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ABSTRACT

Insertions and excisions of transposable elements
(TEs) affect both the stability and variability of the
genome. Studying the dynamics of transposition at
the population level can provide crucial insights into
the processes and mechanisms of genome evolu-
tion. Pooling genomic materials from multiple indi-
viduals followed by high-throughput sequencing is
an efficient way of characterizing genomic polymor-
phisms in a population. Here we describe a novel
method named TEMP, specifically designed to de-
tect TE movements present with a wide range of fre-
quencies in a population. By combining the infor-
mation provided by pair-end reads and split reads,
TEMP is able to identify both the presence and ab-
sence of TE insertions in genomic DNA sequences
derived from heterogeneous samples; accurately es-
timate the frequencies of transposition events in
the population and pinpoint junctions of high fre-
quency transposition events at nucleotide resolu-
tion. Simulation data indicate that TEMP outperforms
other algorithms such as PoPoolationTE, RetroSeq,
VariationHunter and GASVPro. TEMP also performs
well on whole-genome human data derived from the
1000 Genomes Project. We applied TEMP to char-
acterize the TE frequencies in a wild Drosophila
melanogaster population and study the inheritance
patterns of TEs during hybrid dysgenesis. We also
identified sequence signatures of TE insertion and
possible molecular effects of TE movements, such
as altered gene expression and piRNA production.
TEMP is freely available at github: https://github.
com/JialiUMassWengLab/TEMP.git.

INTRODUCTION

Transposable element (TE) mobilization is one of the major
sources of genomic variation and a potential driving force of
evolution (1–3). Detecting transposition events within the
genome is therefore crucial for understanding the mecha-
nisms by which TEs are regulated and the phenotypic con-
sequences that result from TE movements. The task of de-
tecting TE insertions and excisions falls within the more
general category of genomic structural variation detection
(4). Much progress has been made in discovering structural
variations from high-throughput genomic DNA sequencing
data (5–7). So far, most structural variation discovery tools
are designed to handle isogenic samples––i.e. they assume
that the sequence reads originate from a single genome or
at least the sample is dominated by a single genome (4).
However, just as any other types of genomic variation, it
would be extremely useful to estimate the population fre-
quency of polymorphic transposition events. Sequencing a
large number of individuals in a population separately is
impossible under many circumstances because of the pro-
hibitively high costs and the difficulty in obtaining enough
experimental material. Pooled sequencing is a widely em-
ployed experimental practice whereby investigators pool tis-
sues from multiple individuals (or organisms) and sequence
the DNA (or RNA) without knowing which read originates
from which individual (or organism) (8–11). In fact, for
many species that cannot be individually cultured in labora-
tory conditions, pooled sequencing is the only means for ob-
taining sufficient experimental material as required by state-
of-the-art sequencing technologies. When analyzed with an
effective computational algorithm, this approach can accu-
rately estimate the population frequency of transposition
events.

When applied to pooled sequencing data, methods de-
signed to detect structural variations in largely isogenic
samples can only detect variations that are shared by most
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genomes in the pool. Discovering TE transpositions and
estimating their frequencies using a pooled sequencing
dataset present some unique computational challenges. De-
tecting rare TE transposition events with high confidence,
identifying reads that are likely to support the same trans-
position event and overcoming biases stemming from the
non-uniformity of sequencing depth across the genome are
some of the difficulties involved. Kofler et al. designed an
algorithm named PoPoolationTE to detect novel TE inser-
tions and estimate their population frequency from pooled
sequencing data. They applied PoPoolationTE to a natu-
ral population of Drosophila to study transposon evolu-
tion. In this article, we present an algorithm named TEMP
that uses discordant mapping reads to detect TE polymor-
phisms relative to a reference genome, pinpoint the posi-
tion of their junctions within genomic DNA and estimate
their population frequencies from the pooled sequencing
data. We demonstrated TEMP’s performance by comparing
it with PoPoolationTE, RetroSeq (an algorithm designed
for detecting TE insertions in individual genomes), and two
general-purpose structural variation discovery algorithms
VariationHunter and GASVPro using simulated data. We
further used TEMP to analyze several biological datasets
in Drosophila melanogaster to demonstrate the unique bio-
logical insights that can be obtained using our algorithm.
TEMP requires a curated library of transposon consen-
sus sequences and cannot identify transposition events de
novo. The TEMP software package is freely available at
github: https://github.com/JialiUMassWengLab/TEMP.git
or the TEMP webpage: http://zlab.umassmed.edu/TEMP/.

MATERIALS AND METHODS

Sequence mapping and the input files for TEMP

TEMP takes input files in the BAM format obtained by
mapping sequencing reads to a reference genome. Through-
out this article, we used BWA (v0.6.1-r104) (12) as the
mapping software and D. melanogaster dm3 as the refer-
ence genome for mapping. Mapping was done using the
BWA aln algorithm with command line options -n 3 -l
100 -R 10000, which allows for three mismatches. Other
input files required by TEMP are transposon consensus
sequences, which can be downloaded from Repbase (Ver-
sion 17.07, http://www.girinst.org/repbase/), and Repeat-
Masker files containing the annotated TEs in the refer-
ence genome, which can be downloaded from the UCSC
Genome Browser (http://genome.ucsc.edu/).

The TEMP method for identifying TE insertions and absence

In order to detect a TE insertion, TEMP first identifies all
discordant read pairs (Figure 1), with one uniquely mapped
read (the anchor read, or anchor) and a second read that
is unmappable or maps to multiple distant locations. Those
non-uniquely mapping reads are then compared to a library
of consensus TE sequences. The TE to which the read maps
with fewest mismatches determines the type of the TE inser-
tion. For example, if the TE-mapping read maps to the P-
element consensus sequence then it is likely that there is a P-
element insertion in the vicinity of where the anchor maps.
TEMP infers the orientation of the insertion by examining

the genomic strand of the anchor and the transposon strand
of the TE-mapping read. (Supplementary Figure S1). A sin-
gle read pair is usually insufficient for inferring the precise
junction. Therefore, TEMP first attempts to identify a ge-
nomic interval that includes the junction, called the interval
estimate. This estimate is based on the average insert size of
the sequencing library. The junction must be located in the
interval beginning at the end of the anchor and extending
into the genome by the length of the average insert size. The
reads that support the same insertion event (i.e. the same
type of TE, in the same genomic strand and with interval
estimates that overlap by at least 1 nucleotide (nt)) are clus-
tered and their intersecting region provides a refined inter-
val estimate (Supplementary Figure S2).

To detect TE insertions that are present in the reference
genome but absent in the sample genomes, TEMP first iden-
tifies all read pairs for which the distances between the two
genome-mapping reads are significantly longer than aver-
age insert size (but less than 10k bps to avoid mapping arti-
facts) and then examines whether the intervening genomic
region spans one or more known TEs as annotated in the
reference genome. In order to prevent false positives, we re-
quire that both reads are uniquely mapped to the reference
genome and that the distance between the two reads (after
subtraction of the excised TEs) is consistent with the aver-
age insert size of the library. Read pairs that support the
same event are clustered (Figure 1b). These structural al-
terations could reflect strain-specific excision of DNA ele-
ments, which move by a cut and paste mechanism, or could
reflect polymorphic DNA or RNA element insertions that
are specific to the reference genome. TEMP cannot distin-
guish between these alternatives unambiguously, but if the
transposon is an RNA element transposing by the ‘copy
and paste’ mechanism and its frequency is close to zero in
most of the sample genomes, it is most likely that the ele-
ment is a polymorphic insertion in the reference genome.

Estimation of new junctions and transposition frequencies in
a population

Based on the interval estimates obtained in the previous
step, TEMP attempts to determine the new junctions cre-
ated by transposition events up to base-pair resolution (base
estimates) by taking advantage of reads that start in ge-
nomic sequence but are interrupted by transposon or non-
contiguous genomic sequence (soft-clipped reads; Figure 1c
and d).

For insertions, TEMP first extends the interval estimates
obtained in the detection step by 20 bps in both directions.
Soft-clipped reads that map within the extended interval
are identified. For each such read, TEMP determines if the
clipped portion of the read can be confidently explained by
the insertion event (i.e. the clipped sequence corroborates
the type and direction of the TE insertion determined by
the previous step). We require the clipped portion to be at
least 7 nt long and map perfectly to the appropriate TE
sequence. When multiple junction estimates are identified,
TEMP chooses the one supported by the most reads. We
use a similar approach to estimate the junctions of TEs that
are absent in the reference genome. Soft-clipped reads that
map near the annotated boundaries of the absent TE are
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Figure 1. Diagrams depicting how TEMP detects presence (a) and absence (b) of insertion events and estimates junctions at base-pair resolution for
presence (c) and absence (d) of insertion events.

identified and the clipped portion of each read is examined
to ensure that it maps to the sequence on the other side of
the transposon. We note that base estimates of the junctions
are strand-specific as the soft-clipped reads are mapped to
only one strand of the genome. When the base estimates are
not available, TEMP uses the midpoint of the interval esti-
mates and the annotated TE boundaries as surrogates for
insertion and absence, respectively.

For each detected presence or absence of transposon in-
sertion, TEMP first compiles all the read pairs that support
the transposition event, which include the discordant read
pairs that define the transposition event and the soft-clipped
reads that delineate its junctions with genomic sequence.
TEMP also keeps track of another set of read pairs that
originate from the genomes where the transposition event
does not happen; these read pairs span the estimated junc-
tions of the transposition (Figure 1). TEMP computes the
ratio T/(T+R) as an estimate of the population frequency
of the transposon, where T stands for the total number of
read pairs that support the presence and R stands for the to-
tal number of read pairs that are consistent with the absence
of the transposon insertion.

The workflow of TEMP is represented in Supplementary
Figures S3 and S4.

Simulation analysis

In each experiment, 50 insertions and 50 excisions were
randomly placed across chromosome arm 2L of the D.
melanogaster reference genome. For each simulated inser-
tion, the TE family and insertion site coordinate were se-
lected randomly. The entire sequence of the chosen TE was
then inserted at the selected coordinate. For each simulated
excision, an annotated transposon (as annotated in the out-
put of the RepeatMasker program) was randomly selected
and the entire sequence was deleted. The insertion and dele-
tion operations were carried out using a genomic structural
variation simulation package named RSVSim (v1.1.1) (13).
Simulated read pairs with read length of 90 nucleotides (nt)
following a normal distribution of insert sizes (500 ± 50 nt)
were then generated from the simulated genome obtained in
the previous step with four different sequencing depths (5X,
10X, 20X and 40X) using a profile-based Illumina paired-
end reads simulator named pIRS (14). We used pIRS v1.1.0
with options -l 90 -m 500 -v 50 -e 0.0001 -a 0 -g 0, which
simulated 90-nt long reads, with mean insert size set at 500
nt, standard deviation of insert sizes at 50 nt, sequencing
error rate at 0.0001, no insertions or deletions in the reads,
and no GC bias. To simulate various population frequen-
cies of transposition events, we mixed reads generated from
the simulated genome with reads generated from the refer-
ence genome at appropriate ratios. Finally, we mapped all
the reads to dm3 using BWA and fed the mapping results to
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TEMP and other algorithms to evaluate their performance.
The above procedure was repeated 100 times to obtain 5000
simulated insertions and 5000 simulated excisions.

To compare TEMP with other algorithms, we gener-
ated datasets by combining five independently simulated
Drosophila chromosome 2L arms. Each simulated chro-
mosome arm was generated as described above, and pair-
end reads were simulated at 5X coverage. Each simu-
lated dataset hence contained reads originating from the
five simulated chromosome arms with an apparent cov-
erage of 25X, and the process was repeated 20 times.
We compared TEMP with PoPoolationTE (15), Ret-
roSeq (16), VariationHunter (17) and GASVPro (18) on
these datasets. The results are summarized in Table1.
We evaluated PoPoolationTE (v1.02, https://code.google.
com/p/popoolationte/), RetroSeq (https://github.com/tk2/
RetroSeq), VariationHunter CommonLaw (v0.04, http://
variationhunter.sourceforge.net/Home) and GASVPro-HQ
(2013 Oct Release, http://code.google.com/p/gasv/). For
PoPoolationTE we followed the typical workflow described
at https://code.google.com/p/popoolationte/wiki/Workflow
and used the parameters therein. For RetroSeq, we used
the BAM format alignment file produced by the BWA aln
algorithm as the input and chose the same parameters as
described in the tutorial https://github.com/tk2/RetroSeq/
wiki/RetroSeq-Tutorial. For VariationHunter-CL, we first
mapped paired-end reads to the reference genome (dm3)
using mrfast (v2.6.0.1, http://mrfast.sourceforge.net/) with
parameters -min 400 –max 600 -e 3 (which allows for three
mismatches and defines concordant insert sizes as between
400 nt and 600 nt), and then ran VH and multiInd SetCover
with default parameters. Structural variations supported
by fewer than eight reads were discarded. For GASVPro-
HQ, we used the BAM format alignment file produced by
the BWA aln program as the ‘high quality unique mapping
BAM file’ and default parameters. GASVPro produced a
large number of predictions. We ranked the predictions by
log-likelihood ratio and kept the top 250 predictions.

A simulated insertion was correctly recovered if the in-
terval estimate given by TEMP included its true junction
with the genomic DNA, and if the transposon family and
direction of the insertion were determined correctly. A sim-
ulated excision was correctly recovered if TEMP reported
the absence of the corresponding transposon. For a simu-
lated transposition event, we considered its junction cor-
rectly identified if the base estimate TEMP reported lay
within 5 nt of the true junction.

Testing TEMP on pair-end sequencing data from the 1000
genomes project

BAM files containing alignments to the GRCh37 (hg19)
human reference genome for four individuals (NA18517,
NA19240, NA12156, NA12878) were downloaded from the
data portal of the 1000 Genomes Project and merged to
mimic a pooled sequencing dataset. We then ran TEMP on
this dataset and predicted the presence and absence of TE
insertions with frequency greater than or equal to 20% and
covered by more than eight reads. TEMP predictions were
compared with previously reported insertions and deletions
involving these four individuals as deposited in structural

variation database DGV (database of genomic variants,
http://dgv.tcag.ca/dgv/app/home). Note that the structural
variations in DGV include all types of changes in genomic
DNA regardless whether they are caused by TEs.

Hybrid dysgenesis population analysis

The small RNA sequencing and genomic deep sequenc-
ing datasets were downloaded from NCBI SRA database
(SRP007937) and processed and analyzed as described in
Khurana et al. (19). We define parental transposons as TE
insertions with population frequencies greater than 10% in
at least one of the parental strains (w1 or Harwich). The
frequency change of a parental transposon is defined by
FC = F–(H+W)/2, where F, W, H represent frequency of
the transposon in the w1 x Har; 2–4 day F1 population, the
w1 population and the Harwich population, respectively.
The junction spanning small RNA reads need to be at least
21 nt long and map perfectly across the genome-transposon
junction. We use the piRNA cluster annotation by Bren-
necke et al. (19), which includes 141 clusters in total (ex-
cluding the chrX TAS cluster), occupying 4 924 944 bp of
the dm3 genome. piRNA clusters are the genomic loci from
which precursor piRNA transcripts are produced.

The Drosophila Genetic Reference Panel datasets

We downloaded genomic deep sequencing data for 53
DGRP inbred lines (20) from NCBI SRA (Supplementary
Table S1). Except for lines RAL-362, RAL-765 and RAL-
517, the other 50 lines each had >20X sequencing coverage.
We included those three lines with <20X coverage because
they were the only lines with RNA-seq data. We mapped
the reads to dm3 with the BWA aln algorithm, allowing for
three mismatches and then ran TEMP on the BWA output
files in the BAM format.

For TE insertion distribution analysis, 11 311 insertions
that had frequencies greater than 80% in at least one of
the inbred lines were chosen. We profiled the number of
insertions in each of the five genomic features: promoters
(2 kb upstream of an annotated transcription start site),
exons (Flybase annotation), intron/UTR regions (regions
within annotated genes but not in exons), intergenic regions
(regions more than 2 kb from any annotated genes) and
piRNA clusters for each TE family. A binomial test was per-
formed to assess the statistical significance of enrichment
or depletion for each TE family in each of the five genomic
features and the Benjamini–Hochberg procedure (21) was
used for multiple testing corrections. Only enrichments and
depletions with q-values lower than 0.15 are shown in Sup-
plementary Table S2. The annotation for genes and exons
were obtained from FlyBase (Release 5.45) and the annota-
tion for piRNA clusters was from Brennecke et al. (19) as
described above.

For RNA-seq data, we downloaded seven datasets in-
volving the three lines RAL-362, RAL-765 and RAL-517
and four progeny populations (Supplementary Table S1).
The samples involving two lines were F1 samples (i.e. the
progeny of the two indicated lines separated by ‘x’). We
mapped the reads to the reference genome using Tophat
(v2.0.8b with default parameters) and then used Cufflinks
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(v2.1.1 with default parameters) to compute the expression
level for each gene (in Fragments Per Kilobase of tran-
script per Million, or FPKM). Thus for the three parental
lines (RAL-362, RAL-765 and RAL-517), both genomic se-
quencing and RNA-seq data were available. To find the TE
insertions that could potentially affect gene expression, we
looked for genes that had (i) TE insertions with frequen-
cies greater than 20% in their promoters, introns, exons or
UTRs in only one of the three parental lines and (ii) expres-
sion levels in that line were more than 2-fold higher or lower
(with a pseudo count of 0.5 FPKM) than the corresponding
expression levels in the other two lines where the insertion
was absent. The 48 genes obtained are listed in Supplemen-
tary Table S3 along with their expression levels in all seven
lines.

Sequence signature of TE insertions

We ran TEMP on all Drosophila genomic sequencing data
we had and obtained 14 363 non-redundant insertion events
with junctions on both strands detected. By calculating the
difference between the coordinates of the junctions on two
strands, we were able to estimate the length of target site
duplications (TSDs) for each such insertion. We investi-
gated the nucleotide composition of the sequence around
the junctions by extending 15 bp both upstream and down-
stream from the midpoint between the junctions of the two
strands for each insertion. We then ran MEME on these
30-bp long sequences to report up to five most significant
motifs with lengths of 4–15 nt. (MEM was ran with op-
tions -dna -mod zoops -nmotifs 5 -minw 4 -maxw 15 -pal,
where dna and zoops indicate that there is zero or one motif
site per input DNA sequence and pal indicates that we were
looking for palindromic motifs.) This procedure was per-
formed for each TE family to identify any sequence motifs
that were enriched in the sequences surrounding the junc-
tions. In the mono- and dinucleotide composition analysis,
the same length (i.e. 30 bps) of flanking sequences (100 bps
upstream and downstream of the junction) was selected as
background, and the enrichment for each mono or dinu-
cleotide was measured by the ratio of its frequency in the
junction surrounding sequence over its frequency in flank-
ing sequences.

RESULTS

We first describe the general approach that TEMP takes
for detecting TE polymorphisms and estimating their pop-
ulation frequencies. We then evaluate TEMP’s performance
on both simulated datasets and pooled human genome se-
quencing data. We compare TEMP with four other al-
gorithms (PoPoolationTE, RetroSeq, VariationHunter and
GASVPro) on the simulated data. To showcase how TEMP
can be applied to studying biological problems, we use
TEMP to investigate the inheritance patterns of polymor-
phic transpositions in D. melanogaster hybrid dysgenic
strains. Finally, we analyze the genomic sequencing and
RNA-seq data of 53 lines in a wild D. melanogaster pop-
ulation to learn about the molecular signatures of TE inte-
gration sites and potential molecular consequences of TE
insertions.

Overview of the TEMP method

TEMP detects the presence or absence of TE insertions in
a population of sample genomes using read pairs that are
mapped discordantly on a reference genome. Discordant
read pairs with one read mapped uniquely to the reference
genome and the other read mapped to TE sequence indicate
sample-specific TE insertions (Figure 1a). Sample-specific
absence of TEs can be detected by looking for read pairs
that are separated by a distance substantially longer than
the average insert size of the library and span a TE presents
in the reference genome (Figure 1b). As detailed in Materi-
als and Methods, TEMP can identify the presence and ab-
sence of TE insertions by identifying and sorting through
discordant read pairs. TEMP then attempts to estimate the
minimal genomic interval that includes the junction, called
the interval estimate. For the insertions supported by suffi-
cient numbers of reads, TEMP proceeds to refine the inter-
val estimates to base-pair resolution by taking advantage of
soft-clipped reads (Figure 1c and d).

In order to estimate the population frequency of trans-
position events, TEMP assumes that (i) the pool of sample
genomes is a faithful representative of the population from
which it is drawn and (ii) the number of read pairs support-
ing a transposition event is proportional to the frequency
of the event in the pool of sample genomes. For each trans-
position event, TEMP keeps track of two sets of read pairs
(including both discordant and soft-clipped read pairs), one
set originating from the genomes where the transposition is
present (T pairs) and the other set from the genomes where
the transposition is absent (R pairs). TEMP computes the
ratio T/(T+R) as an estimate of the population frequency
of the transposon (see Materials and Methods for more de-
tails).

Assessment of TEMP performance on simulated and biolog-
ical datasets

As there are no pooled sequencing datasets for which
the population frequencies of polymorphic transposition
events are known, we first evaluated the performance of
TEMP on a simulated dataset. We randomly inserted
and deleted TE sequences in chromosome arm 2L of the
Drosophila reference genome with the RSVSim (13) pro-
gram and generated simulated reads from the simulated
genomes using the pIRS (14) program. The simulated reads
were mapped back to chr2L and TEMP was used to detect
the presence and absence of insertions, resolve the junctions
and estimate the population frequencies of the transposons.

The performance of TEMP depends on the sequencing
depth as well as the frequency of the transposition (Figure
2). TEMP performs better at higher sequencing depth, in
terms of higher detection rates (Figure 2a and b, solid lines),
more accurate estimates of population frequency (Figure
2a and b, dashed lines), higher probability of discovering
the junctions (Figure 2c and d, solid lines) and more cor-
rectly recovered junctions (Figure 2c and d, dashed lines).
Frequency of the target transpositions has similar effects.
Those instances of the presence and absence of insertions
with very low frequencies are often undetected and it is dif-
ficult to determine their precise junctions because there are
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Figure 2. Evaluation of TEMP performance on a simulated dataset and the effects of sequencing depth and the population frequencies of the transposition
events on the performance. The sequencing depth is color coded, with blue, red, green and orange denoting coverage 40X, 20X, 10X and 5X, respectively.
Detection recall rates (solid lines) and average errors of frequency estimates (dashed lines) are plotted against population frequencies for presence (a) and
absence (b) of insertion events. Percentage of transposition events for which TEMP identified junctions (solid lines) and for which TEMP correctly identified
junctions (dashed lines) are plotted against population frequencies for presence (c) and absence (d) of insertion events. FDRs for detecting presence (e) and
absence (f) of insertion events are plotted against population frequencies.
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only a few reads. False discovery rate (FDR) for TE inser-
tion detection rises slowly with increasing sequencing depth
and insertion frequency (Figure 2e). On the other hand, for
TE absence detection the FDR remains low and flat across
the range of sequencing depth and transposon frequency
(Figure 2f).

At 20-fold genome coverage, which is easily achiev-
able with current technology even for large mammalian
genomes, TEMP is able to detect more than 95% of the
presence and absence of insertions with population frequen-
cies exceeding 20%. The average error of frequency estima-
tion is <10% for presence and <9% for absence across the
entire frequency range. Among the base estimates of the
junctions reported by TEMP, more than 95% of them are
correct. These results demonstrate that TEMP is effective
in detecting sample specific TE insertion and absence, esti-
mating their population frequency with high accuracy, and
pinpointing the precise junctions for some of the transposi-
tion instances across a wide range of sequencing depths and
transposition frequencies.

We compared TEMP with four other algorithms on a
simulated dataset that mimics a pooled sequencing library:
PoPoolationTE (15), an algorithm designed for detecting
transposon insertions in pooled sequences; RetroSeq (16),
designed for detecting transposon insertions in individual
genomes; and two commonly used general-purpose struc-
tural variation discovery tools VariationHunter (17,22) and
GASVPro (18). The results are presented in Table 1. TEMP
achieved better performance in detecting both the presence
and absence of TE insertion than the other four methods.

As a method designed for pooled sequencing data,
PoPoolationTE performed worse than TEMP in terms of
sensitivity (88.50% versus 98.80%), precision (92.45% ver-
sus 99.50%) and average error of estimating insertion fre-
quency (8.77% versus 7.27%). RetroSeq is specifically de-
signed for detecting TE insertions, but since it is not in-
tended for handling pooled sequencing data, it does not
estimate insertion frequency. RetroSeq achieved a low sen-
sitivity (71.82%) and a high precision (93.95%). Neither
PoPoolationTE nor RetroSeq is designed for detecting
sample-specific absence of TEs in the reference genome.
In comparison, TEMP can detect transposon absence with
high sensitivity (93.09%), precision (98.64%) and low er-
ror in frequency estimate (7.25%). The two general-purpose
structural variation detection algorithms VariationHunter
and GASVPro could detect transposon absence, although
with lower sensitivity and precision than TEMP (Table 1).
Neither algorithm could detect TE insertion nor are they
designed to estimate transposon frequency. GASVPro pro-
duced many false positives in detecting TE absence.

We also assessed TEMP’s ability in detecting polymor-
phic TE transpositions in human genomes using whole-
genome datasets generated by the 1000 Genomes Project
(23). We pooled the reads from four individuals and ran
TEMP to detect TE insertion and absence relative to the ref-
erence genome (GRCh37, see Supplementary Table S4 for
details of TEMP predictions). Since there is little informa-
tion on experimentally validated TE presence and absence
genome-wide, we used structural variations deposited in the
DGV for evaluating TEMP (24). Overall, 363 out of the 536
(67.7%) of insertions predicted by TEMP overlapped with

insertions for these individuals in DGV and 423 out of the
1593 instances (26.5%) of absence predicted by TEMP over-
lapped with the deletions in DGV. The percentage of pre-
dictions that overlapped insertions and deletions in DGV
went up to 81.5% and 95.5%, respectively, if we considered
all individuals deposited in the DGV. Supplementary Table
S4 also lists which DGV insertions or deletions that TEMP
predictions matched. Thus TEMP works effectively in de-
tecting transposition events in human genomes.

We evaluated the time complexity of TEMP on the
same human whole-genome sequencing dataset. The com-
bined dataset is equivalent to ∼12X coverage of the human
genome and the insertion analysis took 1382 minutes on a
Dell M605 node with 2 quad core AMD Opterons. The ab-
sence analysis took 721 minutes on the same machine.

Identifying potentially selected TE insertions from pooled se-
quencing of hybrid-dysgenic population

We used TEMP to analyze the pooled genomic sequenc-
ing data of a wild-type strain of D. melanogaster (Harwich
or Har in short), a lab strain (w1) and the offspring pop-
ulations from crossing Har males with w1 females. When
Har females are mated with w1 males, the first-generation
offspring (F1) are normal; however, when Har males are
mated with w1 females, the offspring suffer from widespread
TE transpositions, genomic instability and are initially ster-
ile, a phenomenon known as hybrid dysgenesis (25–28). As
the surviving female dysgenic flies age, they partially re-
cover from the dysgenic phenotypes and begin to produce
viable offspring, a change thought to be the result of de novo
piRNA production in the ovaries (19).

We used TEMP to detect TE insertions relative to the
reference genome and estimate their frequencies in each of
the parental and progeny populations (Supplementary Ta-
ble S5). This enables us to find insertions that show inher-
itance patterns potentially under adaptive selection. For a
neutral insertion polymorphism, its population frequency
in the progeny population should be close to the arithmetic
mean of the frequencies in the two parental populations if
the inheritance obeys Mendelian segregation. We therefore
defined frequency change using a simple formula FC = F–
(H+W)/2, where F, H, W denote the population frequency
of a TE insertion in the dysgenic F1 population, the Har-
wich population and the w1 population, respectively. A large
positive value of frequency change suggests positive (adap-
tive) selection whereas a large negative value suggests nega-
tive (purifying) selection.

We computed the frequency change for each parental TE
insertion (defined as the insertions whose frequencies ex-
ceed 10% in at least one of the parental populations) (Figure
3a). As expected, the vast majority of parental insertions
have negative but close to zero frequency changes in the
F1 population (Figure 3a), suggesting that they were under
weak purifying selection. The most critical challenge facing
the hybrid dysgenic flies was coping with hyperactive trans-
positions and any trait that helped suppress TE mobiliza-
tion could be potentially selected for. Insertion of a TE into
piRNA clusters can lead to production of piRNAs whose
sequences are complementary to the TE, and these piRNAs
can in turn silence the corresponding transposon genome-
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Figure 3. (a) Distribution of selection strength acted on parental TEs. Positively selected TEs (blue shaded region) shows enrichment for piRNA cluster
residing TEs whereas negatively selected TEs (red shaded region) shows depletion for piRNA cluster residing TEs. The pie charts represent the percentages
of piRNA cluster insertions (labeled) among the positively (or negatively) selected TEs. (b) Same as (a) except for F2 backcross progeny. (c) A pogo insertion
within the 42AB piRNA cluster is under strong positive selection. It led to the de novo production of piRNAs as demonstrated by piRNA reads that span
the insertion junctions in two F1 populations, w1 X Har 2–4 days (red) and w1 X Har 21 days (orange). The bar plots on the left show the frequency of the
pogo insertion in the parental, F1 and F2 populations.
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Table 1. Performance comparison between TEMP and transposon or structural variation discovery methods

Measures/Methods TEMP PoPoolationTE RetroSeq Variation Hunter-CL GASVPro

TE insertion
Sensitivity

98.80% 88.50% 71.82% 0.00% NA

TE insertion
Precision

99.50% 92.45% 93.95% 0.00% NA

Average error of TE
insertion frequency
estimate

7.27% 8.77% NA NA NA

TE absence
Sensitivitya)

93.09% NA NA 86.91% 72.37%

TE absence Precision 98.64% NA NA 79.74% 61.26%
Average error of TE
absence frequency
estimate

7.25% NA NA NA NA

Bold values indicate the best among all the methods involved.

wide (29–31). Indeed, among insertions whose frequencies
increased by 30% or more in the F1 population (FC ≥ 0.3),
there were more insertions residing within piRNA clusters
than expected (P-value = 5.38E-4, hypergeometric test).
In contrast, among insertions with FC ≤ −0.3, there were
fewer of them than expected in piRNA clusters (P-value
= 8.02E-5, hypergeometric test) (Figure 3a). We also an-
alyzed the germline DNA isolated from the ovaries of the
second-generation progenies (F2) produced by backcross-
ing F1 dysgenic females to w1 males. Again, we computed
the FC for each parental TE insertion, i.e. those insertions
whose frequency exceeded 10% in either F1 or w1. These F2
females did not suffer from hyperactive TE movement; ac-
cordingly, our data support that there were fewer insertions
under negative selection than their parents (14.05% with FC
≤ −0.3 in F2 versus 19.09% in F1; P-value = 4.90E-5, X2-
test). Moreover, there was no enrichment for TE insertions
in piRNA clusters (P-value = 0.53, hypergeometric test),
consistent with the notion that such insertions would not
confer significant selective advantages in non-dysgenic indi-
viduals (Figure 3b). We note that according to the Wright–
Fisher model with a population size of 100 (200 chromo-
somes), the probability of FC ≤ −0.3 or ≥ 0.3 or more
extreme is smaller than 1E-15 (Supplementary Table S6).
Therefore, the sites with FC ≤ −0.3 or ≥ 0.3 are likely un-
der selective pressure. Moreover, at 20X sequencing depth
TEMP’s FDR is 1.17% for sites with frequency at 0.3 (Fig-
ure 2e). Therefore most of the sites with FC ≤ −0.3 or ≥ 0.3
represent actual change, not detection error.

We were able to resolve the junctions for one of the in-
sertions that were both strongly selected for and lie within
a piRNA cluster. A pogo insertion at position 2 378 892–2
378 894 of chromosome arm 2R (within the piRNA clus-
ter 42AB) had a frequency of 96.77% in the Har popula-
tion and was absent in the w1 population. In the F1 hybrid
dysgenic population the frequency of the same insertion is
88.24%, which far exceeded what would be expected from
Mendelian inheritance––suggesting that it was under strong
positive selection. Evidently, in addition to the F1 embryos
that lacked a pogo insertion in both alleles, some of the F1
embryos that were heterozygous for this pogo insertion did
not mature to adulthood. As shown by the large number of
piRNA reads that mapped across the unique junctions pro-
duced by the insertion, this insertion led to de novo produc-

tion of piRNAs and probably helped repress transposition
of the pogo element, giving the individuals a selective ad-
vantage (Figure 3c). Interestingly, the same insertion also
exhibited higher than expected frequency in the F2 back-
cross progeny, suggesting a persisted adaptive selection at
this locus even though the backcross did not induce hybrid
dysgenesis (Figure 3c, bar plots).

Sequence signatures and potential effects on gene expression
of TE insertions

The D. melanogaster Genetic Reference Panel (DGRP) is
a community resource of inbred lines of fruit flies derived
from a wild population (20). In freeze 1.0, the genomes of
168 inbred lines have been sequenced and the sequencing
data are publicly available. Moreover, the RNA-seq data for
three of these lines are also available, as well as the RNA-seq
data on four progeny populations of these three lines. We
selected 53 lines with the highest genome sequencing cover-
age and applied TEMP to detect the presence and absence
of TE insertions. TEMP detected in total 11 316 instances
of the presence and 1378 instances of the absence of trans-
posons that had frequency greater than 80% in at least one
line (Supplementary Tables S7). The distribution of TE in-
sertions across the genome showed that most TE insertions
are enriched in intronic and intergenic regions and depleted
in exonic regions (Supplementary Table S2). This is consis-
tent with a recent report on a related dataset (32).

We also used TEMP to pinpoint the junctions in both the
DGRP datasets and the hybrid dysgenic datasets. TEMP re-
ported the positions for 14 363 non-redundant junctions at
base pair resolution, which enabled us to investigate the se-
quence signatures near the TE insertion sites including the
length of TSDs, the dinucleotide composition of target site
sequences and potential sequence motifs at target sites that
may reveal the sequence preferences of the integrases (Sup-
plementary Figure S5).

There were 44 TE families for which we detected more
than 50 non-redundant target sites. Most of these TE fam-
ilies exhibited narrow TSD length distributions (Supple-
mentary Figure S6). Strikingly, TEs in the same super-
family showed very similar TSD length distributions (Fig-
ure 4a) except for DNA elements. TEs in most LTR/Gypsy
super-families showed 4-nt-long TSDs and nearly all TEs
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Figure 4. (a) Length distribution of TSDs (depletions) for TEs. The TEs are grouped according to families. Negative values on the x-axis denote the length
of target site depletions. (b) Dinucleotide composition around target sites. Each row is normalized and the Z-score for each entry is color coded with red
represents enrichment and blue represents depletion. (c) Sequence motifs for TE elements 1360, Tirant, Transpac and hopper.

in the LTR/Copia and LTR/Pao super-family produced
5-nt-long TSDs. This interesting pattern probably reflects
the evolutionary relationship among TEs, as integrases en-
coded by the TEs within the same super-family are more
likely to share similar sequences and functional features
(33,34). LINE elements had much longer TSDs and much
broader TSD distributions compared with other retro-
transposon super-families (Figure 4a), which is consistent
with previous findings about the L1 element in the human
genome (35,36).

We also discovered that the genomic sequences around
predicted insertion junctions (±15 nt) of many TEs are AT
rich, with the AT and TA dinucleotides being most preva-
lent (Figure 4b). The enriched sequence motif around the
junctions is a simple dinucleotide repeat for many TEs (Sup-
plementary Table S8), which is consistent with the mono-
and dinucleotide composition analysis. As exceptions, we
detected high-information-content motifs around the inser-
tion sites of the hopper, 1360, Tirant and Transpac elements,
suggesting that their integrases or transposases may possess
sequence specificity (Figure 4c).

TE transposition is one of the main sources of genomic
variability. Relating transposition polymorphisms to varia-
tions at phenotypic and molecular levels is crucial for un-

derstanding how transposition shapes the genomic land-
scape and contributes to evolution (37–39). By integrating
RNA-seq data for three DGRP lines with their respective
genomic sequencing data, we searched for TE insertions
that are likely to affect gene expression. More specifically,
we looked for insertions that were in the promoter region
or the gene body for which expression level of the affected
gene changed by more than 2-fold. We identified 48 inser-
tions that were associated with changes in gene expression.
For example, nrm encodes a protein important for synap-
tic target recognition, and a P-element insertion at the pro-
moter of nrm that is unique to strain RAL-517 is associated
with a more than 3-fold increase in nrm expression (Fig-
ure 5a and b). Crosses with a strain showing lower expres-
sion produced progeny with intermediate expression levels,
strongly suggesting that increased expression is inherited in
the F1 generation (Figure 5b). The correlation between TE
insertion and altered gene expression suggests a causal rela-
tionship, although other background variants can also con-
tribute to the change in expression. Using TEMP to detect
TE insertions and estimate their frequencies genome-wide,
users will be able to correlate transposition polymorphisms
with phenotypes and biological processes and identify can-
didate sites for experimental validation.
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Figure 5. (a) Distribution of unique TE insertions of three DGRP strains in a region of chromosome arm 3L. The heights of the bars are proportional to
the estimated population frequencies. The red bar in strain RAL-517 near 23Mb is a P-element insertion at the promoter of the nrm gene and its detailed
view is presented in (b). (b) A P-element insertion at the promoter regions of the nrm gene in strain RAL-517 is correlated with a 3.65-fold increase in its
expression level. The bar plot shows the expression level of nrm in the three lines as well as the four F1 progeny samples. The expression of nrm is higher
for the progeny populations of RAL-517 (purple bars) than the progeny produced by crossing the other two strains.

DISCUSSION

Transposition of TEs is a widespread phenomenon that
destabilizes the genome, but may also produce beneficial ge-
netic diversity. The rapid development of high-throughput
sequencing techniques offers unprecedented opportunities
for detecting TE transpositions in a variety of samples. We
described TEMP, an algorithm that can detect TE insertion
and absence, pinpoint their junctions with genomic DNA
at base pair resolution and estimate their frequencies in the

population. Our analysis on both simulated and biological
datasets demonstrates that TEMP is a reliable and useful
tool for studying TE transpositions at both population and
molecular levels and can be applied to a wide variety of
datasets to accomplish quantitative analysis and generate
testable hypotheses.

One limitation of TEMP is that it requires a curated li-
brary of transposon consensus sequences, namely the Rep-
Base (40), and cannot identify transposition events de novo.
Thus for a newly sequenced genome, one first needs to ap-
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ply de novo repeat identification algorithms such as RECON
(41) or RepeatScout (42) to build a library of transposon
consensus sequences, before one can use TEMP to identify
the presence and absence of these transposons in popula-
tions of the same species. One idea that may aid such an
analysis is to perform de novo assembly of the reads of the
test population that do not map to the reference genome.
This may yield longer sequences which, once aligned back
to the reference genome, can reveal insertion or deletion
junctions. Instead of transposon consensus sequences, the
PoPoolationTE algorithm uses a database of many diverged
sequences for each TE family. PoPoolationTE therefore may
have a higher sensitivity than TEMP with detecting highly
diverged TE copies.

The ability of TEMP to detect insertions genome wide
and identify junctions at base pair resolution for thousands
of sites enabled us to better understand the molecular mech-
anisms of TE integration. Linheiro and Bergman examined
TSD lengths and target site motifs on 166 DGRP datasets
(34). Among the 25 TEs whose TSD lengths were reported
in both studies, 19 of them had exactly the same TSD length
(Supplementary Table S9). Linheiro and Bergman treated
paired-end sequencing data as independent reads and used
only junction-spanning reads to identify TE insertion tar-
get sites, possibly restricting the sensitivity of their method.
Indeed, for each of the six TEs that the two studies dis-
agreed, Linheiro and Bergman identified fewer than 20 non-
redundant insertion sites, while we identified 50 or more
sites. We also compared the target site motifs identified in
the two studies and they mostly agree.

Transposition is proposed to produce both beneficial and
deleterious changes in genome organization. To determine
the utility of TEMP in defining the molecular consequences
of transposon insertion, we applied TEMP to analyze dys-
genic hybrids as well as 53 strains derived from independent
wild populations of Drosophila and identified over 14 000
high frequency insertions at base pair resolution. Analysis
of RNA-seq data from three of these strains, and the F1
progeny of inter-strain crosses, showed that many of these
insertions were linked to heritable changes in gene expres-
sion (Figure 5b). These findings raise the possibility that
strain-specific transposon insertions that modify gene ex-
pression can sweep through populations, perhaps because
they provide a reproductive benefit. This can be directly
tested by crossing strains and following the inheritance pat-
terns of specific insertions using TEMP and measuring gene
expression using RNA sequencing.

Our analysis of hybrid dysgenesis shows that transposi-
tion can also alter expression of small non-coding RNAs.
Transposons are silenced by piRNAs that are deposited in
the oocyte. In the early embryo, the piRNA pool is there-
fore derived exclusively from the maternal genome. Hybrid
dysgenesis is triggered during crosses in which the sperm
carries a transposon that is not represented in the mater-
nal genome. Transposon activation in the hybrid germline
leads to adult female sterility. We previously showed that
paternal introduction of P-element transposons activated
both the invading P-element and resident transposons that
were shared by the maternal and paternal genomes. Re-
markably, the dysgenic F1 females regained fertility with
age, as they silenced P-element and resident elements. Fur-

thermore, we demonstrated that this was linked to accumu-
lation of new transposon insertions (i.e. not in either of the
parental genomes) in the heterochromatic clusters that pro-
duced piRNAs, and that these insertions were the source
of novel piRNAs that appeared to enhance silencing. Here,
we used TEMP to estimate the frequencies of existing TE
insertions in parental and progeny populations, and found
that TE insertions within piRNA clusters were under pos-
itive selection in F1 dysgenic females. This finding, along
with our earlier study, indicates that both de novo and in-
herited transposon insertions into piRNA clusters are un-
der positive selection in dysgenic hybrids, where they appear
to enhance silencing by promoting piRNA production.

Our studies thus show that transposition can alter both
coding and non-coding RNA expression, and suggest that
these modifications can generate beneficial genetic varia-
tion. The paradigm of sequencing parental and progeny
populations, estimating the population frequencies of the
transposition polymorphisms with TEMP and then identi-
fying potentially selected polymorphisms can be applied to
a wide range of systems to study the inheritance of transpo-
sition polymorphisms and their biological consequences.
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