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TherapeuTic advances in 
neurological disorders

Introduction
Multiple system atrophy (MSA) is a rare, rapidly 
progressing oligodendroglial synucleinopathy. The 
course of MSA is characterized by a mean survival 
of less than 10 years after symptom onset.1,2 
Clinically, two distinct MSA subtypes are classi-
fied based on the prevailing motor phenotype: 

MSA-p features predominant Parkinsonism, while 
MSA-c shows prominent cerebellar ataxia. Both 
phenotypes present with an early and severe auto-
nomic failure.3 While a definite diagnosis of MSA 
requires post mortal neuropathological confirma-
tion, clinical consensus criteria have been estab-
lished, defining possible and probable MSA.3 Yet, 
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Background: Due to the absence of robust biomarkers, and the low sensitivity and specificity 
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there is currently no reliable biomarker allowing 
the lifetime diagnosis of MSA or the differential 
diagnosis of MSA and Parkinson’s disease (PD). 
Therefore, a recent view point on the second con-
sensus criteria for MSA stressed the urgent need 
for improved neuroradiologic biomarkers.4

Routine cerebral magnetic resonance imaging 
(MRI) has been extensively studied in Parkinsonian 
syndromes and is primarily recommended to 
exclude secondary causes of Parkinsonism. In 
addition, high-field and ultra-high-field MRI is 
being studied in PD and atypical Parkinsonism.5 
In MSA, putaminal hypointensity and hyperin-
tense rim, pontine, and cerebellar vermis atrophy, 
as well as signal changes in the pons or middle 
cerebellar peduncle, including the ‘hot-cross bun’ 
sign, are observed at intermediate and advanced 
disease stages.6 These changes lack sensitivity for 
the differential diagnosis of MSA, in particular at 
early disease stages. Various studies using routine 
MRI or susceptibility-weighted images (SWIs), 
reliably differentiated PD from healthy controls, 
based on the loss of nigral hyperintensity, known 
as swallow tail sign. However, studies using rou-
tine MRI sequences or SWI as a stand-alone pro-
tocol were not able to distinguish between PD and 
MSA, using neither 3T nor 7T MRI scanners.7,8 
These studies predominantly focused on the 
structural pattern of the substantia nigra (SN), 
but neuropathological changes in MSA are more 
widespread, affecting in particular extranigral 
structures like the striatonigral and olivopontocer-
ebellar system in MSA-p and MSA-c, respec-
tively.9 Especially within the putamen (Pu), 
myelin loss and iron deposition are two of the 
most prominent neuropathological hallmarks of 
MSA.10–12

Quantitative susceptibility mapping (QSM) is 
able to asses iron accumulation and demyelina-
tion in vivo.13 Magnetic susceptibility represents 
an intrinsic tissue property that is predominantly 
associated with iron levels, but to a certain extent 
also with myelin density. Using a series of com-
plex post-processing techniques, phase maps of 
gradient echo MRI are processed to estimate the 
spatial distribution of tissue magnetic suscepti-
bility.14 As recently demonstrated, magnetic sus-
ceptibility correlates both with tissue iron levels 
and myelin density, reaching an excellent speci-
ficity and sensitivity in differentiating between 
transgenic MSA mice (MBP29) and control 
littermates.13

Recent proof of concept studies evaluated QSM 
as stand-alone MRI modality for the diagnosis of 
PD,15 and also for the differential diagnosis of 
atypical Parkinsonian syndromes, already provid-
ing promising results for striatal and nigral sus-
ceptibility.16–18 In the present two-center study 
(University Hospitals Erlangen and Ulm, 
Germany), QSM was investigated as imaging 
modality for the differential diagnosis of PD and 
MSA. Participants were imaged using a 3T MRI 
scanner, including a subset of participants under-
going subsequent 7T MRI. In particular, mag-
netic susceptibility values of different 
prototypically affected brain regions [Pu, palli-
dum (GP), SN, red nucleus (RN), and dentate 
nucleus (DN)] were compared among PD, MSA 
patients, and controls. Moreover, correlations of 
magnetic susceptibility with covariates influenc-
ing QSM, such as age, and also important clinical 
characteristics, such as disease duration and 
severity of motor symptoms were performed.

Materials and methods

Clinical phenotyping
PD patients were diagnosed according to current 
consensus criteria.19 Healthy controls did not present 
with prodromal symptoms suggestive of PD.20 MSA 
was diagnosed as possible and probable MSA and 
classified as MSA-p or MSA-c, according to the pre-
sent consensus criteria.3 Motor symptoms were rated 
according to the Unified Parkinson’s Disease Rating 
Scale (UPDRS) part III.21 Disease severity was 
staged using the Hoehn and Yahr scale (H + Y).22

Image post-processing
Using two different 3T MRI scanners, 3T MRI 
data were acquired from the same vendor 
(Magnetom Trio and Magnetom Prisma, Siemens 
Healthcare GmbH, Erlangen, Germany) using a 
1Tx32Rx Head coil. Using a 7T whole-body MR 
system (Magnetom Terra, Siemens Healthcare 
GmbH, Erlangen, Germany), 7T MRI data were 
acquired with an 8Tx/32Rx head coil (Nova 
Medical, Wilmington, MA, USA). At the 7T MR 
scanner, a 3D T1 magnetization prepared rapid 
gradient echo (MPRAGE) scan with fast online 
customized (FOCUS) parallel transmit pulses23 
was performed for anatomical information. The 
acquisition parameters were: repetition time (TR) 
3 s, echo time (TE) 3.37 ms, flip angle 7°, isotropic 
voxel size of 0.65 mm, 256 sagittal slices with the 
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matrix 336 × 384, and time of acquisition (TA) 
5:46 min. For QSM, a gradient echo sequence 
(GRE) with ASPIRE coil combination was 
applied.24 At 7T, five TEs of 5/10/15/20/25 ms and 
a TR of 30 ms were used with two nominal image 
resolutions, Res1: 256 slices with field of view 
(FoV) 182 × 182 mm2, acquisition matrix 
304 × 304, voxel size 0.6 × 0.6 × 0.6 mm³, acquisi-
tion time 7:36 min, and Res2: 256 slices with FoV 
180 × 180 mm², acquisition matrix 256 × 256, 
voxel size 0.7 × 0.7 × 0.7 mm³, acquisition time 
6:25 min. Due to a prolonged transverse relaxation 
time and lower signal to noise ratio at 3T, we meas-
ured with a larger number of echoes and a larger 
voxel size at the lower magnetic field strength. On 
both 3T machines, 11 TE equidistantly distributed 
between 5 and 55 ms and a TR of 60 ms were used 
with the resolution Res3: 176 slices with FoV 
192 × 192 mm² with acquisition matrix 192 × 192, 
resulting in a voxel size of 1 × 1 × 1 mm³, acquisi-
tion time 6:50 min. All measurements were done 
with a flip angle of 15° and PAT-factor 4 (GRAPPA 
2 and 3D slice acceleration 2)

Data processing
Susceptibility maps were generated after perform-
ing the following post-processing steps. Phase 
maps were unwrapped applying a Laplacian-based 
phase unwrapping algorithm.25 Using the brain 

extraction tool created by Isensee et al.26 a brain 
mask was generated based on the magnitude 
images. The background field was removed by the 
sophisticated harmonic artifact reduction for phase 
data (V-SHARP) with varying spherical kernel 
sizes.27 The individual susceptibility maps for each 
echo were calculated with iLSQR. At last, one final 
susceptibility map was generated as the weighted 
average of the single echo susceptibility maps, 
weighted with the squared TE and the squared sig-
nal magnitude.28,29 Susceptibility maps were refer-
enced to the brain average susceptibility value.

Ten brain regions (five per hemisphere) of inter-
est [volumes of interest (VoIs)] were manually 
segmented on a subject-by-subject basis in the 
QSM data sets as shown in Figure 1 using the 
Medical Imaging Toolkit [MITK, German 
Cancer Research Center (DKFZ), Heidelberg, 
Germany, www.mitk.org]. The VoIs were DN, 
SN, RN, GP, Pu, right, and left, respectively. 
All VoIs were manually segmented, covering all 
related slices of the corresponding anatomical 
structure, in the 3T susceptibility maps in axial 
orientation by taking into account sagittal and 
coronal view, resulting in 3D VoIs (Figure 1). 
Seven-Tesla susceptibility maps were rigidly 
registered to the 3T susceptibility maps using 
FSL FMRIB’s Linear Image Registration Tool 
(FLIRT). VoIs were transformed using the 

Figure 1. Overview of segmented volumes of interest (VoIs). Axial (a), sagittal (b), and coronal (c) susceptibility 
maps at 3T displaying the putamen (Pu) and the pallidum (GP) at the level of the foramen of Monroi, the 
red nucleus (RN), and substantia nigra (SN) at the level of the maximal diameter of the RN, as well as the 
cerebellar VoI: dentate nucleus (DN).

https://journals.sagepub.com/home/tan
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transformation matrices generated by the regis-
tration and subsequently, if needed, manually 
corrected.30,31 The mean and standard deviation 
of the susceptibility values were calculated 
within each VoI. Finally, for each participant, 
the mean susceptibility of the right and left 
hemispheres was calculated and used for statis-
tical analysis.

Statistics
All clinical data were stored within a Microsoft 
Access database and exported as .xlsx files for 
analysis. Data completeness was assessed using 
Microsoft Excel(C). Subsequent statistical analy-
sis was performed using R Studio (C) (Version 
1.3.1093). First, data were examined for normal-
ity distribution using a Shapiro–Wilk’s test. In 
case of normal distribution, data were analyzed 
using a Welch’s t-test or analysis of variance 
(ANOVA). In case the assumption of normality 
was violated, a Wilcoxon rank-sum test was 
applied. In all cases, post hoc testing was per-
formed with Bonferroni correction for multiple 
comparisons. Categorical variables were analyzed 
using a chi-square test. Receiver-operating char-
acteristic (ROC) curves and Youden indices were 
applied to assess the specificity and sensitivity to 
differentiate PD from MSA. Correlations of clini-

cal variables with susceptibility values were ana-
lyzed using Pearson’s correlation coefficient.

Results

Subjects and clinical assessment
PD patients (n = 9), MSA patients (n = 14), and 
healthy controls (ctrl: n = 9) were recruited from 
the movement disorder outpatient centers at the 
University Hospital Erlangen and Ulm. Of 14 
MSA patients, 10 were diagnosed with probable, 
four with possible MSA. Furthermore, MSA 
patients were categorized as MSA-p (n = 7) or 
MSA-c (n = 7). Demographics and basic clinical 
information are summarized in Table 1. In sum-
mary, despite similar disease duration (t-test, 
p > 0.05), MSA patients were significantly more 
affected as evidenced by higher UPDRS-III and 
H + Y scores. In addition, the examined MSA 
cohort consisted of significantly fewer male par-
ticipants than the PD group (for details, see 
Table 1).

Increased putaminal and nigral susceptibility in 
MSA compared with PD and controls
Using ANOVA with Bonferroni post hoc testing, 
mean susceptibility values significantly differed 

Table 1. Overview of demographic and clinical characteristics of the study population, receiving 3T MRI.

PD MSA ctrl

n 9 14 9

 10 (probable MSA)  

 4 (possible MSA)  

Age (years) 60.8 ± 8.6 63.3 ± 10.1 54.22 ± 3.8

gender (%male) 66.7 35.7* 66.7

disease duration (years) 6.0 ± 5.8 4.0 ± 1.3  

UPDRS-III 12.7 ± 9.5 34.9 ± 9.2***  

UMSARS-I 18.9 ± 5.5  

UMSARS-II 21.1 ± 6.5  

H + Y 1.68 ± 0.56 4.00 ± 0.76***  

H + Y, Hoehn and Yahr; MRI, magnetic resonance imaging; MSA, multiple system atrophy; PD, Parkinson’s disease; 
UMSARS, Unified Multiple System Atrophy Rating Scale; UPDRS, Unified Parkinson’s Disease Rating Scale.
***p < 0.001; *p < 0.05.
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between PD and MSA, and between controls and 
MSA in all VoIs examined, apart from the DN and 
the RN. Susceptibility values were significantly 
increased in MSA in the GP (PD versus MSA: 
p = 0.00320; MSA versus ctrls: p = 0.00017), and 
the Pu (MSA versus PD: p = 0.0128; MSA versus 
ctrl: p = 0.0046). A difference in mean susceptibil-
ity was observed between controls and MSA in the 

SN (MSA versus ctrl: p = 0.0038) using 3T MRI. 
For details, see Figure 2.

QSM separates MSA from PD reaching high 
sensitivity and specificity
To further delineate the ability of QSM to differ-
entiate MSA from PD at 3T MRI, we examined 

Figure 2. Group comparisons of magnetic susceptibility within different brain regions at 3T. (2a–c) 
Representative axial susceptibility maps at 3T derived from PD, MSA, and controls (ctrl) for each axial level 
analyzed. Differences between groups are shown in 2d–h. Red dots indicate possible MSA patients.
ANOVA, post hoc testing: Bonferroni); ppb, parts per billion.
*p < 0.05, **p < 0.01, *** p < 0.001.
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mean susceptibility values, separately between 
both groups, using a Welch’s t-test (see Table 2). 
A significant increase of magnetic susceptibility in 
the MSA group was observed within the GP, Pu, 
and SN compared with PD. Subsequently, we 
applied ROC curve analysis to assess the sensitiv-
ity and specificity for QSM to differentiate 

between PD and MSA for each VoI. To sepa-
rately capture the performance of each VoI and to 
develop a criterion for selecting the optimal cut-
off point, Youden’s J statistic was calculated. The 
GP and the Pu showed the highest diagnostic 
accuracy with an area under the curve (AUC) of 
0.841 and 0.825, respectively. Using a cut-off of 
126 parts per billion (ppb) in the GP, 100% sen-
sitivity and 64% specificity to discriminate 
between MSA and PD is achieved. Furthermore, 
MSA is diagnosed with a sensitivity of 89% and a 
specificity of 79% based on putaminal QSM 
[Figure 3(a)].

Within the MSA cohort, four patients were classi-
fied as possible MSA (displayed in red in Figure 
2). When comparing possible and probable MSA 
patients with PD using ANOVA, we observed sig-
nificantly larger susceptibility values in possible 
MSA compared with PD in the GP (p < 0.05; 
Figure 4). Using ROC analysis, QSM was able to 
identify possible MSA patients in the GP, Pu, and 
SN with 100%, and 78% sensitivity, and 75% 
specificity, respectively (Figure 3B).

Table 2. Susceptibility values of the PD and the MSA groups.

PD MSA p-value

GP 97.65 ± 14.98 128.77 ± 26.25 0.00168

Pu 52.39 ± 13.74 99.46 ± 50.86 0.0048

RN 96.4 ± 18.3 107.24 ± 25.41 0.2481

SN 116.64 ± 24.83 142.53 ± 26.40 0.028

DN 76.5 ± 24.4 93.22 ± 27.1 0.141

Data are presented as mean ± SD (in parts per billion) of the PD and the MSA group, 
and p-values for group comparison using a Welch’s t-test.
MSA, multiple system atrophy; PD, Parkinson’s disease.

Figure 3. QSM separates PD from MSA at 3T. ROC analysis of magnetic susceptibility values for the 
differential diagnosis of (a) MSA versus PD and (b) possible MSA (posMSA) versus PD. Thresholds were derived 
using Youden indices.
AUC, area under the curve; DN, dentate nucleus; GP, pallidum; Pu, putamen; RN, red nucleus; SN, substantia nigra.

https://journals.sagepub.com/home/tan
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Age and disease duration-dependent impact on 
QSM in MSA and PD
To evaluate to which extent QSM is influenced 
by age and covariates like motor impairment and 
disease duration, we performed a correlation 
analysis of mean magnetic susceptibility of each 
VoI of the PD and MSA groups separately for 
age, UPDRS-III motor score, and disease dura-
tion (Figure 5). In summary, significant correla-
tions were observed between age and susceptibility 
within the RN at 3T, and between UPDRS-II 
ratings and pallidal as well as nigral susceptibility 
in MSA patients. In contrast, no significant cor-
relations of disease duration and susceptibility 
could be observed throughout all VoIs for MSA 
and PD patients.

7T MRI increases sensitivity and specificity in 
the differential diagnosis of MSA versus PD
To investigate whether higher magnetic field 
strength increases sensitivity and specificity of 
QSM for the diagnosis of MSA, a subpopulation 
was studied on a 7T MRI scanner, in addition to 
3T MRI (see Supplementary Figure 2). The demo-
graphic characteristics of this subgroup are summa-
rized in Table 3. Only male participants underwent 
7T imaging. With respect to H + Y and UPDRS-
III, the 7T PD and MSA subgroups showed com-
parable disease stage and motor impairment as the 
total study population. At 3T, this subgroup of 
patients showed an increased sensitivity and speci-
ficity compared with the entire 3T population 
(Supplementary Figure 1 F). At 7T, significant dif-
ferences between PD and MSA were observed in 
the GP (p < 0.05), Pu (p < 0.05), the SN (p < 0.01), 
and DN [p < 0.01, Figure 6(a)–(e)]. We used ROC 
analysis to test the potential of 7T in the differential 

diagnosis of MSA versus PD. We observed an 
improvement in sensitivity up to 100% on 7T 
[Figure 6(f), Supplementary Table 1].

Discussion
In this bicentric study, we investigated the poten-
tial of QSM for the differential diagnosis of the 
Parkinsonian syndromes PD versus MSA. We 
show high sensitivity and specificity for 3T MRI, 
making QSM a highly promising biomarker can-
didate for the differential diagnosis of PD and 
MSA, also for patients fulfilling the criteria of 
possible MSA. In particular, Pu and GP were 
structures providing the highest sensitivity and 
specificity. In addition, our data suggest that 
ultra-high-field MRI may further improve sensi-
tivity (up to 100%) of differential diagnostic 
classification.

QSM as promising differential diagnostic 
imaging biomarker
Loss of dopaminergic neurons in the SN is pre-
sent in sporadic and atypical Parkinsonism, 
whereas Pu and GP are spared in PD.9 This neu-
ropathological pattern may account for the results 
of previously published imaging studies using 
SWI or QSM, solely assessing the SN.7,32 As 
pathological alterations in MSA are much more 
widespread across the basal ganglia,9 we addition-
ally focused on extranigral structures, that is, the 
Pu, GP, RN, and the DN. In MSA, severe glial 
dysfunction and abundant iron accumulation is 
present in particular in the Pu and the GP. 
Accordingly, assessing the iron content using 3T 
QSM in the Pu, GP, RN, and DN of MSA and 
PD patients, we observed good to excellent 

Figure 4. Group comparisons of possible and probable MSA and PD in VoI at 3T within (a) the pallidum, (b) the 
putamen, and (c) the substantia nigra.
ANOVA, post hoc testing: Bonferroni; ppb, parts per billion.
*p < 0.05, **p < 0.01, ***p < 0.001.

https://journals.sagepub.com/home/tan
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Figure 5. Correlation analysis of demographic and clinical characteristics versus magnetic susceptibility in 
ROIs at 3T in (a) MSA and (b) PD patients.
ppb, parts per billion.
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sensitivity and specificity for the differentiation of 
both synucleinopathies. Particularly, promising 
results were observed in the Pu reaching up to 
90% accuracy, followed by the SN and the RN 
with 83% and 70% accuracy, respectively. 

Interestingly, the GP obtained high diagnostic 
accuracy (AUC: 87%) in the present cohort, 
while reaching moderate or no significance in pre-
vious studies.16,17 Susceptibility in the SN was not 
able to distinguish between PD and ctrls, most 

Table 3. Overview of demographic and clinical characteristics of the 7T study population.

PD MSA ctrl

N 8 5 9

age 60.0 ± 8.9 57.0 ± 9.4 54.2 ± 3.8

gender (%male) 75.0 100 66.6

disease duration 5.12 ± 5.51 3.6 ± 0.89  

UPDRS-III 14.9 ± 10.2 30.0 ± 12.3  

H + Y 1.69 ± 0.59 3.4 ± 0.55  

H + Y, Hoehn and Yahr; MSA, multiple system atrophy; PD, Parkinson’s disease; UPDRS, Unified Parkinson’s Disease 
Rating Scale.

Figure 6. Seven-Tesla MRI increases sensitivity and specificity. (a–e) Group comparisons of magnetic 
susceptibility at 7T within different brain regions and (f) ROC analysis of 7T study population. High-field 
imaging at 7T yields increased diagnostic accuracy between PD and MSA. Highest accuracy was recorded for 
the putamen (Pu) and the substantia nigra (SN) with an area under the curve (AUC) of 1.0 as well as sensitivity 
and specificity of 100%.

https://journals.sagepub.com/home/tan
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likely due to the limited sample size in our study, 
compared with other studies specifically address-
ing QSM in the SN of PD versus ctrls.33

QSM provides high diagnostic accuracy, 
possibly early in the course of MSA
An early and precise diagnosis of MSA is of essen-
tial importance, since otherwise the disease may 
be already too advanced for therapeutic interven-
tions to be effective.2 In addition, motor decline 
appears to be more prominent in earlier disease 
stages as implied by the more rapid decline in the 
first year of follow-up in a large European cohort 
study.1 In the present small subcohort of possible 
MSA patients, 3T QSM showed promising 
results, in particular with excellent sensitivity in 
the VoIs Pu (82%), GP (100%), and SN (100%), 
while the specificity ranged between 60% (GP) 
and 100% (Pu). This suggests that QSM of well-
defined VoIs may be particularly valuable in early 
MSA stages. To qualitatively assess the influence 
of disease duration, and age on QSM values, we 
used correlation analysis. As the sample size of 
the examined cohort is too small for robust cor-
relations, the results must be interpreted with 
caution. Further studies with higher sample sizes 
are needed to delineate the effects of these covari-
ates on the differential diagnosis of Parkinsonian 
syndromes more robustly. Yet, our data suggest 
that longer disease duration in PD may be associ-
ated with increased susceptibility values, whereas 
magnetic susceptibility in MSA may undergo less 
changes with disease duration. This further sup-
ports the notion that the differential diagnostic 
potential of QSM to separate MSA from PD is 
probably higher in early disease stages, since sus-
ceptibility values in advanced PD develop toward 
a range observed in MSA.

The influence of age on QSM values in PD and 
MSA
Susceptibility values have been reported to 
increase upon aging.34 However, the highest 
increases in magnetic susceptibility upon aging 
are seen between ages 10 and 40, with little or no 
further increase beyond the age of 50.34 Even 
though our results need to be interpreted with 
caution, no correlation of age and susceptibility 
values was observed in the PD and MSA groups. 
Thus, the influence of age on QSM for the dif-
ferential diagnosis of PD versus MSA may be 
neglectable. With respect to the differential 

diagnosis of PD versus ctrls, it is noteworthy that 
studies observing increased QSM in PD mostly 
examine PD cohorts with a mean age of about 
65 years. In younger PD cohorts (average age: 
55 years), no differences in SN QSM are observed 
(for review, see Ravanfar et  al.).33 Therefore, it 
may be that the examined PD cohort here 
(60.8 years) is too young to observe differences 
compared with ctrls.

Is QSM a suitable marker for disease 
progression?
It has not yet been studied if QSM is able to mir-
ror disease progression in MSA. Our MSA group 
showed great interindividual differences in sus-
ceptibility, especially in the striatum, likely reflect-
ing variable interindividual iron load. One may 
argue that this region is therefore not a promising 
candidate to detect disease progression. In line, 
we only observe weak correlation with disease 
duration in MSA. Taken this into account, a sin-
gle QSM measurement might not allow to deter-
mine the actual disease stage or motor impairment 
in both, PD and MSA. However, progressive iron 
accumulation and therewith increasing suscepti-
bility contrast has previously been shown in PD, 
and may occur in the course of MSA, as well.35,36 
In this regard, one limitation of our study is miss-
ing longitudinal data, that would allow addressing 
these important issues.

Why does 7T MRI yield increased diagnostic 
accuracy?
The promising results of 3T QSM regarding dif-
ferentiation of early MSA and PD and the added 
sensitivity on 7T MRI makes 7T QSM a promis-
ing candidate for a reliable differential diagnostic 
imaging biomarker. While mean susceptibility val-
ues at 3T (Supplementary Figure 1) and 7T 
(Figure 6) were comparable, SDs were lower on 
7T, most likely accounting for the increase in sen-
sitivity. The larger phase contrast and increased 
signal-to-noise ratio of 7T MRI compared with 
lower field strengths most likely account for this 
observation (see supplementary figure 2). Even 
though mean susceptibility values at 3T and 7T 
were comparable (Supplementary Figures 1 and 
6), Even though mean susceptibility values at 3T 
and 7T were comparable (Supplementary Figures 
1 and 6), there is a slight deviation. This is prob-
ably due to the TE and magnetic field strength 
dependence described in the literature.37,38 TEs in 
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our study at 7T compared with 3T are slightly 
shorter than the factor 2.6, which is recommended 
by Lancione et  al. to maximize reproducibility. 
Also, to increase the contrast-to-noise ratio (CNR) 
at 3T, more TEs were acquired at 3T than at 7T 
due to the longer TR. However, since only com-
parisons within each field strength were performed 
in this study, a systemic error due to TE or mag-
netic field strength dependence is minimized. 
Nevertheless, this could become a problem in 
future longitudinal studies, if only measurements 
at 3T or 7T are available, since the susceptibility 
values of the patients can then only be compared 
with each other to a limited extent. In addition, 
there is a slight difference in voxel size, between 
the PD (0.6 mm iso) and MSA (0.7 mm iso) 
cohort. As there is a voxel size dependency of sus-
ceptibility, that is, the greater the voxel size, the 
lower the susceptibility, it is conceivable that the 
difference between PD and MSA in susceptibility 
is even larger if the different voxel sizes in the pre-
sented data are taken into account.39

Study limitations
From a clinical viewpoint, it is noteworthy that, 
due to physical disabilities of some patients and 
technical features of the 7T scanner used (e.g. no 
height-adjustable table, restricted handling of the 
head coil), some participants could not receive 
7T imaging. Nevertheless, the results of the 7T 
subgroup are promising and suggest that the 
already excellent differential diagnostic power 
regarding MSA versus PD of the Pu may be fur-
ther improved by an ultra-high-field scanner. To 
test the suitability of QSM for the diagnosis of 
MSA on an individual level, validating the defined 
cut-off values of this study in an independent 
cohort is necessary, especially as ROC curve anal-
ysis may overestimate diagnostic performance. 
Using the data derived from this study, an a priori 
power analysis (using G*Power)40 suggest an n of 
22 per group to be sufficient to detect differences 
in the SN with a power of 0.9, while for the Pu 
and the GP, an n of 15 and 12, respectively, 
would allow to detect differences with a power of 
0.9. Thus, the sample size in this study is large 
enough to deliver robust results for the Pu and 
the GP at 3T, whereas the results presented for 
the 7T cohort and the possible MSA subgroup 
need to be interpreted with caution. A larger 
multi-center study, increasing the sample size 
may also allow for more advanced statistical anal-
ysis, such as cross-validation approaches. In 

addition, progressive supranuclear palsy (PSP) is 
another important differential diagnosis of 
Parkinsonism also characterized an increased iron 
load in the striatum. Future studies should 
include a group of PSP patients to further deline-
ate the ability of QSM imaging to differentiate 
these disease entities. Furthermore, future studies 
should aim to include possible MSA patients and 
provide clinical follow-up information of this 
cohort to increase diagnostic confidence and 
strengthen the role of QSM in early differential 
diagnostic power.

Summary
In conclusion, our study suggests that QSM is a 
highly promising candidate for a diagnostic imaging 
biomarker in the classification of Parkinsonian syn-
dromes. The imaging technology to obtain suscepti-
bility maps has already been shown to be stable and 
well reproducible across multiple scanner systems.41 
Thus, implementation of a protocol with integrated 
QSM reconstruction should be part of the routine 
differential diagnostic algorithm of Parkinsonian 
syndromes. Seven-Tesla QSM has the potential to 
further increase the already good sensitivity up to 
100%. The extent to which longitudinal changes 
reflect disease progression must be addressed by 
future longitudinal studies using QSM.
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