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Abstract

Genetic studies of human traits have revolutionized our understanding of the
variation between individuals, and yet, the genetics of most traits is still poorly
understood. In this review, we highlight the major open problems that need to be
solved, and by discussing these challenges provide a primer to the field. We cover
general issues such as population structure, epistasis and gene-environment
interactions, data-related issues such as ancestry diversity and rare genetic variants,
and specific challenges related to heritability estimates, genetic association studies,
and polygenic risk scores. We emphasize the interconnectedness of these problems
and suggest promising avenues to address them.
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Preface
Since the days of Gregor Mendel and his series of pea plant experiments in the middle

of the 19th century, a key motivation of genetic research, perhaps the leading motiv-

ation, has been to understand the link between genotype and phenotype. When the hu-

man genome project was declared complete in 2003, hopes were high for a full

understanding of human genetics and its effects on human traits. The idea to genotype

large cohorts of individuals and, through simple statistical tests, compiling an atlas

mapping between genes and human traits—be it diabetes, schizophrenia, or height—

had been around for quite some time [1]. But excitement rapidly shifted to disappoint-

ment, as efforts to find the genetic variation underlying complex human diseases ended

up explaining only a small fraction of the phenotypic variance [2].

Almost two decades later, with millions of individuals genotyped across thousands of

genome-wide association studies, it is now well acknowledged that things are not that

simple. But it is worth asking, why are they not, actually? Why have not we mapped

most of the genetic variation underlying human traits, and why are we still unable to

make accurate individual phenotypic predictions from genetic data? What are the con-

crete problems we are now facing, and what bottlenecks are slowing us down and
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preventing genetic research from unlocking its full potential? Asking these questions

and attempting to answer them will allow us to make more effective progress and even-

tually achieve the field’s long-term potential.

Scope
The domain of knowledge we are dealing with, mapping and understanding the genetic

variation underlying human phenotypic variation, is a huge area of scientific inquiry.

Among its main subdomains are as follows: (i) genetic association studies, which seek

causal links between genetic elements and human traits [2–4], (ii) polygenic risk scores,

which aim to predict traits from genetics [5], and (iii) heritability estimates, which esti-

mate the fraction of a trait’s variance that is due to genetic variation [6].

The primary applications of these research activities are twofold: (i) obtaining insight

into the biological mechanism at the molecular and cellular level underlying the disease

or trait under study, and (ii) making informed predictions that can be clinically useful,

even in the absence of knowledge about mechanism or causality. Even if we do not

understand why an individual is at high risk for heart disease, it is still useful to know

that they are at such risk, especially if we can reliably quantify it [7].

This review only deals with open problems directly related to the interface between

genetics and human traits. Topics related to genetics but not to phenotypic variation in

present-day humans (such as functional elements in the human genome, or questions

of evolution, conservation, and fitness) are out of our main focus. We also do not dis-

cuss methods that use genetics only as an instrument to study relationships between

traits, such as Mendelian Randomization (which attempts to find out through genetic

evidence whether one trait affects another, for example whether high cholesterol levels

increase the risk for heart disease) [8]. Likewise, we do not delve into technical aspects

of genotyping and sequencing (including variant calling and quality control) and cancer

genomics (i.e., the study of somatic mutations in tumors). Also outside of our main

focus are gene expression, epigenetics, and other omics.

It is common to distinguish between Mendelian and complex traits. Mendelian traits

are traits that follow Mendel’s laws of inheritance, in particular the law dictating pure

dominant or recessive inheritance with high penetrance. A Mendelian trait is typically

linked to a single gene (sometimes a handful of genes), and it tends to be deterministic-

ally determined by genetics alone. Non-Mendelian traits, known as complex traits,

show the opposite characteristics: they are typically influenced by variants across nu-

merous (sometimes thousands) genomic loci, each with limited effect, and they typically

exhibit substantial environmental effects and tend to be nondeterministic. While we

generally understand the genetics of Mendelian traits [9], the study of complex traits

still poses many challenges.

This review primarily focuses on analytical challenges in studying the genetics of

complex human traits. Because we are interested in methodology, we mention specific

traits only as examples and illustrations of general trends, and while we focus on

humans, it is useful at times to gain insight from the study of other organisms.

A list of open problems
The tradition of publishing “open problems” is borrowed from the mathematical disci-

plines, where the explicit discussion of major open challenges has a great role in
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prioritizing work, sub-branching, and otherwise advancing these fields. This review is

an attempt to map concrete and solvable open problems related to the genetics of

human traits.

Altogether, we have identified 16 major open problems which we consider important

to the field (Table 1). Since these open problems are highly interconnected, we go

through them in the remainder of this review by thematic topics (rather than by the

categorical ordering in Table 1).

Genetic association studies and their limitations
Genome-wide association study (GWAS) [2–4] is the most common type of genetic

study. The idea behind GWAS is straightforward: independently examine each geno-

typed variant in the genome, and test it for statistical association with the studied

phenotype. To minimize confounding by non-genetic factors (such as age), statistical

testing is typically done with variations of linear or logistic regression (depending on

whether the studied trait is continuous or binary, respectively). The main strengths of

GWAS are its simplicity and generality. Since the method makes almost no assump-

tions about the nature of associations and their biological basis, GWAS can in principle

identify any genetic association, provided a sufficiently large cohort. There are, how-

ever, certain obstacles limiting one from inferring a causal link in the face of a signifi-

cant GWAS association. The main issues specific to genetic studies are population

structure and linkage disequilibrium

Population structure

The phrase “correlation does not imply causation” needs no rehearsing. In the case of

genetics, traits only rarely affect genetics (e.g., through assortative mating [20]). This

means that if we seek to draw a causal genotype-to-phenotype link based on a statistical

association, our primary concern is confounding, namely the existence of other vari-

ables affecting both an individual’s genetics and the trait (there is also the less trivial

concern of collider bias, which we address later). Specifically, we know that an individ-

ual’s genetics is determined by the genetics of their parents. It follows that the precise

family and ancestry of an individual (generally simply referred to as their “population”

or “ancestry”) is a suspect confounder for any genetic association, as it affects the envir-

onment which an individual is born into (e.g., weather, nutrition) and, as a result, can

affect the studied trait (Fig. 1A) [21].

To avoid spurious associations, genetic studies must account for population structure.

The most common method for that is principal component analysis (PCA) [11]. It was

shown that accounting for the 5–40 top principal components of genetic variation in a

cohort (by including them as additional covariates in the regression analysis) can elim-

inate spurious results due to population structure. More principled guidelines for which

principal components should be included have also been suggested [22]. Additionally, it

is a common practice to split cohorts by self-reported ethnic identities [14]. Another

class of commonly used methods are linear mixed models, which can control for even

more nuanced population structure [23, 24].

While it is crucial to account for population structure, overcorrection could lead to

reduction of statistical and predictive power, and to underestimation of the role of
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Table 1 Open problems

Category # Open
problem

Brief explanation Why it is important Related
open
problems

Selected
references

General 1 Population
structure

Genetic studies are
confounded by the
ancestries of
participants. Mounting
evidence points
towards residual
population structure
not accounted for,
while overcorrection
can obscure genuine
genetic signal.

Without resolving this, it
will be difficult to trust
the results of genetic
studies.

4, 6, 7, 12,
16

[10, 11]

2 Non-additive
and epistatic
genetic
effects (GxG)

The assumption that
phenotypes can be
approximated by
summing separate
genetic effects is
ubiquitous in genetic
studies. If incorrect, this
could undermine many
results. Also, how do we
identify and quantify
epistatic effects?

Our ultimate goal is an
accurate genetic model
of human traits, linear
or not.

11, 14

3 Gene-
environment
interactions
(GxE)

Genetic effects may be
contingent on
environmental
conditions. Such
interactions are difficult
to discover, and their
overall contribution to
phenotypic variance is
not clear. Substantial
GxE interactions would
also undermine many
methods.

GxE interactions are
potentially an important
piece in the genetic
puzzle, which can
highlight the
mechanism of genetic
associations and inform
interventions.

11, 13 [12]

Data 4 Rare variants Most genetic studies of
complex traits deal only
with common variants,
even though the
strongest effects are
expected in rare
variants. In aggregate,
they may contribute
substantially to
heritability. Key
challenges are lack of
statistical power and
genotyping.

Rare variants may be
important to many
complex traits.
Neglecting them would
leave us with an
incomplete
understanding of the
genetic variation
underlying these traits.

1, 5, 11

5 Non-standard
genetic
variation

Routine pipelines are
optimized for simple
variants (i.e., single-
nucleotide variants and
small indels), while
commonly overlooking
more complex genetic
variation, including
structural variants, copy
number variation, re-
petitive regions and var-
iants on the X, Y or MT
chromosomes.

These types of variants
contribute substantially
to many traits.

4, 11

6 Family-based
vs.
population-
based

Family-based study
designs naturally
overcome many
challenges of cohort

Family-based genetic
data could play an
important role in
studying genetic effects,

1, 12 [13]
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Table 1 Open problems (Continued)

Category # Open
problem

Brief explanation Why it is important Related
open
problems

Selected
references

cohorts studies, specifically with
respect to population
structure, environmental
biases, and direct vs.
indirect genetic effects.
However, family-based
genetic resources are
scarce, and there are
not enough methods to
analyze them.

especially when
causality is sought.

7 Ancestry
diversity

Individuals of non-
European ancestry are
heavily underrepre-
sented in genetic data-
sets, leading to
inequality in access to
medical knowledge.
More diversity would
also help deal with
population structure
and establish the caus-
ality of genetic
associations.

We are interested in
understanding the
genetics of all of
humanity, and we
cannot afford to discard
such a powerful tool.

1, 12, 16 [14]

8 Phenotype
definition

Studied traits are often
not entirely well
defined, and there is
often a lot of noise in
the phenotyping
process (mostly with
respect to binary
phenotypes).

Noisy and biased data
hinders our progress.

[15]

9 Selection bias Genetic associations
may reflect people’s
decision to participate
rather than the studied
phenotype.

This is potentially a
major source of bias.

Heritability 10 Heritability
estimate
interpretation

It is not entirely clear
what the “correct” way
to define and measure
heritability is and how
heritability estimates
should be interpreted.
For example, do they
provide an upper
bound on the
predictive power of
polygenic risk scores?

Heritability estimates
provide a lot of insight
and guide our progress,
and they could be even
more useful if we
reached a consensus on
what they mean exactly.

11, 14

11 Missing
heritability

This is a classic
problem, asking why
detected associations
explain only a small
part of the heritability in
most complex traits,
and why there is a large
gap between
heritability estimates
obtained from SNP-
based and twin-based
methods. Despite a lot
of progress in suggest-
ing solutions and col-
lecting evidence, the
problem is still not fully
resolved.

As long as this is not
fully resolved, there are
lingering doubts that
our understanding of
genetic effects is flawed
in some fundamental
way.

2, 3, 4, 5,
10, 14

[16, 17]
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genetics in traits. Focusing on homogenous ancestry groups also underplays the poten-

tial genetic basis of phenotypic differences between groups and excludes a large propor-

tion of humans with more complex ancestries.

Despite the capacity of existing methods to account for most of the phenotypic vari-

ance that is due to population structure, there are increasing concerns that residual

population structure can still lead to spurious associations, especially with very large

cohorts that are now emerging (open problem #1: population structure; Fig. 1B) [10].

For example, unaccounted population structure led researchers to mistakenly conclude

that height-associated genetic variants were under selection in the European population

[25]. It is still not fully understood how residual population structure affects the results

of GWAS and polygenic risk scores. More research is also needed for establishing new

Table 1 Open problems (Continued)

Category # Open
problem

Brief explanation Why it is important Related
open
problems

Selected
references

Association
studies

12 From
association to
causality

Most genetic
associations implicate
entire genomic regions,
and it is considered a
hard problem to
pinpoint the exact
causal variants. It is also
important to rule out
confounding and other
statistical biases.

If we want to learn from
genetic associations, we
need to be able to
detect causal variants
and genes.

1, 6, 7 [18]

13 From
causality to
mechanism

Even after the causality
of genetic elements is
established,
understanding the
molecular mechanisms
behind them is a grand
challenge. To date, only
a very small fraction of
genetic discoveries are
understood at that
level.

Without understanding
the mechanism of
genetic associations,
they provide only
limited biological and
medical insight.

3

Polygenic
risk scores

14 Genotype-to-
phenotype
prediction
performance

Our ability to make
accurate phenotypic
predictions from
genetic data is still very
limited, even in highly
heritable traits. Other
than increasing sample
sizes, we do not have
very effective strategies
to improve predictions.

Accurate genotype-to-
phenotype predictions
have an enormous clin-
ical potential.

2, 10, 11,
15

[5]

15 The clinical
utility of
polygenic
risk scores

The use of polygenic
risk scores in the clinics
remains quite limited.
To be clinically useful,
predictive models need
to be proven robust
and reliable.

If successfully
implemented in the
clinics, these models
have the potential to
revolutionize healthcare
and usher in the era of
personalized medicine.

14, 16 [7, 19]

16 Model
transferability

Polygenic risk scores
trained in one setting
generally do not
generalize well to other
settings, including
different ancestries or
genotyping
technologies.

This is critical for
ensuring the robustness
of these models and
allow them to be used
in the clinics, and for
their fruits to benefit all
groups.

1, 7, 15
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methods and practices to address the problem. Two strategies seem particularly prom-

ising: (i) studying more diverse populations (especially non-Europeans) and (ii) using

family-based designs for genetic studies.

The absence of diversity in genetic studies is hard to overemphasize (open problem

#7: ancestry diversity). Individuals of European ancestry are overwhelmingly overrepre-

sented in contemporary cohorts and, as a result, most published results do not directly

transfer to other ancestry groups [26]. The immediate implication is that many of the

benefits of genetic studies are of little benefit to most of the world’s population. More-

over, studies that are constrained to only one ancestry group may suffer from residual

population structure driven by subpopulations of that ancestry group (e.g., across dif-

ferent geographic regions in Europe) [10]. Hence, ancestry diversity is also an incredibly

powerful strategy for avoiding spurious associations driven by population structure

[14]. The reason is that, while it is entirely possible for a variant to be spuriously corre-

lated with a trait within one ancestry group due to specific subpopulations, it is unlikely

to observe the same trend in an entirely different ancestry group. Thus, the replication

of a genetic association across multiple ancestries is strong evidence for causality. In

addition to more diverse datasets and increased awareness by researchers, there is also

need for better analytical methods for robust analysis of cross-ancestry cohorts [14].

Another promising strategy to account for population structure is family-based stud-

ies [13]. As an illustration, consider the case of trios, where the two parents of each

studied individual are also genotyped. When testing an autosomal variant, one can

focus on trios where at least one of the parents is heterozygous for the tested variant.

According to Mendel’s laws of heredity, the child is then expected to have exactly 50%

chance of inheriting the variant from that parent and, crucially, this happens completely

at random. By testing the fraction of transmitted variants among cases and controls (or,

Fig. 1 Population structure confounds human genetic studies. A The population that an individual is born
into influences their genetics and their environment, which are the two components affecting traits. As a
result, genetic associations with human traits are confounded by population structure. B Even when
considering a specific human group and controlling for the major axes of genetic variation in a cohort, the
allele frequency of some variants can still vary across populations and exhibit clear geographic patterns, a
problem known as “residual population structure”
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in the case of a continuous phenotype, the correlation between the phenotype and the

frequency of transmitted variants), one can establish a robust association. Since Men-

delian transmission is random, once the parents’ genetics is accounted for, this study

design avoids the problem of population structure altogether. Like trios, more complex

family structures can also be utilized in similar ways [13]. On the downside, families

are harder to recruit than unrelated individuals. In addition, each trio comprises only a

single datapoint, meaning that the effective sample size is only a third of the number of

genotyped individuals.

While these days family-based studies are mostly used in the context of Mendelian traits,

we argue that they should play a greater role in the study of complex traits [17, 27]. It is be-

coming increasingly evident that certain questions in human genetics can be decisively an-

swered only through this study design (Table 1). Accessible resources with an abundance of

related individuals, on the scale of contemporary large-scale biobanks [28, 29], with rich

genotypic and phenotypic data, could be a major force advancing the field. Unfortunately,

such resources are still scarce (open problem #6: family-based vs. population-based cohorts).

Contemporary family cohorts are not easily accessible and are typically restricted to specific

phenotypes (e.g., [30]). Also, methods combining and extracting signal from both family-

and population-based data could be highly beneficial to the field. For example, an analysis

of individuals from the UK Biobank, some of which are family relatives, showed an increase

in statistical power compared to a filtered dataset of unrelated individuals (beyond the in-

crease attributed to the larger sample size) [31].

Linkage disequilibrium and the pursuit of causal variants

Linkage disequilibrium (LD) is the phenomenon that, due to inheritance through hom-

ologous recombination, individuals with a specific allele of one variant are likely to have

a specific allele of a neighboring variant. A combination of multiple alleles that appear

together in an individual across neighboring variants in a genomic region is often re-

ferred to as a haplotype. The resulting LD structure of correlated variants and haplo-

types has profound implications for genetic studies [3].

In some ways, the phenomenon of LD is quite convenient. LD allows genotype im-

putation, namely the deduction of an individual’s genotype across a large set of genetic

variants from a much smaller set of variants. Genotype imputation relies on haplotype

reference panels which provide the full haplotypes of a large cohort of individuals (e.g.,

32,488 individuals in the Haplotype Reference Consortium [32] or 97,256 in TOPMed

[33]). Like most genetic resources, haplotype reference panels and DNA microarrays

are still somewhat biased towards individuals of European ancestry (although improve-

ments have been made [33]). As a result, the genetic coverage and quality of genotype

imputation are typically lower for non-Europeans (open problem #7: ancestry diversity)

[14]. Additionally, the common use of external haplotype reference panels to account

for LD in published GWAS results (e.g., to conduct a meta-analysis) yields biased esti-

mates of the actual LD patterns in the original dataset and negatively affects down-

stream analysis [34]. Publishing the full pairwise LD matrices together with the rest of

the GWAS summary statistics could be a beneficial norm [35].

Due to LD, genetic variation has far fewer degrees of freedom than would naively be

assumed by the total number of variants in the human genome. Because of that,
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adjusting the p-values that are independently derived for each tested variant in GWAS

using Bonferroni correction would be too conservative. Instead, it is assumed that the

LD structure in human is such that an individual’s genotype has roughly 1M degrees of

freedom, meaning a genome-wide significance threshold of 5E−08 (or an exome-wide

significance threshold of 5E−07, derived from roughly 100K degrees of freedom). While

these thresholds are the norm in genetic studies, more stringent cutoffs have been rec-

ommended under certain conditions [36].

A negative consequence of LD is its obscuring of causal variants. Even when a gen-

omic locus is robustly established as causally linked to a phenotype, it is very difficult

to tell with certainty which of the variants in that locus are behind that causal link, a

task known as fine-mapping (Fig. 2A). Numerous fine-mapping methods have been de-

veloped [34, 37–39]. These methods often appeal to Bayesian reasoning and rely on

functional genomic annotations, under the assumption that causal variants are more

likely to be located in functional sites of the genome. Despite these efforts and the great

progress made, it is still an open problem how to establish the causality of a variant or

a gene with certainty (open problem #12: from association to causality). In addition to

method development, there is much room for the formalization of standards for estab-

lishing causality for research or clinical purposes [40].

Cross-ancestry genetic studies can be very useful for fine-mapping, in a similar way

to their utility in dealing with population structure (open problem #7: ancestry diver-

sity). Since different populations show different LD structures, a cross-ancestry meta-

analysis will generally point at a much smaller set of candidate causal variants within a

genomic region (Fig. 2B) [4, 14, 37]. However, if a genetic effect is unique to a specific

population (e.g., due to interactions with other genetic or environmental factors),

cross-ancestry analysis will not fine-map it effectively.

Another useful approach to pinning down the causal elements underlying genetic as-

sociations is to abandon the pursuit of specific variants and shift our attention to larger

elements of the genome such as genes and pathways. Gene-based methods have be-

come increasingly popular in recent years [41–45]. For example, there are methods de-

tecting genes that are affected by variants influencing their expression to different

levels in diseased cases compared to healthy controls [43, 44]. Among the merits of

Fig. 2 Identifying causal variants in the presence of linkage disequilibrium. A A single causal variant is in
linkage disequilibrium with other nearby variants. As a result, variants that are correlated with the causal
variant also obtain significant p-values even though they are not causal. B Combining GWAS summary
statistics from three different ancestry groups, each exhibiting a different linkage disequilibrium pattern, to
fine-map the results. By assuming that only one of the variants is causal, it can be recovered with
high confidence
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gene-based methods are reduced burden of multiple testing, easier interpretation of as-

sociations, and the ability to aggregate signal spread across many variants. If distinct

variants that are not in LD perturb the same gene (e.g., change its coding sequence or

expression level) and are associated with the same trait, then this could comprise an

overall stronger evidence for the causality of that gene. However, gene-based ap-

proaches are still susceptible to LD; it is possible that signal from nearby variants would

leak into variants affecting the gene. Moreover, even in the absence of LD, the expres-

sion of genes is often correlated, meaning that the association between the phenotype

and the expression of a causal gene could leak into other genes. Gene-based methods

are also sensitive to modeling assumptions and the specific details of how they aggre-

gate the signal spread across variants.

An important factor limiting our progress towards established standards for causality

is the shortage of confirmed, experimentally validated causal variants that can be used

as a gold standard for validation and evaluation of methods. As a result, evaluation of

methods in the field is typically based on computational simulations (which are sensi-

tive to modeling assumptions). In addition to empirical benchmarks, the research of

causal variants could benefit from well-designed competitions (similar to the competi-

tions held by the protein research [46, 47] and genome interpretation [48]

communities).

Direct vs. indirect effects

Even when a variant or a gene is proven causal, its phenotypic effect might be indirect.

Direct genetic effects influence traits within the individuals who carry the causal alleles,

while indirect genetic effects influence their relatives. Important types of indirect gen-

etic effects include (i) parental effects (that influence traits in children through their

parents), (ii) assortative mating (i.e., influences on mate choices, which in turn can lead

to further parental effects), and (iii) sibling effects (which may also influence traits

through the environment). While both direct and indirect genetic effects are causal, the

distinction between them is often crucial. For example, when seeking drug targets to

treat afflicted individuals, only direct genetic effects are expected to be relevant. Com-

mon analytical methods such as GWAS do not distinguish between direct and indirect

genetic effects, and it is still very much an open challenge to effectively dissect the two.

Family-based studies that control for parental genotypes, on the other hand, in addition

to being useful for separating causal from confounding effects, can be used to further

separate causal effects into direct and indirect effects (open problem #6: family-based

vs. population-based cohorts) [18].

From causality to mechanism

Even among genetic effects for which causality is established, only a small fraction have

a known, well-established biological mechanism (open problem #13: from causality to

mechanism) [49, 50]. As most causal variants are in non-coding regions and exert weak

effects, it is challenging to understand how they affect traits [4]. Without understanding

how a variant affects a disease, it is of little use in providing biological insight on its eti-

ology and progression.
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At the beginning of the GWAS era, researchers were struggling to identify robust as-

sociations. It appears that nowadays we have the opposite problem: we are flooded with

hundreds of thousands of genetic associations that we do not really know what to make

of [4]. It was actually suggested that many complex traits are not only polygenic (i.e.,

genetically driven by many genes), but could in fact be considered omnigenic, namely

that they are affected by most of the genes in the genome [51]. While the term has also

been used with reference to a specific mechanistic model suggested for such extreme

polygenicity, here we use “omnigenic” simply to refer to extremely polygenic traits, irre-

spective of the mechanism. For example, it was estimated that more than 71% of the 1

Mbp regions in the human genome contain at least one schizophrenia risk variant [52].

In such cases, additional mapping of genomic loci associated with omnigenic traits,

without considering other factors (such as effect sizes), is not expected to substantially

contribute to our understanding of mechanism.

One limitation in establishing causality and discerning mechanism that is specific to

human genetics is our inability to run controlled experiments, which are an indispens-

able tool in plants and animals. There are however several strategies to utilize experi-

mental methods in human genetic studies. One approach is to validate human genetic

associations in other model organisms (e.g., by knocking out a homologous gene and

observing the phenotypic effects on the animal). Another strategy is to look at cellular

and tissue phenotypes for which experiments can be conducted as a proxy for the stud-

ied phenotype (e.g., using primary culture, human cell lines, or induced stem cells). We

now possess high-throughput experimental methods that can not only functionally an-

notate fixed features of the genome (such as introns and promoters), but also detect

the variable effects of genetic variation. For example, Perturb-seq, a recently developed

method combining genetic perturbations with single-cell RNA sequencing, can detect

variants that causally affect gene expression [53, 54].

Using such experimental methods, we can observe the effects of genetic variants on

cells and postulate on the mechanism of their effects on human traits. Functional gen-

omic annotations derived from experiments (and curated in resources such as EN-

CODE [55], GTEx [56], or HCA [57]) are also useful for suggesting mechanistic

interpretations. Unfortunately, experimental methods are still dramatically more expen-

sive (in time, labor and money) than analytical methods. They also force additional de-

cisions such as which cell types to study. Moreover, as many complex diseases and

conditions are manifested at the organism level, without known cellular-level indica-

tors, cell-based methods could be inadequate. In light of these challenges, devising ex-

perimental and analytical strategies for finding or guiding the search for biological

mechanism would be of tremendous benefit.

The phenomenon of pleiotropy, where the same genetic factor affects multiple traits,

can also complicate the study and discussion around the mechanism of genetic effects.

For example, a variant may indirectly affect a trait through its influence on another trait

(not to be confused with indirect genetic effects on other individuals, as discussed in

the previous chapter) [58].

Polygenic risk scores: unfulfilled potential
Considering the limitations of GWAS and the fact that even variants that are proven

causal tend to exert only weak effects, raw GWAS results provide limited utility for
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predicting complex traits (e.g., to detect individuals who are at high risk of developing

type 2 diabetes). To make a meaningful prediction about a complex trait, one has to ag-

gregate the weak signals spread across many genomic regions. An analytical model ag-

gregating an individual’s genotype into an overall phenotypic prediction is called a

polygenic risk score (PRS) [5]. In essence, this can be seen as a machine-learning task:

training a model that takes an input x (one’s genotype, and optionally other variables)

and outputs a prediction y (the individual’s predicted trait value). It should be noted

that some define PRS as strictly linear models (which aggregate variants by multiplying

them with learned weights and summing the multiplication terms), but we prefer to de-

fine PRS more generally as any genotype-to-phenotype predictive model.

PRS can be trained in various ways. Given a sufficiently large cohort of genotyped

and phenotyped individuals, one can train a PRS from scratch using standard machine-

learning algorithms on individual-level data. More commonly, summary statistics of

published GWAS results are meta-analyzed into a linear model [5].

Accurate and reliable PRS have the potential to transform healthcare. Many common

diseases (including metabolic, psychiatric, autoimmune, and cardiovascular diseases)

have a very substantial genetic component [59]. Knowing that individuals are at ele-

vated or reduced risk for a specific disease could prioritize screening and follow-ups,

guide diagnosis, and inform medical interventions [7]. Unlike most clinical factors, gen-

etic factors do not change throughout one’s lifespan (although their interactions with

environmental factors may). It follows that a person’s genetics needs to be measured

only once, and potentially provide many different PRS (for multiple traits) simultan-

eously. PRS could even update automatically as models improve.

However, despite over a decade of refining models with exponentially increasing co-

hort sizes, the predictive power of most PRS is still quite poor (open problem #14:

genotype-to-phenotype prediction performance). While there has been some success in

genetic prediction of specific phenotypes (such as height [60]), most diseases and clinic-

ally relevant traits are still far from the full potential of genetics-based risk assessment;

the phenotypic variance explained by existing models is only a small fraction of the trait

heritability, and most models do not reach clinical relevance [7]. Many of the potential

reasons for the unsatisfying performance of PRS are linked to the question of missing

heritability and to questions surrounding nonlinear genetic effects, which are addressed

later. It remains an open question whether better methodology would allow us to sub-

stantially improve PRS performance without larger cohorts. A useful practical approach

to improving PRS performance is to incorporate clinical factors into the predictive

models on top of genetic markers (e.g., using body mass index and birth weight to im-

prove type-2-diabetes PRS [61]). However, as of today, PRS-based risk assessment gen-

erally provides only marginal benefit on top of clinical predictors already used.

Another problem with PRS is in their capacity to generalize from the cohort they

have been trained on to other settings, including different populations and genotyping

technologies (open problem #16: model transferability). This is one of the main barriers

for deploying these models in real-world clinical settings. In PRS, it is usually not ne-

cessary to pin down the causal variants (as non-causal variants that are only in LD with

the causal variants can provide the same predictive power), but this may negatively

affect model transferability due to population-specific LD patterns [19, 26]. Other dis-

similarities between populations that can limit model generalization include differences
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in allele frequencies or effect sizes, or different interactions of the genetic effects with en-

vironment or other genetic factors. Like with many other problems in genetic research,

here too it is extraordinarily helpful to use cross-ancestry data when training or fine-

tuning PRS (open problem #7: ancestry diversity) [14]. When a PRS is transferred from

one dataset to another, even when both are in principle of the same population, substan-

tial declines in performance are still common [62]. The instability of PRS is often attrib-

uted to batch effects and to differences in genotyping technologies across datasets, but we

still lack a good understanding of the reasons for these sensitivities. Even within the same

dataset and ancestry group, prediction accuracy can vary based on characteristics such as

sex, age, or socioeconomic status [63]. At present, we do not have a good theoretical

framework estimating how much accuracy loss we should expect when transferring PRS

between settings. Even more importantly, there is a great need of methods and strategies

that would make PRS more robust and reliable. Such strategies could include adjustment

and calibration of models to new settings, or training them to be more robust in the first

place. Perhaps the ongoing revolution of causal inference could play a role in training PRS

that capture causal signals instead of merely statistical associations which, in addition to

many other benefits, would be more robust [64].

Genetics in the clinics: are we there yet?
Genetic tests are routinely used in many clinical settings, including parental screening,

diagnosis of children with developmental disorders, and drug prescription [40, 65]. To

diagnose Mendelian traits, genetic counselors look for pathogenic variants that explain

the observed phenotype and clinical history of the patient. However, a known variant

with affirmed pathogenicity is not always found. For example, the Mendelian disease

could be the result of a rare or de novo variant not previously reported. In the absence

of conclusive pathogenic variants, genetic counselors may resort to more circumstantial

evidence, such as the predicted functional effects of variants based on computational al-

gorithms. The American College of Medical Genetics and Genomics recommends a

five-tier system of classification for variants relevant to Mendelian disease, based on the

strength of evidence supporting their role in the disease: (1) pathogenic, (2) likely

pathogenic, (3) uncertain significance, (4) likely benign, or (5) benign [40].

Another potential use of genetics is in drug prescription. Pharmacogenetics (some-

times referred to as pharmacogenomics) studies genetic variation underlying individual

response to medication, which could be used to predict (i) individual drug dose, (ii)

absence of response to a drug, or (iii) individuals at serious risk of toxicity if a drug is

prescribed. For example, it is now a routine clinical protocol to test for the HLA-B*57:

01 allele before prescribing the anti-HIV drug abacavir, which could lead to hypersensi-

tivity reactions in carriers of this allele. However, current uses of pharmacogenetics as

part of standard medical care are still limited to a small number of well-established

associations [65].

In contrast to its immense utility for Mendelian traits, genetics is rarely used as part

of routine clinical practice when dealing with complex traits. This is an enormous un-

fulfilled opportunity, since complex diseases comprise most of the burden of diseases

in developed countries, and there is a lot to gain from early intervention. The GWAS

literature reporting on over 200,000 genotype-phenotype associations is almost never

directly used by clinicians. Clinical practice calls for a much stronger burden of proof,
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and the weak effect sizes associated with most GWAS results do not generally justify

substantial deviations from routine medical care. Some exceptions exist, mostly related

to cancer predisposition (e.g., testing variants in BRCA1 and BRCA2 to screen for

breast and ovarian cancer [66]).

Unlike raw GWAS results, PRS have the potential to revolutionize healthcare. But, as

of today, PRS are not yet adopted in clinical settings in a meaningful scale [7, 19]. To

be accepted by the medical community, the clinical utility of PRS should first be estab-

lished (open problem #15: the clinical utility of polygenic risk scores). Part of the problem

is the aforementioned issues of PRS having, for the most part, limited predictive power

(open problem #14: genotype-to-phenotype prediction performance) and generalizability

(open problem #16: model transferability). On top of that, proving the reliability and

robustness of PRS-guided protocols over classic medical protocols is a complex process

which could require randomized-controlled trials. Expensive clinical trials are mostly re-

quired in cases where risky policy changes are attempted (for example, delaying mammo-

graphic screenings beyond the recommended age for low-risk women). When genetics is

only used to take extra precautions (for example, undergoing colonoscopy screening earl-

ier in life than would otherwise be recommended), there is usually no need for full clinical

trials, but health care providers would still want to see good evidence that the decision is

sensible and cost-effective. When considering the clinical utility of PRS, it should be kept

in mind that they need not provide clear predictions for all or even most individuals. Iden-

tifying a subset of individuals who are at elevated or reduced risk for disease is sufficient

in many settings [7]. Above all, PRS should be seen as a supplement, not replacement, for

traditional risk prediction models [19].

In the long run, genetic studies (and PRS in particular) could have additional clinical

applications, for example in screening human embryos for complex diseases or other

polygenic traits (which raises both ethical and practical concerns) [67, 68].

Heritability estimates and controversies
What is heritability and why is it important?

Human genetics literature is filled with estimates of heritability for various human traits

based on a variety of methods. For example, a recent study on the heritability of 551

complex traits (based on the UK Biobank) estimated height to be around 70% heritable

and fluid intelligence score around 25% in the white British population [59]. Another

study estimated the heritability of schizophrenia at 80% (based on the Nationwide

Danish Twin Register) [69]. But what do these numbers actually mean?

The heritability of a continuous trait is defined as the fraction of the trait’s variance

that is due to genetic variation [6]. Mathematically, it is defined as H2 =Var(G)/Var(P)

where Var(P) is the overall trait variance of the trait and Var(G) is the variance of the

genetic component of the trait. While this definition appears simple, it involves certain

assumptions and nuances that are easy to miss or misinterpret. First, this definition

does not naturally apply to binary traits. To define the heritability of a binary trait (e.g.,

schizophrenia), it is typically assumed that there exists a continuous liability score

underlying its manifestation (i.e., the trait manifests when the liability score is above a

certain threshold). The heritability of the binary trait is then defined as the heritability

of that latent continuous score [70]. Another important nuance is that heritability is
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(by definition) context-specific, and not a fundamental property of nature; it is defined

for a specific population in a specific time and place. For example, as societies become

wealthier, human height becomes less contingent on access to nutrition and, as a result,

it is expected that more of the variance would be the result of genetic differences. As a

result, we expect to see human height becoming more heritable. Another crucial ques-

tion about this definition (which we address later) is what exactly is meant by “the gen-

etic component of the trait” (G).

There are many motivations for estimating the heritability of a trait. Primarily, it is

very useful for guiding genetic research. For example, it could be used to anticipate the

theoretical limit of the performance of PRS, letting us know how far we are from a

complete analytical model of a trait’s genetic architecture. Likewise, heritability esti-

mates often provide justification for further genetic studies. From a clinical perspective,

it can inform family members of their risk to develop a disease diagnosed in their rela-

tives. Heritability sometimes also arises in the face of social questions. For example,

there is an ongoing debate in economy to what extent income inequality and social mo-

bility are determined by socioeconomic status at birth vs. immutable genetic factors (as

well as indirect effects from the genetics of the parents) [71]. Another motivation for

heritability estimates is simple curiosity: studies proclaiming to what extent variations

in different traits are due to genetics often attract the public’s attention.

Methods for estimating heritability

As alluded to, explicitly modeling the genetic component of a trait through PRS generally

provides only a weak signal. Therefore, estimating the variance of the genetic component

of a trait requires more sophisticated methods. There are many heritability estimation

methods. While they often involve complex mathematical analysis, the underlying

principle shared by all methods is straightforward: the more heritable a trait is, the more

we expect individuals who are genetically similar to also be phenotypically similar. By

making certain assumptions about the genetic architecture of the trait and analyzing the

association between genetic and phenotypic similarities, a trait’s heritability can be esti-

mated. There are three main categories of heritability estimation methods: (i) twin studies,

(ii) genomic relatedness, and (iii) family-based methods (Fig. 3). Each methodological cat-

egory is suited for distinct types of data, is subject to different assumptions, and has

unique strengths and weaknesses.

The classic method for estimating heritability is through twin studies (Fig. 3A) [72].

In such studies, monozygotic (identical) twins are compared to dizygotic (non-identical)

twins. If a trait is heritable, we expect monozygotic twins to be more phenotypically

similar than dizygotic twins. Knowing that monozygotic twins are 100% genetically

similar, whereas dizygotic twins have only 50% chance of having the same parental al-

lele transmitted to them (in variants that are heterozygous in one of the parents), Fal-

coner’s formula can be derived. The formula states that the heritability of the trait is

H2 = 2(rMZ − rDZ), where rMZ and rDZ are the phenotypic correlations between monozy-

gotic and dizygotic twins, respectively [73]. Notably, twin studies make the assumption

that monozygotic twins do not share a more similar environment than dizygotic twins.

It also assumes lack of genetic (GxG) and gene-environmental (GxE) interactions

(which we discuss later). The greatest strength of this method is that, unlike all other
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Fig. 3 Estimating heritability. Common methods for estimating the heritability of human traits. A In twin
studies, heritability is estimated by the degree to which monozygotic (identical) twins are more
phenotypically similar to each other than dizygotic (non-identical) twins. B In GREML, heritability is
estimated by comparing genetic and phenotypic similarities across pairs of unrelated individuals. C In
family-based methods, given a pair of individuals and their parents, the degree to which they are more
genetically similar than would be expected from their parents can be compared to their phenotypic
similarity to estimate the heritability of the trait
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methods, twin studies do not require genetic data at all, only phenotypic measure-

ments. For this reason, twin studies had provided heritability estimates long before gen-

etic sequencing became a viable technology.

A second class of methods for estimating heritability, which has become popular

since the era of GWAS, leverages genetic cohorts of unrelated individuals and includes

methods such as GREML (Genomic Relatedness Restricted Maximum Likelihood) and

LDSC (Linkage Disequilibrium Score Regression) [74]. GREML estimates heritability by

calculating and comparing all pairwise similarities between a cohort’s individuals with

respect to both genotype and phenotype (Fig. 3B). LDSC estimates heritability by relat-

ing the estimated effect sizes of variants to their LD scores (defined as the sum of a var-

iant’s squared correlations with all other variants). The more heritable a trait is and the

more a variant is in LD with other variants (and thus able to “borrow” signal from

them), the stronger effect sizes become (on expectation). LDSC has the advantage that

it requires only publicly available summary statistics. An important weakness of these

methods is their sensitivity to population structure and other environmental biases

[17]. As in GWAS, population structure is commonly accounted for in GREML and

LDSC by using the top principal components of genetic variation. However, there are

concerning indications that residual population structure could still bias their results

(open problem #1: population structure) [10, 17].

A third class of methods utilizes family-based data on genotyped relatives [75]. The

key idea here is to assess whether related individuals with greater than expected genetic

similarity also share a greater than expected phenotypic similarity (Fig. 3C). By ac-

counting for the genetics of parents, family-based methods are insensitive to most en-

vironmental biases undermining twin and cohort studies, including population

structure. The family-based approach also captures only direct genetic effects (unlike

cohort-based methods which also capture indirect effects) [18]. On the downside, it is

harder to obtain a sufficient number of samples required for accurate heritability esti-

mates (due to the difficulty of recruiting families).

Types of heritability

A crucial difference between heritability estimation methods is the type of heritability

they measure. Earlier we gave the definition of H2, known as the broad-sense heritabil-

ity. This is the type of heritability that twin studies presume to measure (although, as

we later discuss, genetic interactions and environmental biases can lead to overesti-

mation of the true heritability). Another type of heritability, known as the narrow-sense

heritability (denoted h2), reflects only the additive part of heritability, namely the part

that can be expressed as a linear combination of individual variant effects. Since the

genetic component of a trait could also include non-additive genetic effects, it generally

holds that h2 < H2.

Heritability estimation methods that rely on genotype data typically capture only the

additive genetic effects of the genotyped variants. This type of heritability is called the

SNP heritability (denoted h2SNP ), and it of course depends on the exact set of variants

used to estimate it. The question which variants are reflected by a heritability measure

(all variants or only a subset) is in principle orthogonal to the question what types of

effects are reflected (only additive or also non-additive). But in practice, commonly
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used methods either presume to measure the entire heritability (H2), as in the case of

twin studies, or only the additive component reflected by genotyped variants (h2SNP ), as

in the case of GREML and LDSC.

Interpreting heritability

In the presence of so many methods for estimating heritability, each defining heritabil-

ity somewhat differently and making specific assumptions about the genetic architec-

ture of human traits, there is an ongoing debate on which methods should be

considered the most reliable and how to interpret the numbers they produce (open

problem #10: heritability estimate interpretation). The problem is aggravated by the

sensitivity of the methods to modeling assumptions and the fact that different methods

often provide different estimates [75, 76], even for methods of the same family [77, 78].

For example, estimates of heritability may range from 45 to 80% for height, 23 to 57%

for total cholesterol levels, and 17 to 43% for educational attainment (i.e., number of

years of education), depending on the method and population studied (and whether

broad-sense or narrow-sense heritability is sought) [75].

As mentioned, one of the motivations to estimate heritability is getting a sense of

how much predictive power we can expect from PRS. But does it mean that a trait’s

heritability is an absolute upper bound on the performance of a PRS? Since heritability

estimation methods are never completely assumption-free, it would probably be a mis-

take to interpret these numbers as strict upper bounds that could never be exceeded.

Furthermore, population structure and indirect genetic effects may allow genetics to

capture phenotypic variance above H2. Rather than a strict upper bound, it is probably

more sensible to see heritability estimates as a crude assessment for the theoretical

limit of PRS, given our current knowledge.

The missing heritability problem

It was noticed early on that discovered genetic associations tended to explain only a

small fraction of the heritability of most complex traits. The phenomenon was named

“the missing heritability problem,” expressing confusion about where most of the herit-

ability was hiding [16]. Later, the focus of the problem has somewhat shifted, and now-

adays the term “missing heritability” more commonly refers to the gap between

heritability estimates from genotype and twin data [17]. Formally, it is generally the

case that h2PRS≪h2SNP≪h2twin , where h2SNP and h2twin are the heritability estimates obtained

from genotype- and twin-based methods, respectively, and h2PRS is the fraction of the

phenotypic variance explained by a concrete PRS. Both of these inequalities reflect pos-

sible gaps in our understanding of the genetics of human traits (open problem #11:

missing heritability). The first gap (h2PRS≪h2SNP ) is more easily explained by simple stat-

istical considerations, specifically the fact that many complex traits are highly polygenic

and involve mostly weak effects (or strong but rare effects), meaning we might not have

sufficient statistical power to capture the entire SNP heritability with GWAS and PRS

(although this may change with greater sample sizes). The second gap (h2SNP≪h2twin) ne-

cessarily reflects a failure of at least one of the two heritability estimation approaches

to capture the true (broad-sense) heritability H2.
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Some explanations for the h2SNP≪h2twin gap argue for overestimation of the true herit-

ability by twin studies, due to genetic interactions creating “phantom heritability” or

mistaking of the effects of greater environmental similarities between monozygotic

twins for genetic effects [17, 76]. Other theories argue for underestimation by SNP her-

itability. The most prominent of these theories sees rare, ungenotyped variants as the

main source of missing heritability. Other explanations point out that SNP heritability

could also be biased due to residual population structure [10, 17], environmental biases

[75], indirect genetic effects [18], and genetic interactions (discussed later).

Some go as far as arguing that the whole notions of heritability and missing heritabil-

ity are ill-posed and that these statistical models are based on too many assumptions to

be taken at face value [79]. Under this view, it could be more productive to forsake her-

itability estimates at this point (or at least to treat them as qualitative rather than quan-

titative assessments) and focus instead on improving predictions.

Rare variants

Perhaps the most discussed potential source of missing heritability is rare variants. Var-

iants exerting strong phenotypic effects are expected to be under intense selective pres-

sure, and therefore remain at low frequency. As a result, genetic effects on complex

traits are usually constrained to either common variants exerting weak effects or rare

variants with strong effects; both are statistically hard to detect and quantify.

After analyzing very large cohorts of whole-genome sequencing (which have only be-

come available in recent years), some argue that most of the heritability can now be ex-

plained and that the missing heritability problem should be considered resolved [80],

but this is still highly controversial [17] and some works argue that rare variants have

overall limited contribution to heritability [81]. In mice crossed from two inbred

strains, where the allele frequency of all variants becomes either 0/100% or close to

50% regardless of how rare they were in the original population (thereby breaking the

natural negative correlation between allele frequency and effect size), genetic associa-

tions were shown to explain a much larger fraction of the phenotypic variance, suggest-

ing that the overall contribution of rare variants might be substantial [82]. Whether or

not rare variants alone are the main source of missing heritability, by now there is a lot

of evidence that they play an important role in many complex traits [83]. Unfortunately,

genetic studies still rarely deal with rare variants, and there is shortage of whole-

genome and whole-exome sequencing cohorts that can capture them (open problem

#4: rare variants).

A key problem in dealing with rare variants is that sequencing is still considerably

more expensive than SNP-array genotyping, and reduction in sequencing costs has

stagnated in recent years [26]. As a result, there is a real trade-off between the quality

and quantity of genetic data, and it is not clear which of the two is more critical. The

recent release of hundreds of thousands of whole-exome and whole-genome sequences

by the UK Biobank [84], in addition to SNP-array genotypes over the same individuals,

could provide valuable insight into the cost-effectiveness of different types of genetic

data. Another problem is that even after a large cohort is fully sequenced, it is not en-

tirely clear how to interpret rare variants. Association studies and PRS typically require

variants to be frequent enough to accurately assess their effects. Dealing with rare
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variants may require more sophisticated methods that look beyond the statistical pat-

terns of specific variants. A promising class of methods is burden tests, which consider

the aggregated effects of multiple variants sharing the same gene or genomic locus

[41–45, 83]. Another approach to analyzing the effects of rare variants would be to le-

verage family studies [27]. Additional problems with rare variants are that they are

more sensitive to residual population structure [17] and quality control (as it is harder

to distinguish true variants from sequencing errors in the presence of limited data).

Non-additive genetic effects: oversight or non-issue?
The additive genetic model

Nearly all methods for studying the genetics of complex human traits, from GWAS to

PRS to heritability estimates, assume additivity in the effects of variants. The typical

additive model for a continuous trait is y = β1g1 +… + βkgk + ϵ, where y is an individual’s

phenotype value, g1, …, gk are the individual’s genotype values over k variants, β1, …, βk
are constant per-variant weights indicating the effect size of each of the k variants, and

ϵ is Gaussian noise (typically assumed to be independent across individuals) capturing

the remainder of the phenotype (including environmental, non-additive and random ef-

fects, as well as the genetic effects of unincluded variants). When dealing with a binary

or categorical trait (e.g., a disease diagnosis), the model is typically altered into P(y =

1) = σ(β1g1 +… + βkgk), where σ(x) = exp (x)/(exp(x) + 1) is the standard logistic function,

and P(y = 1) is the probability of the individual to have the trait. It is also common to

include in the model other covariates in addition to the genotype values, such as sex,

age, and the principal components of genetic variation (to account for population

structure). Consistent with the overall assumption of additivity, the genotype values g1,

…, gk are typically also encoded in an additive way, namely each gi is set as 0, 1, or 2,

depending on the number of copies of the alternative allele of variant i that the individ-

ual has. Following the 0/1/2 encoding, genotype values are commonly normalized such

that each gi would have a mean of 0 and standard deviation of 1 over the study cohort.

Within this framework, y and g1, …, gk are observed, and the study’s goal is to make

inference about the coefficients β1, …, βk. In GWAS, one is typically interested in find-

ing out whether βi ≠ 0 for each of the tested variants by calculating a p-value for the

null hypothesis H0 : βi = 0. In PRS, the goal is to simultaneously estimate all of the coef-

ficients β1, …, βk and to use the expression β1g1 +… + βkgk as a predictor for the pheno-

type y. In heritability estimation, the objective is to estimate the overall genetic variance

Var(β1g1 +… + βkgk).

Is the additive model (more or less) true?

It is obvious to anyone familiar with complex biological systems that genetic effects are

not truly linear. Nonetheless, many argue that linear genetic models are a good-enough

approximation of the real biological complexity [85]. According to this common view,

the contribution of non-additive genetic effects to the variance of most traits is low

(i.e., additive genetic effects account for most of the heritability), so we need not worry

too much about them. In other words, there might be a stark contrast between the

prevalence of biological epistasis (variants interacting at the molecular level) and the
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overall magnitude of statistical epistasis (variants whose collective contribution to the

phenotype at the population level deviates from a linear model) [86].

By now, the additive genetic model has become so mainstream that it is commonly

just taken for granted without any explicit justification. Despite its popularity and des-

pite being very convenient for computational and statistical analysis, it is important to

understand the empirical and theoretical support in favor of the additive genetic model,

and consider the possibility that it might nonetheless be wrong or incomplete.

A strong empirical result in favor of the additive genetic model was presented in a

2015 meta-analysis covering virtually all twin studies published between 1958 and 2012

[72]. It was found that, across many different traits, the phenotypic correlation between

monozygotic twins was roughly twice the correlation between dizygotic twins, consist-

ent with a model of mostly additive genetic effect and no shared environmental influ-

ences on twins. Specifically, 69% of the 2,748 analyzed twin studies were consistent

with the null hypothesis rMZ = 2rDZ. However, results in this meta-analysis were shown

only for groups of traits (such as “cognitive traits”), but not for individual phenotypes.

Furthermore, the heritability of some traits (such as height) had been studied much

more extensively than others, and most of the analyzed studies had investigated con-

tinuous (rather than binary or categorical) traits. Another limitation acknowledged by

the authors was the presence of substantial overlap in the twins recruited across the

different studies.

Also supporting the additive model is the poor track record of nonlinear phenotype

prediction models, which generally do not substantially outperform linear PRS. On the

other hand, there have not been that many attempts to develop such models, and it

might be too early to give up on outperforming linear PRS (see next section).

Another argument in favor of additivity appeals to theoretical considerations that,

under certain assumptions and in the presence of a sufficiently large number of causal

variants (i.e., if the trait is sufficiently polygenic), the overall phenotypic variance attrib-

uted to additive genetic effects will almost certainly dominate the epistatic (i.e., non-

additive) genetic effects [87]. On the other hand, a recent simulation analysis of pheno-

types with deep neural networks showed that phenotypes that cannot be approximated

well by a linear model are possible [88].

Empirical evidence against the additive model includes the fact that epistatic genetic

effects are often detected when sought, and possibly contribute to phenotypic variance

quite substantially in some non-human organisms (see later section). Another argu-

ment opposing the additive genetic model is that we still have fundamental gaps in our

understanding of the genetic architectures of complex human traits, and the assump-

tion of additivity (made by virtually all heritability estimation methods) should be con-

sidered an immediate suspect for the missing heritability problem [76, 79]. Given what

we know about complex biological systems, the burden of proof should be on those ar-

guing for additive genetic effects being the primary source of heritability.

It is also important to note that a lot of the research and discussion on the genetic

architecture of complex human traits, arguably too much of it, has focused on a rather

small set of human traits, and especially on human height. It is possible that we have

been somewhat led astray by focusing too much on a non-representative example.

Height is actually rather unusual within the human phenotypic landscape in how herit-

able it is, and it is also very polygenic (although there are more polygenic traits [34]).
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Perhaps it is also uncommonly additive. It is also possible that continuous traits, whose

genetic architecture is easier to study, behave differently than diseases and other binary

traits.

Despite many years of debate on the question, we argue that the question of additiv-

ity is still not fully settled and that more work is needed to determine whether non-

additive genetic effects underlie substantial phenotypic variance in complex human

traits (open problem #2: non-additive and epistatic genetic effects). It would also bene-

fit the discussion on additivity if the claims being defended or argued against were

more precisely defined. For example, there is a huge difference between arguing that

over 50% of the phenotypic variance attributed to genetics could be approximated by a

linear model, which is a rather modest claim, and arguing for near 100%, which is a

much stronger claim. We would also like to see evidence in favor or against genetic ad-

ditivity being presented over more diverse human phenotypes and with more clarity

and rigor, in particular with respect to the modeling assumptions underlying such

works. When reporting or interpreting the results of genetic studies, it is important to

be mindful of the assumption of additivity.

Consequences of non-additivity to heritability and PRS

The question of additivity is tightly related to the question of missing heritability (open

problem #11: missing heritability) and is therefore also relevant to the performance of

PRS (open problem #14: genotype-to-phenotype prediction performance). As virtually

all contemporary heritability estimation methods assume additivity, non-additive gen-

etic effects could be part of the explanation for the missing heritability problem. As

mentioned, SNP heritability does not include non-additive variance, so it is expected

that methods such as GREML and LDSC would underestimate the full (broad-sense)

heritability. It was demonstrated through simulation analysis that methods for SNP her-

itability estimation may dramatically underestimate the heritability of phenotypes with

nonlinear genetic effects (and that the more nonlinear the simulated effects are, the less

heritability is recovered) [88]. Twin studies, on the other hand, assume that the correl-

ation between the genetic effects of non-identical twins is exactly half, which holds for

additive but not epistatic effects. As a result, twin studies are likely to overestimate the

true heritability in the presence of epistasis [76]. Part of the gap between h2SNP and h2twin
could therefore be attributed, at least in principle, to non-additivity.

If non-additive effects indeed make up a big part of the heritability of complex traits,

then this has important ramifications for PRS: we would expect linear models to be

limited, at least in principle, compared to the full potential of nonlinear models. Some

attempts have been made to train PRS with nonlinear models, including support vector

machines, random forests, and deep neural networks [89–91]. These nonlinear algo-

rithms have a strong track record across numerous domains of machine learning. How-

ever, in the context of PRS, such attempts have generally failed to outperform simple

linear models, providing strong evidence in favor of the theory stating that nonlinear ef-

fects are not that important in the grand scheme of things, but these indications are

not yet decisive. Attempts to model genetic effects in a nonlinear way have only been

made a handful of times, and there could be other reasons for off-the-shelf machine-

learning algorithms having a hard time to pick nonlinear genetic effects. For example,
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we know that in genetics, to a much greater extent than in other domains where ma-

chine learning is commonly applied, data is often very noisy, effects are very weak (or

rare), and there does not exist an obvious and easily-exploitable structure to the data. It

would be interesting to see if future works are able to capture a substantial non-

additive genetic signal.

The adequate performance of linear models compared to nonlinear alternatives is the

primary reason for their dominance in genetic studies, but there are also other motiva-

tions swaying researchers to favor them. Other advantages of linear models include

high robustness and interpretability, both are crucial for clinical applicability. Also of

great importance to researchers is the capacity to work with summary statistics of pub-

lished results without being dependent on individual-level data. This is easily done with

linear models, but usually impossible with nonlinear algorithms. Since human genetic

datasets with individual-level information tend to be highly restricted (due to privacy

concerns), this is often a critical consideration. If large-scale, highly accessible biobanks

(such as the UK Biobank) become more prevailing in the coming years, we might see

nonlinear methods becoming more popular.

Epistatic, dominant, and recessive effects in complex traits

Related to the principal question of non-additivity is the more practical problem of

finding epistatic genetic interactions (known as GxG), namely finding combinations

(usually pairs) of variants or genes that interact together in a nonlinear way (biologically

or statistically) [92]. From a statistical perspective, this is a notoriously difficult com-

binatorial and computational problem [4]. For example, scanning a dataset with a mil-

lion genotyped variants for all possible pairwise interactions would involve half a

trillion (~5E11) variant pairs. Obtaining sufficient statistical power to find significant

pairs under such conditions would require much stronger effects than those required

to find additive genetic effects. Even if additive models are in fact capable of capturing

most of the genetic component of phenotypic variance, finding epistatic effects might

still be important for understanding the mechanism of human traits.

A lot of epistasis research has focused on non-human model organisms, where the

phenomenon could be studied with experiments (including genome screening projects

with libraries of double gene deletions) [4]. Specifically, a lot of research has revolved

around yeast. The general conclusion from these studies is that epistasis is indeed quite

prevalent in non-human organisms and could contribute quite substantially to the

phenotypic variance [93, 94]. However, many of the experimental studies involve artifi-

cially induced mutations or inbred populations and therefore do not provide direct evi-

dence on the scale of the phenomenon with respect to natural genetic variation.

Recessive inheritance is an interesting special case of non-additive genetic interac-

tions. While dominant and recessive inheritance play an important role in the study of

Mendelian traits, these inheritance modes are hardly studied in the context of complex

traits. In principle, dominant and recessive genetic effects are perfectly applicable to

complex traits as well as Mendelian. It should be noted that the textbook definitions of

dominant and recessive effects are often just approximations of the genetic effects

found in the real world. For example, there are Mendelian diseases exhibiting imperfect

recessive inheritance, as in the case of thalassemia (a type of anemia caused by
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mutations in the hemoglobin genes), which is considered a recessive disorder, but indi-

viduals who carry one copy of a deleterious mutation may develop mild symptoms of

anemia. Since strong genetic effects are mostly confined to rare variants, an additive

model is usually a good approximation for dominant effects but a very poor approxima-

tion for recessive effects. The additive model mentioned earlier can in principle accom-

modate dominant and recessive effects at the variant level through changing of the

encoding of the genotype values gi. Specifically, assigning the values 0/0/1 or 0/1/1 in-

stead of 0/1/2 would capture recessive or dominant effects at the variant level, respect-

ively. However, it is anticipated that many recessive effects would occur at the gene

level and not at the variant level. If the two copies of a gene are affected by different

variants, a case known as compound heterozygosity, then a variant-level recessive

model would be completely blind to it. Due to the inherent blindness of GWAS to

compound heterozygosity, the study of recessive genetic effects in complex human

traits is highly neglected, but some recent works show that they are in fact common in

complex traits [95, 96]. Gene-based methods (as opposed to variant-based methods)

seem especially promising for detecting recessive effects [45].

Acknowledging the complexity of genetics
Gene-environment interactions

Similar to epistatic effects (GxG), interactions between genetic and environmental fac-

tors, known as GxE, also play a role in complex human traits [12, 97]. GxE interactions

indicate that the effect of a genetic factor is dependent on the presence of an environ-

mental factor (or, equivalently, that the effect of the environmental factor is dependent

on the genetic factor), where “environmental factor” means any non-genetic determin-

ant of the trait (including epigenetics). An obvious example is the effect of sunlight ex-

posure (an environmental factor) on melanoma (a phenotype) being dependent on the

genetic variants that determine skin color. A less obvious example is different levels of

colorectal cancer and adenoma risks associated with the missense variant A222V in the

MTHFR gene (methylenetetrahydrofolate reductase) depending on the levels of folic

acid dietary intake [97]. Another compelling example of GxE is seen across many auto-

immune diseases where it is believed that, in the presence of genetic predisposition, the

disease might be triggered by an infection from specific viruses, bacteria, or other path-

ogens. For example, specific oral bacteria are associated with rheumatoid arthritis [98],

and Epstein-Barr virus has been associated with multiple sclerosis [99].

There are many pragmatic reasons to be interested in GxE. By taking into account

the modifying effects of environmental factors, more genetic associations could be

found [12]. Furthermore, gene-environment interactions can provide insight into the

mechanism of genetic associations (open problem #13: from causality to mechanism).

Additionally, when GxG or GxE interactions exist, it is possible that genetic associa-

tions and PRS will not perform uniformly across human groups (and across space and

time). Specifically, it might be possible to identify subgroups showing unusually high

risk for genetic or environmental factors. As a result, GxE interactions could allow indi-

vidualized genetic-based interventions by modifying the interacting environmental fac-

tors (thereby reducing disease risk) [12]. Special interest in GxE is present in the social

sciences (especially in psychology), where gene-environment interactions are believed

Brandes et al. Genome Biology          (2022) 23:131 Page 24 of 32



to play a central role in human personality and behavior, and an active debate is still

going around the old question of “nature versus nurture.”

While generally recognized an important piece in the genetic puzzle of complex hu-

man traits, GxE is a notoriously difficult subject of study, and there has been limited

progress in addressing it (open problem #3: gene-environment interactions) [100]. It is

very challenging to run reliable and robust GxE studies. For example, it is difficult to

properly address potential confounding, to an even larger extent than in standard gen-

etic studies [100]. Over the years, there have been few concrete GxE discoveries, and

even fewer successful replications. Discovering GxE interactions is hard in part due to

the vast combinatorial search space (as in GxG) [97]. When the genetic variants and

environmental conditions under investigation are both rare, detecting an interaction

between them becomes nearly impossible. On top of all the regular challenges in repli-

cating genetic associations, GxE replication studies and meta-analyses are often hin-

dered by differences in how environmental factors are defined and measured across

studies [12]. Even rigorously defining what exactly GxE means is not trivial, as it re-

quires to describe what the architecture of a trait should look like in the absence of in-

teractions (when both genetics and the environment may influence the trait, but

separately). Specifically, the presence or absence of GxE could depend on the scaling of

the phenotype. In the case of a binary phenotypic outcome and binary genetic and en-

vironmental factors, it would depend on whether we expect risk for the outcome to de-

pend additively or multiplicatively on the separate risks associated with the genetic and

environmental factors [97]. When the interacting environmental factors are themselves

affected by genetic factors, GxE interactions could be mediators of underlying GxG in-

teractions, meaning that GxG and GxE are often tightly related.

Various statistical methods and computational approaches have been developed to

detect GxE interactions [100]. In some cases, the study of GxE interactions can be in-

formed by cellular experiments, if the organism-level exposures can be translated into

cellular exposures that can be tested in the lab (e.g., cytokines as a proxy for

inflammation).

The study of GxE has important ramifications for the concept of heritability and the

question of missing heritability. There have been works trying to quantify the overall

contribution of GxE to phenotypic variance (for certain collections of environmental

factors, and under certain assumptions about the genetic architecture of the studied

traits). These attempts have often ended up with the conclusion that GxE interactions

contribute quite substantially to the phenotypic variance of some traits (such as BMI

and pulse pressure) [101, 102], yet the overall importance of GxE to trait heritability is

still controversial [85, 100]. Notably, the mere definition of heritability is tricky in the

presence of GxE interactions. To define heritability, continuous phenotypes are com-

monly decomposed as P =G + E, where P is the phenotype value, G is the overall con-

tribution of genetic factors to the phenotype, and E is the contribution of

environmental factors (defined as the residual term encapsulating all non-genetic fac-

tors contributing to the trait). It then holds that Var(P) =Var(G) +Var(E) + 2Cov(G, E).

This means that when Cov(G, E) ≠ 0 (in the presence of GxE interactions), Var(G) will

not capture all the variance of the trait that is due to genetics, as implicitly assumed by

defining heritability as H2 =Var(G)/Var(P) (and if Cov(G, E) is negative, it may even

capture too much). It has been argued that environmental effects, when not properly
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accounted for, may indeed inflate heritability estimates. For example, it has been

asserted that heritability estimates for educational attainment might be inflated by

~70% [75]. Some have gone as far as arguing that just as we cannot say how much of

the area of a rectangle is due, separately, to each of its two dimensions, so it is not pos-

sible to separate “nature” from “nurture” [79].

Selection bias

Selection bias describes a situation where a study cohort does not perfectly represent

the population that it is presumed to represent, leading to unjustified conclusions about

the general population. Since participation in human studies is generally voluntary, this

is a difficult challenge to overcome. While the problem and the challenges it presents

are by no means unique to genetic studies, human genetics researchers appear to have

been surprisingly unconcerned about the implications of selection bias. Only very re-

cently did the problem gain some attention, following a few demonstrations of its po-

tential to lead to false discoveries. For example, a recent study detected statistically

significant associations between autosomal variants and sex [103]. Since such associa-

tions are clearly spurious (autosomal chromosomes cannot affect sex), it was concluded

to be the result of participation bias. Specifically, if both sex and a particular genetic

variant affect an individual’s decision to participate in the study cohort (which can be

seen as a behavioral trait), then we would have a collider bias when conditioning on

that decision. Another special case of selection bias is survival bias. If we recruit indi-

viduals with a history of cancer to participate in a genetic study, then it could be biased

by individuals with extremely aggressive tumors not having survived to participate. It

was also demonstrated that the common case-control study design (where cases and

controls are recruited separately) can lead to underestimation of SNP heritability,

thereby adding to the missing heritability [104]. Since the problem of selection bias in

genetic studies was acknowledged only recently, not enough work has been dedicated

to fully understanding the scope of the problem and working out methods and best

practices to minimize its effect (open problem #9: selection bias).

Overlooked genetic variation

We have deliberately focused this review on problems that are specific to the link be-

tween genotype and phenotype, putting aside most of the upstream technical aspects of

collecting genetic data (such as issues related to sequencing, variant calling and quality

control). Nonetheless, it is crucial to acknowledge that, like in any field, the results of

our research will only be as good as the quality of the data we use. In particular, there

are certain types of genetic variation that are systematically underrepresented, or

altogether absent, from contemporary genetic studies (open problem #5: non-standard

genetic variation).

We have already touched on the challenges of studying the effects of rare variants

due to data scarcity (open problem #4: rare variants). Other neglected variants are

those in sex chromosomes (X and Y) [95], which are often excluded from genetic stud-

ies due to mapping and variant calling challenges, and also because they diverge from

diploidy and, as a result, from common modeling assumptions. The mitochondrial

chromosome (MT) presents similar challenges and is even more commonly left out.
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Structural and copy number variations also pose a major challenge to existing protocols

and tend to be ignored, as they are hard to genotype and sometimes also deviate from

standard modeling [16, 105, 106]. For example, it is open to interpretation what domin-

ant or recessive inheritance would mean in the case of copy number variation. Genetic

variation in repetitive regions of the genome also tends to be ignored due to mapping

challenges [107]. Part of the gap between heritability estimates from twin and genotype

data could be due to under-genotyped genetic variation [16, 17, 79]. Advanced genotyp-

ing technologies such as nanopore and PacBio sequencing may play a role in resolving

complex genetic variants [108, 109].

Another aspect of genetic variation that tends to be overlooked is phasing, namely

whether two heterozygous variants occur on the same or different copies of the chromo-

some (and their maternal or paternal origin) [110]. This could be important, for example,

when dealing with compound heterozygosity (where a recessive effect takes place only

when variants occur at both copies of a gene) or epistatic effects involving cis-regulatory

elements. Another aspect of human genetic variation regularly neglected is mosaicism,

namely the occasional occurrence of mutational events during cell division leading to gen-

etic diversity between cells in the body (with more cells having a genetic alteration the

earlier it occurred during development) [111]. Genetic studies assume that an individual’s

genetic sample represents their entire genetic repertoire, but that is not perfectly accurate.

There is evidence suggesting that genetic mosaics could have phenotypic effects in the

brain in traits such as autism spectrum disorder [111]. Whether this is an anecdotal

phenomenon or an important aspect of human genetics still remains to be determined.

Should mosaicism be taken into account in genetic studies, or is it better treated as yet an-

other non-genetic factor (like other omics and environmental effects)?

A related question is how to represent genetic variation. The accepted norm today is

to represent an individual’s genome as a set of unrelated variants indicating deviation

from the human reference genome (which is itself a somewhat artificial and incomplete

construct [112]). Is it necessarily the best way to represent genetic variation and study

its effects on human traits? A recently explored alternative is to skip variant calling

altogether and to seek direct associations of the trait with raw sequencing reads [113].

Another long-standing idea is to represent genomes as graphs of haplotypes [114].

In a sense, we have only been dealing with the easiest parts of human genetics, focus-

ing on common, simple autosomal variants, without genetic and environmental interac-

tions. The overall contribution of unaccounted genetic variation to heritability, and

whether this is a major source of missing heritability, is yet to be determined.

Phenotype definition

Just as the quality and representation of genotypes is expected to have a major influ-

ence on the results of genetic studies, so can the exact definitions and measurements of

human phenotypes be important. While some phenotypes are straightforward to meas-

ure accurately (e.g., height), other traits are a lot more nuanced and could be defined in

different ways. For example, there has been a long discussion on whether schizophrenia

and bipolar disorder, two distinct but highly related psychiatric diagnoses with strongly

overlapping genetic determinants, should be seen as residing on a single psychosis con-

tinuum [115]. Moreover, different physicians may end up assigning the same individual
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with different diagnoses [116], and some traits are prone to diagnostic errors [117].

Diagnostic protocols may also vary between health or insurance systems, even within

the same country. A related question is whether to define disease status based on offi-

cial clinical diagnoses or self-reports [59]. Ill-defined phenotypes are expected to intro-

duce random noise and systematic biases into genetic studies [118].

It has been postulated that some clinical diagnoses are in fact a combination of distinct

biological phenotypes, each involving separate genetic and cellular pathways, and that the

similar clinical manifestations of these different phenotypes are only superficial. In such

cases, it could be beneficial to study each of the subphenotypes separately [15]. Con-

versely, it is also possible that some diagnoses that are considered distinct in fact share a

common biological etiology and are therefore better defined as a single phenotype. There

are some preliminary efforts to use genetics as a guideline for better phenotype definitions

[119]. Improving the methodology and practices used to define and measure phenotypes

would be highly beneficial (open problem #8: phenotype definition).

Sex differences, which are prevalent across the human phenome, could be seen as an

important special case of subphenotypes [15]. When sex interacts with genetics in a

non-additive way, sex differences can also be seen as a special case of GxE and GxG in-

teractions (in this case, the interaction of sex chromosomes with other genetic factors).

The common practice today in GWAS and other genetic studies is to treat sex as yet

another covariate that has to be accounted for. But given its profound effect on so

many human traits, perhaps more comprehensive approaches are needed. For example,

it might be a constructive norm to study and report on males and females separately,

when sample sizes and statistical power allow that.

Open discussion on open problems
We have attempted to provide a broad view on current important open problems in the

field of human trait genetics. Towards this goal, we reached out and spoke with many

active researchers in the field covering a diverse set of backgrounds and perspectives. Fol-

lowing these conversations, we converged on a list of 16 open problems that were consist-

ently acknowledged by us and others to be particularly important (Table 1). Our main

criterion for deeming an open problem sufficiently important was: would it considerably

help realizing the field’s potential if this problem were solved?

We attempted to provide an up-to-date view on the field, focusing on the open problems

that appear to constrain the field in the near future. Despite the efforts we have made, we

are aware that this review and our list of open problems are far from being truly exhaustive.

There are many additional relevant open problems that we judged to be relatively minor,

and it is also very plausible that we have overlooked some major open problems.

We hope that this presentation of open problems will contribute to the open discus-

sion already taking place. In particular, critical discussion on this list of open problems

(and on open problems we have overlooked) would be beneficial. We think that an

open dialog is especially important among researchers and practitioners from diverse

backgrounds and expertise, for example between researchers and clinicians. Other im-

portant discussions should include technology providers (e.g., of high-throughput se-

quencing and data processing) and resource providers (such as biobanks). For example,

whether data resources are dominated by publicly available biobanks or restricted data-

bases will greatly affect the kind of challenges we face.
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