.8) 377 (76.6) 106 (69.7)

Race

Caucasian American 742 (69) 297 (68.9) 333 (67.7) 112 (73.7) 0.75
African American 182 (16.9) 72 (16.7) 87 (17.7) 23 (15.1)

Asian 61 (5.7) 28 (6.5) 26 (5.3) 7 (4.6)
Unknown 90 (8.4) 34 (7.9) 46 (9.3) 10 (6.6)

Menopausal state
Pre 224 (20.8) 97 (22.5) 94 (19.1) 33 (21.7) 0.66
Post 691 (64.3) 282 (65.4) 314 (63.8) 95 (62.5)

Unknown 160 (14.9) 52 (12.1) 84 (17.1) 24 (15.8)

Tumor size (cm)
2≥ 898 (83.5) 365 (84.7) 399 (81.1) 134 (88.2) 0.11
2< 175 (16.3) 66 (15.3) 91 (18.5) 18 (11.8)

Unknown 2 (0.2) 0 2 (0.4) 0

Lymphnode
Negative 509 (47.3) 201 (46.6) 224 (45.5) 84 (55.3) 0.08
Positive 547 (50.9) 227 (52.7) 256 (52) 64 (42.1)

Unknown 19 (1.8) 3 (0.7) 12 (2.4) 4 (2.6)

Histopathology
Ductal 775 (72.1) 290 (67.3) 360 (73.2) 125 (82.2) <0.0001 *

Lobular 199 (18.5) 109 (25.3) 81 (16.5) 9 (5.9)
Others 101 (9.4) 32 (7.4) 51 (10.4) 18 (11.8)

Clinical stage
I/II 787 (73.2) 312 (72.4) 355 (72.2) 120 (78.9) 0.28

III/IV 265 (24.7) 109 (25.3) 126 (25.6) 30 (19.7)
Unknown 23 (2.1) 10 (2.3) 11 (2.2) 2 (1.3)

ER
Negative 236 (22) 129 (29.9) 68 (13.8) 39 (25.7) <0.0001 *
Positive 789 (73.4) 287 (66.6) 397 (80.7) 105 (69.1)

Unknown 50 (4.7) 15 (3.5) 27 (5.5) 8 (5.3)
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Table 1. Cont.

Variables

Number of Patients (%)

Total
Immunofunctional Phenotype

Hot T-Cell Infiltrated Cold T-Cell Infiltrated Non-Inflamed p Value(n = 1075) (n = 431) (n = 492) (n = 152)

PgR
Negative 340 (31.6) 158 (36.7) 133 (27) 49 (32.2) 0.011 *
Positive 686 (63.8) 258 (59.9) 333 (67.7) 95 (62.5)

unknown 49 (4.6) 15 (3.5) 26 (5.3) 8 (5.3)

HER2
Negative 754 (70.1) 317 (73.5) 326 (66.3) 111 (73) 0.38
Positive 182 (16.9) 70 (16.2) 89 (18.1) 23 (15.1)

Unknown 139 (12.9) 44 (10.2) 77 (15.7) 18 (11.8)

Subtype

HR+ a HER2- 582 (54.1) 216 (50.1) 284 (57.7) 82 (53.9) <0.0001 *
HER2+ 181 (16.8) 70 (16.2) 88 (17.9) 23 (15.1)

TN b 172 (16) 101 (23.4) 42 (8.5) 29 (19.1)
Unknown 140 (13) 44 (10.2) 78 (15.9) 18 (11.8)

PAM50

Luminal A 413 (38.4) 141 (32.7) 211 (42.9) 61 (40.1) <0.0001 *
Luminal B 188 (17.5) 57 (13.2) 96 (19.5) 35 (23)

HER2 67 (6.2) 33 (7.7) 28 (5.7) 6 (3.9)
Basal-like 138 (12.8) 76 (17.6) 40 (8.1) 22 (14.5)
Normal 23 (2.1) 15 (3.5) 6 (1.2) 2 (1.3)

Unknown 246 (22.9) 109 (25.3) 111 (22.6) 26 (17.1)

Abbreviations: TCGA, The Cancer Genome Atlas; ER, estrogen receptor; PgR, progesterone receptor; HER2, human epidermal growth factor
receptor 2; HR, hormone receptor; TN, triple negative. a HR+: ER-positive and/or PgR-positive. b TN: HR-negative and HER2-negative.
* Factor showing statistical significance. The chi-square test and Fisher’s extract test were used to assess baseline differences between binary
variables. p < 0.05 is considered statistically significant.

Table 2. Patients and clinical characteristics associated with the immunofunctional phenotype in METABRIC cohort.

Variables

Number of Patients (%)

Total
Immunofunctional Phenotype

Hot T-Cell Infiltrated Cold T-Cell Infiltrated Non-Inflamed p Value(n = 1904) (n = 150) (n = 1454) (n = 300)

Age 50≥ 411 (21.6) 43 (28.7) 306 (21) 62 (20.7) 0.088
50< 1493 (78.4) 107 (71.3) 1148 (79) 238 (79.3)

Menopausal state Pre 411 (21.6) 43 (28.7) 306 (21) 62 (20.7) 0.088
Post 1493 (78.4) 107 (71.3) 1148 (79) 238 (79.3)

Tumor size (cm)
2≥ 821 (43.1) 71 (47.3) 630 (43.3) 120 (40) 0.28
2< 1063 (55.8) 77 (51.3) 808 (55.6) 178 (59.3)

Unknown 20 (1.1) 2 (1.3) 16 (1.1) 2 (0.7)

Lymphnode Negative 993 (52.2) 81 (54) 754 (51.9) 158 (52.7) 0.87
Positive 911 (47.8) 69 (46) 700 (48.1) 142 (47.3)

Histopathology
Ductal 1454 (76.4) 106 (70.7) 1107 (76.1) 241 (80.3) 0.19

Lobular 142 (7.5) 12 (8) 113 (7.8) 17 (5.7)
Others/unknown 308 (16.2) 32 (21.3) 234 (16.1) 42 (14)

Tumor grade
1/2 905 (47.5) 42 (28) 720 (49.5) 143 (47.7) <0.0001 *

3 927 (48.7) 106 (70.7) 674 (46.4) 147 (49)
unknown 72 (3.8) 2 (1.3) 60 (4.1) 10 (3.3)

Clinical Stage
I/II 1275 (67) 102 (68) 961 (66.1) 212 (70.7) 0.16

III/IV 124 (6.5) 15 (10) 94 (6.5) 15 (5)
Unknown 505 (26.5) 33 (22) 399 (27.4) 73 (24.3)

ER
Negative 445 (23.4) 85 (56.7) 288 (19.8) 72 (24) <0.0001 *
Positive 1459 (76.6) 65 (43.3) 1166 (80.2) 228 (76)

PgR Negative 895 (47) 122 (81.3) 641 (44.1) 132 (44) <0.0001 *
Positive 1009 (53) 28 (18.7) 813 (55.9) 168 (56)

HER2
Negative 1668 (87.6) 131 (87.3) 1275 (87.7) 262 (87.3) 0.98
Positive 236 (12.4) 19 (12.7) 179 (12.3) 38 (12.7)

Subtype

HR+ a HER2- 1355 (71.2) 57 (38) 1084 (74.6) 214 (71.3) <0.0001 *
HER2+ 236 (12.4) 19 (12.7) 179 (12.3) 38 (12.7)

TN b 312 (16.4) 74 (49.3) 190 (13.1) 48 (16)
Unknown 1 (0.1) 0 1 (0.1) 0

Molecular
Characterization

Luminal A 679 (35.7) 13 (8.7) 564 (38.8) 102 (34) <0.0001 *
Luminal B 461 (24.2) 14 (9.3) 360 (24.8) 87 (29)

HER2 220 (11.6) 18 (12) 158 (10.9) 44 (14.7)
Basal-like 199 (10.5) 13 (8.7) 150 (10.3) 36 (12)

Claudin-low 199 (10.5) 89 (59.3) 96 (6.6) 14 (4.7)
Normal 140 (7.4) 3 (2) 122 (8.4) 15 (5)

Unknown 6 (0.3) 0 4 (0.3) 2 (0.7)

Abbreviations: METABRIC, Molecular Taxonomy of Breast Cancer International Consortium; ER, estrogen receptor; PgR, progesterone
receptor; HER2, human epidermal growth factor receptor 2; HR, hormone receptor; TN, triple negative. a HR+: ER-positive and/or
PgR-positive. b TN: HR-negative and HER2-negative. * Factor showing statistical significance. The chi-square test and Fisher’s extract test
were used to assess baseline differences between binary variables. p < 0.05 is considered statistically significant.
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2.3. Hot T-Cell Infiltrated Has High Levels of Anti-Cancer Immune Cells and Low Levels of
Pro-Cancerous Immune Cells; Non-Inflamed Has Low Levels of Anti-Cancer Immune Cells and
High Levels of Pro-Cancerous Immune Cells

In order to evaluate the TIME in the immune phenotype, we analyzed the immune
cell composition utilizing CIBERSORT in the TCGA BC cohort and METABRIC cohort
(Figure 2). In pro-cancerous immune cells, M2 macrophages and Tregs were the lowest
in the hot T-cell infiltrated phenotype and highest in the non-inflamed phenotype within
the METABRIC cohort. In the TCGA BC cohort, M2 macrophages were the lowest in the
hot T-cell infiltrated phenotype and highest in non-inflamed phenotype. However, Tregs
was the highest in the hot T-cell infiltrated phenotype and lowest in the non-inflamed
phenotype. Among anti-cancer immune cells, M1 macrophages, activated NK cells, T
follicular helper cells, memory B cells, activated memory CD4+ T cells, and γδT cells were
the lowest in the non-inflamed phenotype and highest in hot T-cell infiltrated phenotype
in both the TCGA BC cohort and METABRIC cohort. However, activated DCs were the
lowest in the hot T-cell infiltrated phenotype and highest in the non-inflamed phenotype in
both the TCGA BC cohort and METABRIC cohort. These results indicate that the hot T-cell
infiltrated phenotype had low levels of pro-cancerous immune cells and high levels of
anti-cancer immune cells, whereas non-inflamed had high levels of pro-cancerous immune
cells and low levels of anti-cancer immune cells.

Figure 2. Verification of the relationship between the immunofunctional phenotype and immune
cell fractions. Box plots of the relationship between each immunofunctional phenotype and immune
cell fractions: pro-cancerous immune cells (M2 macrophage and Tregs); (A) and anti-cancer immune
cells (left to right; M1 macrophage, activated NK cells, T follicular helper cells, memory B cells,
activated DCs, memory B cells, activated memory CD4+ T cells, and γδT cells); (B) were shown.
Immunofunctional phenotype was categorized as follows: hot T-cell infiltrated, a group of patients
who had high CYT, cold T-cell infiltrated, a group of patients who had high frequency of CD8+ T
cells and low CYT, and Non-inflamed, a group of patients who had low frequency of CD8+ T cells
and low CYT. **** means p < 0.0001, *** means p < 0.001, ** means p < 0.01 and * means p < 0.05.
Abbreviations: TCGA, The Cancer Genome Atlas; BC, METABRIC, Molecular Taxonomy of Breast
Cancer International Consortium; HTI, hot T-cell infiltrated; CTI, cold T-cell infiltrated; NI, Non-
inflamed; CIC, cancer immunity cycle; Tregs, CD4+ regulatory T cells; M1, M1 macrophage; NK,
activated NK cells; Tfh, follicular helper cells; DCs, dendritic cells; CYT, immune cytolytic activity;
NS, not significant.
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2.4. Stimulatory and Inhibitory Factors of the CIC were Elevated in Hot T-Cell Infiltrated

Here, we explored the relationship between the immunofunctional phenotype and
stimulatory or inhibitory factors in the CIC phenotype (Figure 3). In the analysis of
stimulatory factors of release of cancer cell antigens in the CIC, the levels of tumor mutation
burden (TMB) were the highest in the hot T-cell infiltrated phenotype. Interestingly, there
was no significant difference in TMB between non-inflamed and cold T-cell infiltrated
phenotypes. Non-silent/ silent mutation rate was higher in hot T-cell infiltrated, compared
with cold T-cell infiltrated phenotype. Furthermore, the levels of single-nucleotide variant
(SNV) neoantigens were the highest in the hot T-cell infiltrated phenotype. There was no
significant difference in Indel neoantigens in among the immunofunctional phenotypes
(Figure 3A). In the analysis of stimulatory factor of recognition of cancer cells in the CIC,
HLA-I expression was the highest in the hot T-cell infiltrated phenotype. There was no
significant difference between the non-inflamed and cold T-cell infiltrated phenotypes
(Figure 3B). In the analysis of inhibitory factors of killing of cancer cells in the CIC, the
expression of PD1, PD-L1, PD-L2, and IDO1 were the highest in the hot T-cell infiltrated
phenotype. PD-L1 expression was the lowest in the non-inflamed phenotype, and PD-L2
expression was the lowest in the cold T-cell infiltrated phenotype (Figure 3C). These results
indicate that stimulatory factors of release of cancer cell antigens and recognition of cancer
cells and inhibitory factors of killing of cancer cells were significantly elevated in the hot
T-cell infiltrated phenotype.

2.5. Gene Expression Profiles in the Immunofunctional Phenotype

In order to clarify the mechanisms associated with the immunofunctional phenotype,
volcano plots and Gene Set Enrichment Analyses (GSEA) were performed in both the TCGA
and METABRIC cohort. We show the correspondence of the immunofunctional phenotypes
with the Hallmark gene sets in pre-ranked GSEA and volcano plots, which represent
the distribution of the fold changes and adjusted p-values of 18,428 genes (Figure 4A).
12 mRNAs in the non-inflamed phenotype and 7 mRNAs in the cold T-cell infiltrated
phenotype were up-regulated, compared with hot T-cell infiltrated, all of which were
differentially expressed with fold change greater than log2 (1.5) and p < 0.05. In them, the
expressions of WHSC1L1, ASH2L, and DDHD2 were upregulated in both the non-inflamed
and cold T-cell infiltrated phenotype, and IL15RA expression was upregulated in the hot
T-cell infiltrated phenotype. On the other hand, in the cold T-cell infiltrated phenotype,
12 mRNAs were upregulated, compared with the non-inflamed phenotype. In the cold
T-cell infiltrated phenotype, the expressions of DMRTB1, MOG, KCNA4, ADAD1, and
KLHL38 were upregulated, compared with other groups.

In pre-ranked GSEA, in both non-inflamed and cold T-cell infiltrated tumors, estrogen
response early (non-inflamed; normalized enrichment score (NES) = 1.94, false discovery
rate (FDR) q = 0.002, cold T-cell infiltrated; NES = 2.54, FDR q < 0.0001), estrogen response
late (non-inflamed; NES = 1.76, FDR q = 0.011, cold T-cell infiltrated; NES = 2.17, FDR
q < 0.0001) and oxidative phosphorylation (non-inflamed; NES = 1.78, FDR q = 0.011, cold
T-cell infiltrated; NES = 2.29, FDR q < 0.0001) were enriched, compared with hot T-cell
infiltrated tumors. In hot T–cell infiltrated tumors, interferon (IFN)-α/-γ response, tnfα
signaling via nfκb, il6-jak-stat3, and il2-stat5 signaling were enriched, compared with
non-inflamed or cold T-cell infiltrated tumors. On the other hand, in non-inflamed tumors,
epithelial mesenchymal transition (NES = 2.89, FDR q < 0.0001), cell cycle related gene sets
(G2M checkpoint; NES = 2.66, FDR q < 0.0001, E2F targets; NES = 2.33, FDR q < 0.0001,
mitotic spindle; NES = 2.31, FDR q < 0.0001), and mTORC1 signaling (NES = 2.29, FDR
q < 0.0001) were enriched, compared with cold T-cell infiltrated. In cold T-cell infiltrated
tumors, estrogen response gene sets (early; NES = −1.96, FDR q = 0.004 and late; NES = 1.60,
FDR q = 0.0024) were enriched, compared with non-inflamed tumors.
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Figure 3. Stimulatory and inhibitory factors of the CIC in the immunofunctional phenotype. Box
plots of the relationship between each immunofunctional phenotype and stimulatory or inhibitory
factors of the CIC. (A) stimulatory factors of release of cancer cell antigens (left to right; TMB, non-
silent mutation rate, silent mutation rate, SNV neoantigens, and Indel neoantigens), (B) stimulatory
factor of recognition of cancer cells (HLA-A mRNA), and (C) killing of cancer cells (left to right; PD-1,
PD-L1, PD-L2, and IDO1) were shown. Immunofunctional phenotype was categorized as follows:
hot T-cell infiltrated, a group of patients who had high CYT, cold T-cell infiltrated, a group of patients
who had high frequency of CD8+ T cells and low CYT, and Non-inflamed, a group of patients who
had low frequency of CD8+ T cells and low CYT. **** means p < 0.0001, *** means p < 0.001, and
* means p < 0.05. Abbreviations: CIC, cancer immunity cycle; TCGA, The Cancer Genome Atlas;
METABRIC, Molecular Taxonomy of Breast Cancer International Consortium; TMB, tumor mutation
burden; SNV, single nucleotide variant; Indel, insertion/deletion; CYT, immune cytolytic activity;
NS, not significant.
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Figure 4. Gene expression profiles in the immunofunctional phenotype. (A) Volcano plots illustrating
the differentially expressed mRNAs of BC and pre-ranked GSEA of BC patients comparing hot T-cell
infiltrated vs cold T-cell infiltrated, hot T-cell infiltrated vs Non-inflamed, and cold T-cell infiltrated
vs non-inflamed in TCGA BC cohort; A and METABRIC cohort; (B) Upper panels: In volcano
plots, X-axes: log2 FC; Y-axes: -log 10 p-value from limma analysis. mRNAs with p-value < 0.05
and FC > 1.5 are marked in red, with p-value < 0.05 and FC < 1/1.5 in green, all others in black.
Bottom panels: In pre-ranked GSEA, orange bar shows NES and the shading of it show –log10
FDR q-value. We only considered gene sets significantly enriched that met a threshold of NES >1.7
or <−1.7 and FDR q-value < 0.01. Immunofunctional phenotype was categorized as follows: hot
T-cell infiltrated, a group of patients who had high CYT, cold T-cell infiltrated, a group of patients
who had high frequency of CD8+ T cells and low CYT, and non-inflamed, a group of patients who
had low frequency of CD8+ T cells and low CYT. Abbreviations: CIC, cancer immunity cycle; BC,
breast cancer; GSEA, Gene Set Enrichment Analyses; TCGA, The Cancer Genome Atlas; METABRIC,
Molecular Taxonomy of Breast Cancer International Consortium; FC, fold change; NES, normalized
enrichment score; FDR, false discovery rate; CYT, immune cytolytic activity.
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Figure 4B shows volcano plots, representing the distribution of the fold changes
and adjusted p-values of 18,484 genes, and the Hallmark gene sets in pre-ranked GSEA,
corresponding to the immunofunctional phenotype in the METABRIC cohort. In the
comparative analysis between non-inflamed and hot T-cell infiltrated, 13 mRNAs were
significant in Non-inflamed and 130 mRNAs were significant in hot T-cell infiltrated. In the
comparative analysis between Cold T-cell infiltrated and hot T-cell infiltrated, 15 mRNAs
were significant in non-inflamed and 78 mRNAs were significant in hot T-cell infiltrated, all
of which were differentially expressed with fold change greater than log2 (1.5) and p < 0.05.
The expressions of TFF3, STC2, ESR1, AZGP1, EEF1A2, SCUBE2, TFF1, ANKRD30A,
AGR3, MLPH, CA12, and FOXA1 were up-regulated in both Non-inflamed and Cold T-cell
infiltrated. 77 mRNA expressions were commonly up-regulated in hot T-cell infiltrated.
On the other hand, in the comparative analysis between non-inflamed and Cold T-cell
infiltrated, there was no significant difference of mRNA expression.

In pre-ranked GSEA, in both non-inflamed and Cold T-cell infiltrated, estrogen re-
sponse early (non-inflamed; NES = 2.45, FDR q < 0.0001, Cold T-cell infiltrated; NES = 2.49,
FDR q < 0.0001) and estrogen response late (non-inflamed; NES = 2.08, FDR q < 0.0001,
Cold T-cell infiltrated; NES = 2.02, FDR q < 0.0001) were enriched, compared with hot
T-cell infiltrated. In hot T-cell infiltrated, IFN-α/-γ response, TNFα signaling via NFκB,
IL6-JAK-STAT3, and IL2-STAT5 signaling were enriched, compared with non-inflamed
or Cold T-cell infiltrated. On the other hand, in non-inflamed, cell cycle related gene sets
(G2M checkpoint; NES = 1.84, FDR q = 0.002 and E2F targets; NES = 1.74, FDR q = 0.004)
were enriched, compared with Cold T-cell infiltrated. In Cold T-cell infiltrated, IFN-α
response (NES = −1.98, FDR q < 0.0001), IFN-γ response (NES = −2.68, FDR q < 0.0001),
TNF-α signaling via NFκB (NES = −2.52, FDR q < 0.0001), IL6-JAK-STAT3 signaling
(NES = −2.16, FDR q < 0.0001), IL2-STAT5 signaling (NES = −2.04, FDR q < 0.0001), and
epithelial mesenchymal transition (NES = −2.19, FDR q < 0.0001) were enriched, com-
pared with non-inflamed. These results indicate that, comparing hot T-cell infiltrated and
non-inflamed or Cold T-cell infiltrated, early and late estrogen response were enriched in
both Non-inflamed and Cold T-cell infiltrated. IFN-α/-γ response, TNFα signaling via
NFκB, IL6-JAK-STAT3, and IL2-STAT5 signaling were enriched in hot T-cell infiltrated.
Furthers, comparing non-inflamed and Cold T-cell infiltrated, cell cycle related gene sets
(G2M checkpoint and E2F targets) were enriched in non-inflamed in both the TCGA BC
cohort and METABRIC cohort. In Cold T-cell infiltrated, there were significant differences
in gene signatures between cohorts. That is, estrogen response gene sets were enriched in
the TCGA BC cohort, while IFN-α response, IFN-γ response, TNF-α signaling via NFκB,
IL6-JAK-STAT3 signaling, IL2-STAT5 signaling, and epithelial mesenchymal transition
were enriched in METABRIC cohort.

2.6. Hot T-Cell Infiltrated Was Associated with Better Prognosis in Two Large BC Cohorts

In order to verify that the immunofunctional phenotype can serve as a prognostic
biomarker, we examined the relationship between the immune phenotype and prognosis
in the whole cohort and subtypes, which were tested by the Kaplan–Meier method and
verified by the log-rank test, in the TCGA BC cohort and METABRIC cohort (Figure 5A).
In TCGA, patients with the Non-inflamed phenotype were significantly associated with
worse overall survival (OS), and patients with the hot T-cell infiltrated phenotype were
significantly associated with better OS in whole cohort (p = 0.01). The immune phenotype
was not associated with OS in the HR+ human epidermal growth factor receptor 2 (HER2)-
negative subtype. Patients with the non-inflamed phenotype were significantly associated
with worse OS in the HER2-positive subtype (p < 0.001), and patients with the Cold T-
cell infiltrated phenotype were significantly associated with worse OS in the TN subtype
(p = 0.05). Patients with the hot T-cell infiltrated phenotype were marginally associated with
better progression free survival (PFS) in whole cohort (p = 0.068) and the HER2-positive
subtype (p = 0.008) (Figure S2A). In METABRIC, patients with the hot T-cell phenotype
infiltrated were marginally associated with better BCSS in whole cohort (p = 0.097), and
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patients with the Cold T-cell infiltrated phenotype were significantly associated with worse
breast cancer specific survival (BCSS) in in TN subtype (p = 0.009) (Figure 5B). Furthermore,
we examined the relationship between the immunofunctional phenotype and distant
recurrence or local recurrence (Figure 5B and Figure S2B). In distant recurrence analysis,
patients with the hot T-cell infiltrated phenotype were significantly associated with better
prognosis in whole cohort (p = 0.034) and in the TN subtype (p = 0.019). However, there
were no significant differences between the immune phenotype and local recurrence.

Figure 5. Analysis of the relationship between the immunofunctional phenotype and survival in TCGA and METABRIC
cohorts. (A) Kaplan-Meier plots of the association of the immunofunctional phenotype with OS in TCGA; A and BCSS and
distant RFS in METABRIC; (B) (left to right) the whole cohort, the HR+HER2- group, the HER2+ group, and the TN group.
Immunofunctional phenotype was categorized as follows: hot T-cell infiltrated, a group of patients who had high CYT,
Cold T-cell infiltrated, a group of patients who had high frequency of CD8+ T cells and low CYT, and non-inflamed, a group
of patients who had low frequency of CD8+ T cells and low CYT. Abbreviations: CIC, cancer immunity cycle; TCGA, The
Cancer Genome Atlas; METABRIC, Molecular Taxonomy of Breast Cancer International Consortium; OS, overall survival;
BCSS, breast cancer specific survival; RFS, recurrent-free survival; HR, hormone receptor; HER2, human epidermal growth
factor receptor 2; TN, triple negative; CYT, immune cytolytic activity; NS, not significant.

3. Discussion

The immune response in cancer is a series of carefully regulated events that can best be
addressed as a group rather than alone, and CIC is one of the rational models of the immune
response to cancer [6]. We defined immunofunctional phenotype based on the number
and CYT of tumor-infiltrating CD8+ T cells, and categorized it into ‘Non-inflamed’, ‘Cold
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T-cell infiltrated’, and ‘hot T-cell infiltrated’ phenotypes that represent the malfunction of
CIC (Figure S1) [7]. We investigated how this immunofunctional phenotype categorization
was related to TIME, gene expression profiles, and clinical outcomes utilizing collected
data from TCGA and METABRIC cohorts. The hot T-cell infiltrated phenotype had high
levels of anti-cancer immune cells and low levels of pro-cancerous immune cells, whereas
the non-inflamed phenotype had low levels of anti-cancer immune cells and high levels
of pro-cancerous immune cells (Figure 2). In addition, in pre-ranked GSEA, the hot T-
cell infiltrated phenotype was significantly correlated with gene expression signatures of
IFN-α/-γ response, TNFα signaling via NF-κB, IL6-JAK-STAT3, and IL2-STAT5 signaling,
compared with the non-inflamed or Cold T-cell infiltrated phenotypes (Figure 4). From
these results, this classification was closely associated with TIME.

This study generated three interesting results with clinical implications. First, the
immunofunctional phenotype could identify the degree of anti-cancer immune dysfunction.
We showed that elevated levels of immunostimulatory factors and immunosuppressive
factors and decreased levels of immunosuppressive cells the hot T-cell infiltrated pheno-
type. In addition, we showed that PD-L1 expression was the lowest in the non-Inflamed
phenotype and PD-L2 expression was the lowest in the Cold T-cell infiltrated phenotype
(Figure 3). Anti-PD-L1/PD-1 therapy, one of the immune checkpoint inhibitors, has trans-
formed the therapeutic landscape of a wide range of cancers [11] and has been successful
in TNBC [12,13]. Various biological factors contribute to the effect of anti-PD-L1/PD-1
therapy, and it has been reported that immunohistological phenotype in the CIC was also
closely related to the therapeutic effect. Unsurprisingly, immune desert and T-cell excluded,
tumors rarely respond to anti-PD-L1/PD-1 therapy [7]. Interestingly, in T-cell excluded
tumors, anti-PD-L1/PD-1 agents activate and proliferate stromal-associated T cells but
have no clinical effect because they cannot invade tumors. In agreement, the generation
or migration of tumor-specific T cells through the tumor stroma is the rate-limiting step
in the CIC for this phenotype. In the T-cell inflamed phenotype, the clinical response to
anti-PD-L1/PD-1 therapy is positive, but a response is uncommon in T-cell exhausted
phenotype, where immune-cell infiltration is necessary but insufficient for inducing a
response [7]. Xiao and colleagues also suggested that their classification of the microenvi-
ronment phenotypes would be a step toward personalized immunotherapy for patients
with TNBC [14]. We showed that the proportion of the hot T-cell infiltrated phenotype was
higher in the claudin-low subtype compared with other subgroups, suggesting that patients
with this subtype may be especially responsive to anti-PD-L1 therapy (Figure S3). Thus,
the immunofunctional phenotype categorization may allow the prediction of therapeutic
strategies directed at individual immune biology to maximize the likelihood of a response
to a particular treatment, such as anti-PD-L1/PD-1 therapy.

Second, immunofunctional phenotype served as a prognostic biomarker. We demon-
strated that, in the TCGA BC cohort, patients with the non-inflamed phenotype were
significantly associated with worse OS, and patients with the hot T-cell infiltrated pheno-
type were significantly associated with better OS in whole cohort (p = 0.01). In subtypes,
patients with the non-inflamed phenotype were significantly associated with worse OS
in the HER2-positive subtype (p < 0.001) and patients with the Cold T-cell infiltrated
phenotype were significantly associated with worse OS in the TN subtype (p = 0.05). In
the METABRIC cohort, patients in the hot T-cell infiltrated phenotype were marginally
associated with better BCSS in whole cohort (p = 0.097), and patients with the Cold T-cell
infiltrated phenotype were significantly associated with worse BCSS in the TN subtype
(p = 0.009) (Figure 5). Xiao and colleagues reported that “immune-inflamed” cluster, with
abundant adaptive and innate immune cells infiltration, had significantly better RFS and
OS than the other two clusters in TNBC [14]. Interestingly, they demonstrated in the
time-dependent AUC that the addition of microenvironment clusters into the Cox pro-
portional hazards model significantly increased the prognostic efficacy of 1- and 2-year
recurrence. Additionally, we demonstrated that, in distant recurrence analysis, patients
with the hot T-cell infiltrated phenotype were significantly associated with better prognosis
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in whole cohort (p = 0.034) and the TN subtype (p = 0.019), but there was no significant
correlation between our classification and local recurrence (Figure 5 and Figure S2). We
previously reported that, in distant recurrence analysis, late recurrence was associated with
activation of pro-cancerous immune cells. However in local recurrence analysis, there was
no statistically significant difference in timing of cancer recurrences [5]. Inferring from the
above results, immunofunctional phenotype was deeply involved not only in prognosis
but also in the timing and type of recurrence of BC.

Finally, the infiltration of cytolytic CD8+ T cells in breast tumors was inversely related
to estrogen response. In the analysis of the relationship between clinical features of the
primary tumor and immunofunctional phenotype, patients with the hot T-cell infiltrated
phenotype were significantly associated with TNBC or basal-like phenotype, compared
with other groups (Tables 1 and 2). In the pre-ranked GSEA, early and late estrogen
responses were enriched in both the non-inflamed and Cold T-cell infiltrated phenotypes,
compared with the hot T-cell infiltrated phenotype (Figure 4). These results confirmed that
a recent bioinformatics study reporting increased immune infiltrate including cytotoxic
T lymphocytes in ER-negative breast tumors relative to ER-positive breast tumors [15].
Further studies from the same group have shown that some of the ER-positive breast
tumors treated with aromatase inhibitor had increased infiltration of B cell and T helper
lymphocyte subsets, which may be predictive for effective BC treatment.

The methods for assessing TIME are very diverse and, due to these differences,
individual studies cannot be compared to each other. Liquid biopsy is a method for
extracting and analyzing oncogenes from body fluids such as blood and urine, and we have
previously demonstrated the utility of BC-related genes in a non-invasive manner [16–22].
If TIME and its cytolytic activity can be monitored by liquid biopsy, this method is expected
to better understand the true clinical and prognostic value of immune system cells in
BC patients.

Although the study demonstrates promising results, it has limitations. First, this
is a retrospective study utilizing publicly available datasets, thus some of the clinical
factors deemed necessary were missing. It is necessary to verify the findings obtained
with in-house clinical data. Second, this study is based on bioinformatics analysis of gene
expression in primary breast tumor and does not include in vitro or in vivo experiments.
Therefore, the mechanism for further understanding the results has not been clarified.
Finally, there are issues with whether bulk genetics data from a tumor is enough to reveal
relevant details regarding infiltration patterns. Additionally, some groups revealed gene
expression differences between different tumor subtypes and their different TIMEs might
lead to inaccuracies in the cell type separation [23,24]. In addition to these results, TCGA
and METABRIC cohorts having very different clinical backgrounds may be causing the
distributions of Tregs being exactly opposite. Further studies should perform to validate
these bioinformatics approaches utilizing some data taken from more direct imaging
studies of tissue samples.

4. Materials and Methods
4.1. Data Acquisition

In TCGA analysis, which was supervised by the National Cancer Institute (NCI)
and the National Human Genome Research Institute [25], gene expression levels (mRNA
expression z-score from RNA-sequence) were downloaded through cBioportal (TCGA
PanCancer Atlas dataset) [26,27]. The phenotype, TMB, non-silent/silent mutation rate,
SNV/Indel neoantigens, and duration of PFS/OS were obtained from (Liu et al., 2018
dataset) [28]. In METABRIC analysis, gene expression levels (mRNA expression z-score
from microarray) were downloaded through cBioportal (METABRIC Nature 2012 & Nat
Commun 2016 dataset). Additionally, the values of relapse phenotype (distant and local)
and their relapse time were obtained from (Rueda et al., 2019 dataset) [29]. A total of 1075
women with BC in the TCGA cohort and a total of 1904 women with BC in the METABRIC
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cohort were used to support the authenticity of the association between immunofunctional
phenotype and gene expression and TILs [30,31].

4.2. A CIBERSORT Deconvolution Algorithm

A cell fraction of 22 immune cells in each tumor tissue for assessing intra-tumor
immune cell composition were obtained via the online calculator [32] based on CIBERSORT
deconvolution algorithm [8], as previously shown [5,33,34].

4.3. The Immune Cytolytic Activity (CYT) Score

CYT was defined as the geometric mean of GZMA and PRF1 expression values in
Transcripts Per Million (TPM). Those gene expression data were obtained in RSEM format
from the Genomic Data Common data and converted to TPM by multiplying the estimated
transcript of a particular gene by 1 × 106 [10,35], as previously shown [5,33,34,36–43].

4.4. Statistical Analyses of RNA Expression and Gene Set Enrichment Analyses (GSEA)

Analysis followed a two-step process as previously described [5]. We first calculated
the fold changes of genes, corresponding to immunofunctional phenotype (hot T-cell
infiltrated, cold T-cell infiltrated, non-inflamed), which provided a list of t-scores and corre-
sponding p-values for each immunofunctional phenotype in relation to each of the gene’s
expression values. The second step is to run GSEA Pre-ranked utilizing the Hallmarks
gene set using software provided by the Broad Institute [44]. We only considered gene sets
significantly enriched that met a threshold of NES >1.7 or <−1.7 and FDR q-value < 0.01.

4.5. Statistical Analysis

All statistical analyses were performed using R software [45] and Bioconductor [46].
We evaluated the baseline differences between binary variables using the chi-square test,
Fisher’s exact test, or the nonparametric Mann-Whitney U test and contingency analysis.
The correlation was calculated using Spearman’s rank correlation coefficient. In the analysis
of PFS, recurrence-free survival (RFS), OS, and breast cancer specific survival (BCSS),
the Kaplan–Meier method was used to estimate survival rates, and differences between
survival curves were evaluated by the log-rank test. Two-sided p values < 0.05 was
considered as statistically significant for all tests.

5. Conclusions

We demonstrated the relationship between immunofunctional phenotype and clinical
factors, TIME, molecular subtypes and survival utilizing collected data from the TCGA and
METABRIC cohorts. We revealed that immunofunctional phenotype not only indicated
the degree of anti-cancer immune dysfunction, but also served as a prognostic biomarker.
‘hot T-cell infiltrated’ tumors, with abundant cytolytic CD8+ T cells in breast tumors, were
inversely related to estrogen response. Based on these reported results, we anticipate that
further research can be conducted to establish a greater understanding of the role of TIME
in BC.

Supplementary Materials: The following are available online at https://www.mdpi.com/2072-669
4/13/1/110/s1, Figure S1: The definition of immunofunctional phenotype and immunohistrogical
phenotype, Figure S2: Analysis of the relationship between the immunofunctional phenotype and
survival in TCGA and METABRIC cohorts, Figure S3: Pie chart of ‘Immunofunctional phenotype’ in
each subtype in METABRIC cohort.
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Abbreviations
BC Breast Cancer
TILs tumor infiltrating lymphocytes
DCs dendritic cells
Tregs CD4+ regulatory T cells
CIC cancer-immunity cycle
TIME tumor immune microenvironment
CYT immune cytolytic activity
TCGA The Cancer Genome Atlas
METABRIC Molecular Taxonomy of Breast Cancer International Consortium
TN triple negative
ER estrogen receptor
PgR progesterone receptor
HR hormone receptor
TMB tumor mutation burden
SNV single-nucleotide variant
IFN interferon
GSEA Gene Set Enrichment Analyses
NES normalized enrichment score
FDR false discovery rate
OS overall survival
HER2 human epidermal growth factor receptor 2
PFS progression free survival
BCSS breast cancer specific survival
NCI National Cancer Institute
TPM Transcripts Per Million
RFS recurrence-free survival
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