
Genome analysis

Gfastats: conversion, evaluation and manipulation of

genome sequences using assembly graphs

Giulio Formenti 1,*, Linelle Abueg1, Angelo Brajuka1, Nadolina Brajuka1,

Cristóbal Gallardo-Alba2, Alice Giani3, Olivier Fedrigo1 and Erich D. Jarvis1,4

1The Vertebrate Genome Laboratory, The Rockefeller University, New York, NY 10065, USA, 2Bioinformatics Group, Department of

Computer Science, Albert-Ludwigs-University Freiburg, Freiburg 79110, Germany, 3Helen and Robert Appel Alzheimer Disease

Research Institute, Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY 10021, USA and 4Howard

Hughes Medical Institute, Chevy Chase, Maryland 20815, USA

*To whom correspondence should be addressed.

Associate Editor: Alfonso Valencia

Received on March 8, 2022; revised on May 28, 2022; editorial decision on July 2, 2022; accepted on July 6, 2022

Abstract

Motivation: With the current pace at which reference genomes are being produced, the availability of tools that can
reliably and efficiently generate genome assembly summary statistics has become critical. Additionally, with the
emergence of new algorithms and data types, tools that can improve the quality of existing assemblies through
automated and manual curation are required.

Results: We sought to address both these needs by developing gfastats, as part of the Vertebrate Genomes Project
(VGP) effort to generate high-quality reference genomes at scale. Gfastats is a standalone tool to compute assembly
summary statistics and manipulate assembly sequences in FASTA, FASTQ or GFA [.gz] format. Gfastats stores assem-
bly sequences internally in a GFA-like format. This feature allows gfastats to seamlessly convert FAST* to and from
GFA [.gz] files. Gfastats can also build an assembly graph that can in turn be used to manipulate the underlying sequen-
ces following instructions provided by the user, while simultaneously generating key metrics for the new sequences.

Availability and implementation: Gfastats is implemented in Cþþ. Precompiled releases (Linux, MacOS, Windows)
and commented source code for gfastats are available under MIT licence at https://github.com/vgl-hub/gfastats.
Examples of how to run gfastats are provided in the GitHub. Gfastats is also available in Bioconda, in Galaxy (https://
assembly.usegalaxy.eu) and as a MultiQC module (https://github.com/ewels/MultiQC). An automated test workflow
is available to ensure consistency of software updates.

Contact: giulio.formenti@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

In recent years, we have witnessed an unprecedented increase in the
number of publicly available genomes (Lewin et al., 2018). Thanks
to advancements in genome sequencing and assembly (Rhie et al.,
2021) many of these genomes are more accurate and contiguous.
Reference genomes are made available in publicly maintained
archives such as GenBank by the US National Center for
Biotechnology Information (NCBI, www.ncbi.nlm.nih.gov/gen
bank), the European Nucleotide Archive (ENA, www.ebi.ac.uk/ena/
browser/home) by the European Bioinformatics Institute, the DNA
Data Bank of Japan (DDBJ, www.ddbj.nig.ac.jp), the China
National GeneBank (CNGB, https://db.cngb.org), or project-related
repositories such as the Vertebrate Genomes Project (VGP) Genome
Ark (https://vgp.github.io/) (Rhie et al., 2021). Assemblies are

usually stored as collections of sequences representing either contigs
(i.e. contiguous stretches of nucleotide sequences) or scaffolds (i.e.
contigs separated by gaps of unknown sequence). The size of gaps
can be approximately estimated (sized gaps) or unknown.

Sequence collections are generally stored in the popular FASTA
format, developed in 1985 (Lipman and Pearson, 1985). In FASTA,
each sequence is introduced by a ‘>’ character followed by a header
and a comment, and the sequence on newlines. Like FASTA, the
FASTQ format was developed over two decades ago at the Wellcome
Trust Sanger Institute (Cock et al., 2010) and later popularized by
Illumina to store short-read sequencing data with per-base quality in-
formation. More recently, the representation of biological sequences
has been expressed under the conceptual framework of graph theory
(Paten et al., 2017). In a graph, genome assemblies can be represented
as collections of sequences (nodes) linked by experimental evidence

VC The Author(s) 2022. Published by Oxford University Press. 4214

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits

unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Bioinformatics, 38(17), 2022, 4214–4216

https://doi.org/10.1093/bioinformatics/btac460

Advance Access Publication Date: 7 July 2022

Applications Note

https://orcid.org/0000-0002-7554-5991
https://github.com/vgl-hub/gfastats
https://assembly.usegalaxy.eu
https://assembly.usegalaxy.eu
https://github.com/ewels/MultiQC
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac460#supplementary-data
http://www.ncbi.nlm.nih.gov/genbank
http://www.ncbi.nlm.nih.gov/genbank
http://www.ebi.ac.uk/ena/browser/home
http://www.ebi.ac.uk/ena/browser/home
http://www.ddbj.nig.ac.jp
https://db.cngb.org
https://vgp.github.io/
https://academic.oup.com/


(edges). GFA is a popular format to store sequence data as graphs.
GFA1 (http://gfa-spec.github.io/GFA-spec/GFA1.html), which was
introduced in 2014 (http://lh3.github.io/2014/07/19/a-proposal-of-the-
grapical-fragment-assembly-format), can be used to conveniently store
and visualize (Wick et al., 2015) key features of sequence graphs, such
as the product of an assembly (Cheng et al., 2021), the representation
of variation in genomes or overlaps between reads. Since the graph is
not yet collapsed to a linear representation, many additional character-
istics can be deduced. Of particular importance is the residual graph
connectivity, such as the presence of ambiguous overlaps originating
from repetitive elements or the presence of bubbles originating from
heterozygosity, both leading to reduced contiguity if not resolved.

The GFA1 format consists of lines with tab-delimited fields. The first
field defines the line type, which in turn defines additional required
fields, followed by optional fields. Examples of line types are segments
(S, usually a contig) and edges (L, usually an overlap between two con-
tigs). GFA was later generalized to GFA2, which allows specifying an as-
sembly graph in either less detail (e.g. only the topology of the graph) or
in more detail (e.g. the multi-alignment of reads underlying each se-
quence) (https://github.com/GFA-spec/GFA-spec/blob/master/GFA2.md).
Importantly, GFA2 introduces more line types to include gaps (G),
allowing scaffolds (i.e. contig separated by gaps) to be represented.

As more and more reference genomes become available, a single
fast, versatile tool that can compute assembly summary statistics from a
variety of file formats is warranted. In the framework of the VGP,
which aims to generate high-quality genome assemblies for all verte-
brate species, we have developed and present here gfastats (short for
graph-based *FA* statistics). By internally representing any input se-
quence (FASTA, FASTQ, GFA1/2) in a more general GFA2-like format,
gfastats can efficiently compute accurate summary statistics. It further
allows simultaneous manipulation of the assembly sequences, thereby
potentially facilitating both automated assembly and manual curation.

2 Results

For optimization purposes, gfastats is coded solely in Cþþ, taking full
advantage of object-oriented programming. In gfastats v1.2.0 (the ver-
sion presented hereinafter), contigs (segments), edges and gaps are

represented with classes, and so are the collections of paths through
contigs and gaps that, taken together, represent a genome assembly
(Fig. 1a). Features of interest are represented using bed coordinates.
Input includes any *fa* (FASTA, FASTQ, GFA [.gz]) file. Since gfastats
reads and stores any input in a GFA-like format, it allows the seamless
conversion between different formats (FASTA<>FASTQ<>GFA[.gz]).
Inputs are processed on the fly to generate summary statistics.

Gfastats computes a growing number of assembly/sequence met-
rics (Fig. 1a;). We compared gfastats to QUAST Gurevich et al.
(2013) and SeqKit Shen et al. (2016) and found that gfastats provides
the most complete set of reference-metrics (Supplementary Table S1).
Gfastats summary statistics are available also as a MultiQC module
(Ewels et al., 2016). Metrics for each contig can be generated as well.
AGP (A Golden Path), BED coordinates and sizes of scaffolds, contigs
and gaps can be conveniently outputted. Input can be filtered in a
pre-processing step to include/exclude sequences or portions of them
using scaffold lists or bed coordinate files. Sequences can be sorted, ei-
ther according to a list or to other characteristics (name, length, etc.).
Gfastats also allows homopolymer compression and decompression,
a feature increasingly useful when dealing with long reads.

Since the assembly process is still imperfect, manipulation of contig
and scaffold sequences is also needed. High-quality genome assemblies
often require a long process of curation, in which experts manually val-
idate and correct the assembly using evidence from the raw data (Howe
et al., 2021). The process also relies on file format specifications not
adapted and not specifically designed for this purpose. By representing
any input sequence as a graph, gfastats allows their manual manipula-
tion. For instance, gfastats can build a bidirected graph representation
of the assembly using adjacency lists, where each node is a segment, and
each edge is a gap (Fig. 1b). Canonical algorithms (e.g. Depth First
Search) are used to walk the graph. In this case, the manipulation is
achieved by the internal ‘swiss army knife’ (SAK) for genome assembly.
SAK evaluates a set of basic sequential instructions, i.e. actions to be
performed one-by-one on the graph to manipulate the sequence (e.g.
join or split contigs, reverse complement sequence, etc.). Here, the rep-
resentation of the assembly as a graph allows several operations to be
performed (e.g. the removal of all trailing Ns from scaffolds by drop-
ping all terminal gap edges). Once all instructions for the SAK are proc-
essed, metrics are updated and returned, allowing evaluation of the

Fig. 1. (a) Schematic of gfastats workflow. Inputs (top trapezoids) include genome assemblies in FASTA, FASTQ, GFA [.gz] formats and include/exclude lists as bed coordinate

files for filtering (first diamond). These are represented internally by multiple Cþþ classes including their constituent elements (rectangles). The assembly can be converted to a

graph (first oval), to ease manipulation by the internal Swiss Army Knife (SAK; second diamond), and then summary statistics are computed (second oval). A variety of outputs

can be generated, such as summary statistics and new sequences in *fa* format. (b) Internal bidirected graph representation of the input sequences. Segments (nodes A, B, C) are

connected by forward (b, c, e, g) or backward (a, d, f, h) gaps edges. Terminal nodes can optionally be associated with gaps (dashed lines, gap edges a, b, g and h). An assembly

scaffold is a path in the graph (e.g. A! c!B! e!C, grey middle line). Sequence manipulation can be achieved using the internal SAK. For instance, the given path could be

split by removing gap edges c and d that connect segment nodes A and B, leading to a disconnected node A, and two connected nodes B and C linked by edges e and f (portion of

the path in light grey removed). Overlap edges can be treated in the same way. (c) Evaluation of gfastats runtime. Performance time is a function of genome size, with gfastats run-

time increasing linearly. There is a small increase in time when handling gzip-compressed files

Gfastats 4215

http://gfa-spec.github.io/GFA-spec/GFA1.html
http://lh3.github.io/2014/07/19/a-proposal-of-the-grapical-fragment-assembly-format
http://lh3.github.io/2014/07/19/a-proposal-of-the-grapical-fragment-assembly-format
https://github.com/GFA-spec/GFA-spec/blob/master/GFA2.md
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/btac460#supplementary-data


revised assembly. The filtered and/or manipulated input can also be out-
putted in any *fa* format, thereby generating new sequences.

Testing on a 2.8 GHz Quad-Core Intel Core i7 using 370 genome
assemblies (both primary and alternate) from the VGP shows that
gfastats can compute all summary statistics in less than a minute for
genome assemblies of size up to 4 Gbp in O(N) time (Fig. 1c).
Assembly manipulation comes with minimal overhead.

3 Discussion and future perspectives

As graph representations of genome assemblies become more popular
Jarvis et al. (2022); Cheng et al. (2022); Rautiainen et al. (2022), effect-
ive tools that make assembly graph storage, analysis and manipulation
easily accessible become necessary. While a few libraries already exist to
deal with GFA files (Dawson and Durbin, 2019) (https://github.com/
lh3/gfatools), they do not make FASTA and GFA fully interoperable,
and do not directly allow their seamless manipulation. The design of
gfastats addresses this need in a modular framework, allowing new fea-
tures to be readily implemented. Potential new features include: file
indexing to test multiple hypotheses with minimal runtime overhead,
pattern search, sequence soft/hard-masking and new instructions to the
SAK. Additional FASTA and GFA statistics can also be introduced
based on the needs of the genomics community. Importantly, gfastats
introduces a whole new conceptual framework for assembly manipula-
tion where the results of automated algorithms or manual curation be
integrated in a single file format and can be expressed in a human-
readable set of instructions for the SAK, which also conveniently acts as
a log of the changes that were applied during the process.

Acknowledgements

We thank Björn Grüning for helping with the implementation of gfastats in

Conda and Galaxy.

Funding

G.F., L.A., N.B., O.F. and E.D.J. were supported by the Rockefeller University

and HHMI funds. C.G. was supported by DataPLANT 442077441 through

the German National Research Data Initiative (NFDI 7/1).

Conflict of Interest: none declared.

Data availability

All VGP assemblies used for evaluation are publicly available through the

Genomeark (https://vgp.github.io)}.

References

Cheng,H. et al. (2021) Haplotype-resolved de novo assembly using phased as-

sembly graphs with hifiasm. Nat. Methods, 18, 170–175.

Cheng,H. et al. (2022) Haplotype-resolved assembly of diploid genomes with-

out parental data. Nat. Biotechnol. https://doi.org/10.1038/s41587-022-

01261-x.

Cock,P.J.A. et al. (2010) The sanger FASTQ file format for sequences with

quality scores, and the solexa/illumina FASTQ variants. Nucleic Acids Res.,

38, 1767–1771.

Dawson,E.T. and Durbin,R. (2019) GFAKluge: a Cþþ library and command

line utilities for the graphical fragment assembly formats. J. Open Source

Softw., 4, 1083.

Ewels,P. et al. (2016) MultiQC: summarize analysis results for multiple tools

and samples in a single report. Bioinformatics, 32, 3047–3048.

Gurevich,A. et al. (2013) QUAST: quality assessment tool for genome assem-

blies. Bioinformatics, 29, 1072–1075.

Howe,K. et al. (2021) Significantly improving the quality of genome assem-

blies through curation. Gigascience, 10, giaa153.

Jarvis,E.D. et al. (2022) Automated assembly of high-quality diploid

human reference genomes. bioRxiv. https://doi.org/10.1101/2022.03.06.

483034.

Lewin,H.A. et al. (2018) Earth BioGenome project: sequencing life for the fu-

ture of life. Proc. Natl. Acad. Sci. USA, 115, 4325–4333.

Lipman,D.J. and Pearson,W.R. (1985) Rapid and sensitive protein similarity

searches. Science, 227, 1435–1441.

Paten,B. et al. (2017) Genome graphs and the evolution of genome inference.

Genome Res., 27, 665–676.

Rautiainen,M. et al. (2022) Verkko: telomere-to-telomere assembly of

diploid chromosomes. bioRxiv. https://doi.org/10.1101/2022.06.24.

497523.

Rhie,A. et al. (2021) Towards complete and error-free genome assemblies of

all vertebrate species. Nature, 592, 737–746.

Shen,W. et al. (2016) SeqKit: a cross-platform and ultrafast toolkit for

FASTA/Q file manipulation. PLoS One, 11, e0163962.

Wick,R.R. et al. (2015) Bandage: interactive visualization of de novo genome

assemblies. Bioinformatics, 31, 3350–3352.

4216 G.Formenti et al.

https://github.com/lh3/gfatools
https://github.com/lh3/gfatools
https://vgp.github.io
https://doi.org/10.1038/s41587-022-01261-x
https://doi.org/10.1038/s41587-022-01261-x
https://doi.org/10.1101/2022.03.06.483034
https://doi.org/10.1101/2022.03.06.483034
https://doi.org/10.1101/2022.06.24.497523
https://doi.org/10.1101/2022.06.24.497523

