
CPT Pharmacometrics Syst Pharmacol. 2023;12:889–903.	﻿	   |  889www.psp-journal.com

Quantitative Systems Pharmacology (QSP)1 combines
pharmacokinetic (PK) and pharmacodynamic (PD) mod-
eling with Systems Biology2 models of biology underlying
disease to support development of new therapeutics. A
typical workflow3 starts from extensive literature mining
and discussion with domain experts to agree the scope
and granularity of the biological mechanisms represented
in the model. Because biologists commonly use informal
mechanistic diagrams in textbooks, publications, and pre-
sentations, specification of the biological scope and main
modeling assumptions usually involve construction of a
graphical biological process map. The map is then con-
verted into a mathematical model, most frequently for-
mulated as a system of Ordinary Differential Equations
(ODE). The model is subsequently calibrated with data
and validated by simulation of datasets not used for cal-
ibration. Lessons learned from discrepancies between
model predictions and data inform changes to the model.
Frequently, multiple learn and confirm cycles are con-
ducted before the model gains sufficient confidence of

the drug development team to inform their decisions. If
the biological process map is drawn informally in a dia-
gram editor separate from modeling software, the incon-
sistencies between original graphical representation and
complex mathematical model inevitably arise during the
iterative modeling project. This confuses communication,
increases effort of passing the model between team mem-
bers, and may negatively impact confidence of interdis-
ciplinary experts in the model. These problems can be
resolved by the modeling software providing a biological
process map editor with graphical notation, allowing cre-
ation of diagrams easy to understand by biologists, and
at the same time formally associating state variables, rate
equations, parameters, algebraic assignments, events, and
constraints with the map.

The idea of using formal graphical notation and graph-
ical model building is of course not new nor invented by
QSP and Systems Biology communities. Formal technical
drawings and blueprints have been used in engineering
long before computers were invented. Electronic circuit

Received: 24 January 2023  |  Revised: 31 March 2023  |  Accepted: 10 April 2023

DOI: 10.1002/psp4.12972

T U T O R I A L

QSP Designer: Quantitative systems pharmacology
modeling with modular biological process map notation
and multiple language code generation

Richard J. Matthews1  | David Hollinshead1  | Daniel Morrison1  |
Piet H. van der Graaf1,2   | Andrzej M. Kierzek1,3

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any
medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.
© 2023 Certara. CPT: Pharmacometrics & Systems Pharmacology published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and
Therapeutics.

1Certara UK, Sheffield, UK
2Leiden Academic Centre for Drug
Research, Universiteit Leiden, Leiden,
the Netherlands
3School of Biosciences and Medicine,
University of Surrey, Guildford, UK

Correspondence
Andrzej M. Kierzek, Certara UK, 1
Concourse Way, Sheffield S1 2BJ, UK.
Email: andrzej.kierzek@certara.com

Abstract
Typical Quantitative Systems Pharmacology (QSP) workflows involve discussion
of biology, supported by graphical diagrams, followed by construction of large
Ordinary Differential Equation models. QSP Designer facilitates this process by
providing enhanced graphical notation, which enables hierarchical presentation
with modules and handling of combinatorial complexity with diagram node ar-
rays. Whereas the software includes a simulation engine, a major feature is full
model code generation in MATLAB, R, C, and Julia to support multiple modeling
communities.

http://www.psp-journal.com
https://doi.org/10.1002/psp4.12972
https://orcid.org/0000-0003-1314-3484
mailto:
http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:andrzej.kierzek@certara.com

890  |     MATTHEWS et al.

diagrams formally specify complex technological sys-
tems allowing precise design communication between
engineers who may not even speak the same language.
In software engineering, Uniform Modeling Language4
is a commonly used graphical notation supporting every
stage of design and development. The idea to represent
chemical reactions and complex, concurrent, technolog-
ical systems by formal graphical notation dates back to
the 1960s when Carl Petri introduced bipartite graphs
representing system variables and transitions.5 Petri Nets
became an active field of research producing tools and
algorithms applied in multiple fields of science and tech-
nology. Graphical mathematical model editing, coupled
to simulation algorithms has been used in numerous
software tools, such as the popular SimuLink6 toolbox of
MATLAB.

Systems Biology2 emerged as a field aiming to bring the
methodology of exact science and engineering to molecu-
lar biology, which included research on formal graphical
notation and software tools for graphical model building.
The Systems Biology Graphical Notation (SBGN)7 imple-
mented first in CellDesigner software8 is commonly used.
Petri Nets were also applied. For example, Snoopy soft-
ware provides a Petri Net editor and a wide range of ODEs,
stochastic, and hybrid simulation algorithms.9 In the PK/
PD field, models are simpler and have standard structures
making graphical model editors less beneficial and popu-
lar. However, Certara Phoenix software does allow graph-
ical model building. When Systems Biology motivated the
expansion of mechanistic modeling in PK/PD, leading
to emergence of the QSP field, graphical model editors
were also adopted. The MATLAB SimBiology toolbox,10 a
frequently used tool in QSP, provides a graphical model
editor with bipartite graph notation, similar to SBGN and
Petri Nets, where state variables are represented as species
interacting through reactions representing rate laws. The
MoBi11 software, part of the Open QSP11 environment,
also provides a graphical editor using species/reactions
notations.

QSP model editors need to address considerable chal-
lenges and trade-offs. Graphical notation must be flexible
and easy to understand for scientists who do not have
modeling experience, but at the same time formal, so
they can represent mathematical models as precisely as
possible. Ideally, notation should represent the full rela-
tionship among variables, parameters, and rate laws, but
for a model with tens or hundreds of variables and rate
law terms this may lead to overcomplicated diagrams.
Frequently, models involve combinatorial explosions of
species and reactions (for example, full allosteric bind-
ing model) necessitating creation of very large graphs,
with repeated copies of the same basic sub-graph. Having
encountered these challenges in our QSP practice, we

proposed an extended graphical notation and imple-
mented it in a software tool called QSP Designer. We
introduced modules to represent complex models hier-
archically, with different levels of granularity addressing
different audiences. We also introduced arrays of model-
ing objects and rules for automatic rate law generation to
handle the challenge of combinatorial explosions within
the graphical language. We recognize that the QSP com-
munity is using several different mathematical modeling
environments and therefore created a software where the
model formulated in the diagram editor can be exported
to multiple languages. In the following part of this tuto-
rial, we will introduce graphical modeling with a Modular
Biological Process Map and demonstrate its benefits for
both the QSP modeling community and the wider com-
munity of pharmacology scientists interacting with QSP
modelers and possibly using QSP models. We will also
demonstrate how the model built with the QSP Designer
can be exported to MATLAB, R, or Julia code and there-
fore used by different modeling communities.

INTRODUCTION TO QSP DESIGNER
AND MODULAR BIOLOGICAL
PROCESS MAP

QSP Designer is a QSP modeling and simulation software
with graphical, Modular Biological Process Map interface
(Figure 1). The user builds the model using the graphi-
cal editor (Figure 1a). The editor provides a palette with
objects, which can be moved to the canvas and connected
by edges. Each object has properties, such as rate laws and
initial values, that are specified via a property inspector.
The diagram is compiled into the ODE system, which
can also be examined within the graphical user interface
(Figure 1b). The model can then be calibrated and simu-
lated using the parameter estimation and simulation en-
gine available within QSP Designer. Simulation output is
saved either in formatted Excel files with plots or in CSV
files facilitating custom plotting. Alternatively, the user
may choose to use the model within a mathematical mod-
eling environment to develop custom analysis methods
or capitalize on a legacy of simulation and analysis code
already available within the group and community. The
QSP Designer provides model code export to R (Figure 1c),
R with model equations in C, Julia, and MATLAB. Full
model code is exported, rather than the code using calls
to application programming interface (API). Therefore,
the user can transfer the model to mathematical modeling
environment of their choice and use it independently of
QSP Designer. Figure 1d shows an example simulation
output, which can be produced with stand-alone engine
or exported code.

     |  891QSP DESIGNER

QSP Designer uses Modular Biological Process Map
graphical notation to facilitate building and communi-
cation of complex models, saved in workspaces, within
interdisciplinary scientific communities. Figure 2
shows the basic graphical notation, a full set of sym-
bols and formal specification is available in Section 1
of Data S1. As depicted in Figure 2a, the core graph-
ical building blocks are nodes representing species,
parameters, and reactions, edges connecting them,
and compartments. The chemical species symbol rep-
resents a state variable. Reactions represent changes
to state variables and contain rate law formulas.
Substrate and product edges connecting species to re-
actions define whether reactions consume (decrease)
or produce (increase) the species (state variable value).

Parameters of rate laws can be connected to reactions
by modifier edges to visualize parameter dependencies.
Modifier edges, indicating that quantities connected to
a reaction are not changed, can also be used to con-
nect a species to a reaction in the case when the state
variable value is used as rate law parameter, but not
changed (e.g., enzyme concentration in enzyme catal-
ysis reaction). Upon compilation of the ODE system,
species define ODEs, reactions define ODE terms, and
edges define the sign (positive or negative) with which
each term is included in the ODE. Assignment sym-
bols allow re-setting of species or parameter values ei-
ther at the start of simulation (initial assignment) or
at every iteration of the solver (repeated assignment).
The assignment symbol contains an algebraic formula.

F I G U R E 1   Overview of the QSP Designer. (a) The user builds the model using the Modular Biological Process Map Editor. (b) The ODE
model is compiled and ODEs can be examined within the QSP Designer interface. (c) The user can choose to generate model code in R, R
with model equations in C, Julia, or MATLAB. (d) The user simulates the model using exported code or simulation engine provided within
the QSP Designer. ODE, Ordinary Differential Equation; QSP, Quantitative Systems Pharmacology.

892  |     MATTHEWS et al.

F I G U R E 2   Basic elements of the Modular Biological Process Map notation. (a) A simple model with a single reaction between substrate
and product species in a compartment with a rate constant parameter is created. A repeated assignment is added to make the compartment
volume vary with time. An index is attached to species, parameters, and the compartments to convert into an array of parallel models.
Part of the model is placed within a module and connected to the rest via a channel. (b) The module is collapsed allowing hierarchical
representation. (c) An equivalent model without indices. (d) When the ODE system is compiled, indices are used to automatically
generate multiple species and parameter names as well as reactions and assignments, thus combining graphical modeling and scripting
functionalities. (e) The algebraic equations for compartment volumes. (f) Definition of basic node symbols used in examples a–c. (g)
Definition of basic edge types used. See Data S1 for documentation of all features. ODE, Ordinary Differential Equation.

     |  893QSP DESIGNER

Parameter dependencies can be visualized by connect-
ing parameter symbols to assignments with modifier
edges. Compartments contain information about vol-
umes. Compilation of the graphical notation to ODE
system involves unit dimensionality verification and
unit conversion, allowing user to input values with
suffixes (e.g., milli and micro) of their convenience.
The unit system also allows the automatic generation
of volume multiplications for reactions which transfer
substance between compartments.

Building large QSP models using only the basic graph-
ical notation described above is challenging, as diagrams
quickly become overcomplicated and thus unsuitable
for communication of the model to an interdisciplin-
ary audience. In QSP Designer, we introduced modules,
which encapsulate part of the model and connect it to
other modeling objects through interfaces. The module
can be collapsed, hiding the underlying complexity, or
expanded to allow full examination. Modules are used
for visualization purposes only and do not translate to
ODEs. In case study 1, we will show how modules can be
used to present cell / cell interactions to biology experts
whereas also allowing modelers to access all details.
Another challenge frequently encountered in graphical
model building is combinatorial explosion of species
and reactions due to binding reactions (e.g., allosteric
binding) or repeated occurrences of the same model
structure (different clones in immune system models,
physiologically-based pharmacokinetic [PBPK] models
for multiple compounds). To enable handling of combi-
natorial complexity, we introduced indices, which define
arrays of species and parameters. Upon compilation of
an ODE system, QSP Designer generates ODEs automat-
ically for all array elements. Such an automatic genera-
tion of ODEs usually requires coding by expert modeler.
QSP Designer provides this functionality through graphic
user interface, thus eliminating the need for error prone
ad hoc scripting and making it available to scientists who
are comfortable with modeling, but not coding in pro-
gramming languages. In case studies 2 and 3, we show
how this functionality is applied in modeling of immune
system and allosteric binding.

The enhanced modular biological process map no-
tation contains other advanced features, which will not
be covered in the main text of this tutorial but are pre-
sented in detail in different sections of extensive Data S1.
Modularity is further enhanced by import symbols
(Section 1.8.2), which represent and connect models
stored in separate workspace files. Index ranges can be de-
fined run-time by parameters (Sections 1.6 and 3.3). We
also provide graphical notation for doses (Sections 1.1.2
and 1.2), algebraic constraints (Sections 1.1.2 and 3.5), and
functions (Sections 1.3 and 1.4).

CASE STUDY 1: MECHANISTIC
MODEL OF T- CELL
PROLIFERATION ASSAY

Undesired immune response to therapeutic protein is a
major challenge in drug development.12 The immune sys-
tem may generate antidrug antibodies (ADAs) binding
engineered, non-self fragments of therapeutic proteins,
thus affecting the concentration of free drug and efficacy.
This response is patient-specific, with ADA positive and
negative patient groups observed in many trials. A major,
although not the only, source of this variability is varia-
bility of human leukocyte antigen (HLA) genes encoding
major histocompatibility complex II (MHC II) receptors.
Different affinity of MHC II receptors encoded by HLA al-
leles affects the presentation of T-cell epitopes, therapeu-
tic protein fragments resulting from endosomal digestion.
Antigen presentation is required to recruit the helper T-
cell response, which is in turn required for initiation of
antibody production by B-cells. Several bioinformatics
approaches are used to predict T-cell epitopes and their
affinity to MHC II receptors. Currently, these methods
are used for calculation of static ADA risk indicator for
a compound. In 2014, Chen, Hickling, and Vicini pub-
lished QSP, a model (CHV model)13,14 for simulation of
ADA response dynamics for a patient with specific HLA
genotype. This model uses bioinformatics prediction of
T-cell epitopes and MHC II as input but allows predic-
tion of ADA synthesis as a function of dosing regime and
crucially, impact of ADA on compound PKs. Expansion of
this model by an industry consortium has led to develop-
ment of the IG Simulator.15,16

T-cell proliferation assays are used in biologics drug de-
velopment as a preclinical screen for the propensity of the
compound to cause unwanted ADA response. Peripheral
blood mononuclear cells obtained from blood donors are
treated with the compound in vitro. T-cell proliferation is
assessed and compared with a baseline. Frequently, blood
samples are genotyped for HLA genes. TCPro is a mech-
anistic model of T-cell proliferation assay intended by the
authors to be used in lieu of actual, expensive, experimen-
tal work.17 TCPro is based on the MHC II pathway and
T-cell proliferation processes in the CHV model. The IG
Simulator team also created a T-cell proliferation assay
model. The assay model is used to infer parameters of T-
cell response from T-cell proliferation assay data and sub-
sequently these parameters are used in the IG Simulator
model of clinical ADA response.

Here, we use the T-cell proliferation assay model to
demonstrate the application of modules and indices,
two major features of the enhanced graphical notation
in QSP Designer. Figure 3 shows the Modular Biological
Process Map of the T-cell proliferation assay model

894  |     MATTHEWS et al.

created in QSP Designer and exported to Scalable Vector
Graphics (SVG) image file. Figure 3a shows the map
with all modules collapsed, which illustrates the major
biological processes: dendritic cell activation, uptake of
antigen into MHC II pathway, activation of T-cells in-
volving interaction of MHC II/T-cell epitope and T-cell
receptor (TCR), proliferation of T-cells, and differentia-
tion of naïve T-cells into memory and functional T-cells.
QSP Designer allows embedding of arbitrary images
into diagram symbols. Here, T-cells and dendritic cells
are distinguished by images embedded into collapsed
module symbols. This diagram can be used to discuss
the biological scope of the model with an interdisciplin-
ary team. The diagram in Figure 3b shows the map with
all modules expanded. Now the user can appreciate the
full model structure. The MHC II pathway is a detailed
mechanistic model of endosome digestion and MHC II
binding including binding of competing peptides. Each
of the modules representing cells contains detailed rep-
resentation of state variables, reactions, parameters,
and algebraic assignments defining dynamics of cel-
lular differentiation and proliferation processes. This
view can be used to communicate details of the model
to modeling team. The user of QSP Designer software
can navigate the map fully interactively, expand or col-
lapse individual volumes, and zoom on any part of the
map. Parameter values, variable initial states, rate, and
assignment equations can be then accessed in property
inspector invoked upon selection of the diagram symbol.

Binding of five T-cell epitopes to MHC receptors en-
coded by six HLA alleles (2 × HLA-DR, 2 × HLA-DQ, 2
× HLA-DP) creates 30 T-cell epitope/MHC II receptors
complexes, all following association/dissociation, degra-
dation, and membrane circulation processes. Therefore,
there are 30 instances of the ODEs describing these pro-
cesses. Moreover, the model contains T-cell clone specific
to each of five epitopes, which creates five instances of
T-cell differentiation, proliferation, and death processes.
Graphical model building of these reactions is not prac-
tical, both due to the repetitive effort of graphical editing
and the clarity of the resulting diagram. Even if such a
diagram were created, changing it for a compound spe-
cific number of T-cell epitopes would not be practical. In
the CHV model,13,14 the MATLAB code for ODEs was au-
tomatically generated, for a specific number of epitopes,
by a bespoke MATLAB script. This way of working has
a number of disadvantages. First, a model diagram con-
sistent with the equations can no longer be created. Even
if automatic layout techniques were used, the resulting
diagram would not be as good an illustration of the un-
derlying processes as a map created manually by an ex-
pert modeler. Furthermore, scripting as a way of model
building requires advanced coding skills in a specific lan-
guage and thus limits some expert scientists from partic-
ipating in model building. In addition, ad hoc coding is
error prone and the resulting code difficult to communi-
cate even between different members of the same team.
Figure 4 shows how these challenges are addressed by

F I G U R E 3   Mechanistic model of T-cell proliferation assay. Modular Biological Process Map diagrams created by SVG export from
QSP Designer. (a) The map with collapsed modules focusing on biological scope. Compound (Ag) is dosed into the in vitro reaction
compartment, taken up by dendritic cells, and subject to digestion and presentation through the MHC II pathway. Maturation signal (MS)
induces differentiation of immature dendritic cells (ID) to mature dendritic cells (MD). Naïve helper T-cells (NT) are activated (AT_N) by
MD which involves formation of TCR:MHC complex. Activated T-cells may differentiate to memory (MT) or functional T-cell (FT). Memory
T-cells may be re-activated (AT_M), which requires MD and TCR:MHCII complex. Total number of T-cells (Ttot) is readout of the assay
and also affects activation through cell density feedback. (b) The map with expanded modules showing all variables, reactions, parameters,
compartments and assignments (466 visual entities). Indices i and j are used to automatically generate species and reactions for five T-cell
epitopes and six MHCII receptors, creating the model with 120 ODEs and 177 parameters. QSP, Quantitative Systems Pharmacology; SVG,
Scalable Vector Graphics.

     |  895QSP DESIGNER

QSP Designer. The detailed diagram of the MHC II path-
way module is shown in Figure 4a. Indices i and j are used
to create one- or two-dimensional arrays of variables and

parameters. Index i assumes integer values of 1 to 5 and
denotes T-cell epitopes, whereas index j is used to create
an array of six MHC receptors. Two dimensional arrays of

F I G U R E 4   MHC pathway module of T-cell proliferation assay model. (a) Biological process map. Antigen in endosome (AgE) is
digested into T-cell epitope peptides P, which bind MHC receptors. Index i represents five epitopes, index j six loci of MHC II receptor genes.
Competitive binding of other peptides in endosome (CptE) is also included. (b) Automatically generated ODEs for a complex of peptide and
MHC receptor in membrane (P_MHC). QSP Designer LaTex rendering of 13 out of 30 ODEs is shown. Indexes are used to automatically
generate specie and parameter names and equations. (c) Part of exported R code defining all 30 dissociation reactions of P_MHC species.
Reactions define first term of ODE shown in b. (d) Simulation of full T-cell proliferation assay model for 100 blood samples from donors with
different HLA genotypes. The 30 binding constants for five epitopes and six MHC receptors produced by six HLA alleles are predicted by
bioinformatics and input into Kd_epitope parameter indexed with i and j indexes. ODE, Ordinary Differential Equation; QSP, Quantitative
Systems Pharmacology.

896  |     MATTHEWS et al.

30 complexes are created by both indices. Indices are an
intuitive way of creating arrays, very similar to diagram
drawing. Upon compilation of the model, all ODEs are au-
tomatically generated, without any coding required from
the user. Figure 4b shows 13 out of 30 ODEs created by
QSP Designer for the state variables describing the num-
ber of membrane-bound complexes of MHC II receptors
and peptides. The automatically generated R codes for all
30 ODEs describing this molecular species are shown in
Figure 4c. The same index i is also used to create arrays
of variables and parameters describing proliferation, dif-
ferentiation, and death of T-cell clones specific to T-cell
epitopes. Figure 4d shows the application of the model
to population simulation of subjects with different HLA
genotypes. QSP Designer reads files with patient specific
parameters generated based on bioinformatics predictions
of T-cell epitope binding to MHC II receptors and allele
frequencies in North American populations.

In summary, this case study demonstrates the utility of
modules and arrays, two major features of the advanced
graphical notation in QSP Designer. Modules are used to
present the model at different levels of detail to different
audiences. Arrays provide graphical notation that allows
automatic model generation for cases when the same
model structure is repeated multiple times. The model
can be constructed with graphical editor without the need
for creating error-prone, ad hoc scripts for generation of
multiple ODEs.

CASE STUDY 2: MODELING
ALLOSTERIC LIGAND BINDING TO
CALMODULIN

Although the model presented in case study 1 illustrates
the application of species and parameter arrays in han-
dling models with repeated instances of the same sub-
model, it does not illustrate the full capability of QSP
Designer in creating models with a combinatorial explo-
sion of ODEs. In this case study, we present the model
of allosteric binding of two protein ligands to calmodu-
lin molecule. Calmodulin is a calcium-binding protein
involved in calcium-regulated cellular processes, such as
synaptic plasticity, muscle contraction, cell cycle, and cir-
cadian rhythms. It is composed of two globular domains
joined by a linker region. Each domain can take alterna-
tive conformations, affected by the binding of calcium
and target proteins. Here, we reproduce the model of Lai
et al.18 containing four calcium binding sites, one site in
each lobe of the calmodulin dimer, two allosteric states,
and binding of two protein ligands. Binding and confor-
mational transitions are represented in detailed Monod-
Wyman-Changeux framework, leading to a combinatorial

explosion of reactions. Due to its ubiquitous presence in
cellular signaling, calmodulin is likely to be a part of the
QSP Models, but the combinatorial explosion of reactions
would necessitate model generation by scripting and pre-
vent concise graphical representation. Here, we show how
the advanced graphical notation in the QSP Designer can
be used to create concise graphical representation of the
model of Lai et al.,18 which can be used as a module in
larger QSP Models.

Figure 5a shows the Biological Process Map of the
model. The combinatorial explosion of state variables
representing different forms of calmodulin is modeled by
one species node with six indices. The indices represent
four calcium binding sites (ASite, BSite, CSite, and DSite),
one ligand binding site (ligand) and the conformational
state. Calcium binding site indices have two values each
indicating whether calcium is bound or not at the specific
site. The unbound state is indicated by underscore symbol
“_” and the bound state is indicated by the letter code of
the site (e.g., “A” for site A). The ligand binding site index
assumes one of three values: “0,” “rbp,” or “tbp,” repre-
senting unbound, RBP-bound, or TBP-bound calmodulin/
ligand complexes. Finally, conformational state index as-
sumes values “RR,” “RT,” “TR,” and “TT” corresponding
to conformational state names. These six indices define
all 192 state variables required to represent all forms of
calmodulin molecule defined by conformational changes
and calcium or ligand binding. For example, “cam_TR_
tbp___B_C__” is a chemical species representing calm-
odulin in TR conformation, bound to tbp, with calcium
bound at B and C, but not A site. During automatic model
generation, the QSP Designer creates the ODE for this spe-
cies and the time profile of the number of the molecules in
this specific chemical state is produced during simulation.
As an example, automatically generated ODE is shown in
Figure 5e.

The use of indices in the calmodulin case study is
more advanced than in the case of the T-cell prolifera-
tion assay module, where the indices were used solely
to generate copies of the model structure, connected
only by assignments summing variable values (e.g.,
sum of all MHC II:T-cell epitope bound complexes).
Here, reactions connecting specific forms of calmod-
ulin molecule must be defined. Figure 5b shows the
property inspector window with the definition of the
calcium association reaction at site A (Aon). The index
mapping formula [ASite] = > [ASite + 1] defines reac-
tions from each value of the ASite index to the next
value. Because, in this case, the ASite index only has
two values, this results in reactions with substrates
that are states with index value “_” and products that
are states with index value “A.” Reactions from index
value “A” to the next value are not generated because

     |  897QSP DESIGNER

F I G U R E 5   Calmodulin. (a) Biological process map. A single species node (cam) is used to represent all the possible states of calmodulin
via the attachment of six static indices. Four indices (ASite, BSite, CSite, and DSite) are to represent whether calcium (Ca) is bound at each
of four binding sites, one (state) is to represent the overall conformational state and one (ligand) is to represent which ligand (or none)
is bound. The values of the calcium sites indices are, for example, “_” and “A.” Those of the conformational state index are “RR,” “RT,”
“TR,” and “TT.” Those of the ligand binding index are “0,” “rbp,” and “tbp.” Reaction nodes representing transitions are automatically
expanded out via implicit indexing to generate ODE terms for all relevant pairs of states. (b) The rate and index mapping expressions for the
reaction node for one of the calcium binding transitions. (c) The rate and index mapping expressions for the reaction node for one of the
conformational state transitions. (d) The rate and index mapping expressions for the reaction node for one of the ligand binding transitions.
(e) One of the ODEs automatically generated for the model. ODE, Ordinary Differential Equation.

898  |     MATTHEWS et al.

there is no next value. This formula generates all 95
reactions (rate law terms) of calcium binding at site
A to calmodulin species with unbound A site. In this
case, the same reactions could also be obtained using
an index mapping [ASite = $_] = > [ASite = $A], which
uses specific index values rather than specifying an off-
set. The second order mass action rate law with bind-
ing rate constant k_on_A, free calcium and calmodulin
(unbound site A) species is assigned to all 95 reactions.
Figures 5c,d show two further examples: conforma-
tional transition from TT to RT form and TBP dissocia-
tion from the ligand binding site.

In summary, the use of indices allows manual
graphical creation of the Biological Process Map with
four state variable, 20 reaction, 28 parameter, nine as-
signment, one compartment, and one module symbols
which automatically generates the mathematical code
of the model with 195 ODEs, 1408 reactions, 125 pa-
rameters, and 19 assignments. Whereas complex tran-
sitions need to be defined, no coding skills are required
and no ad hoc scripts need to be created for model code
generation. The user is assisted by syntax and unit
consistency checking, minimizing the likelihood of er-
rors. Once the model is generated, it can be simulated
through the QSP Designer GUI or exported to code in
R, in R with numerical code in C, MATLAB, or Julia.
The model workspace can also be copied as a module
or imported in a separate file into mechanistic models
of biological processes involving calmodulin. Finally,
this case study not only demonstrates the model of a
molecule common in many pharmacologically relevant
biological processes, but also the power of the QSP
Designer in modeling complex ligand binding and con-
formational transition systems frequently of interest in
drug development.

CASE STUDY 3: QSP MODEL OF
mRNA COVID -19 VACCINES

Following the outbreak of the coronavirus disease 2019
(COVID-19) pandemic, Certara re-purposed their IG
Simulator for virtual trials of COVID-19 mRNA vac-
cines to support dose and dose interval selection in vac-
cine development projects.19 As described in case study
1, the IG Simulator was originally created to simulate
unwanted immune response to therapeutic protein.
Because the basic biology of the humoral immune re-
sponse is the same regardless of whether unwanted
ADA response to therapeutic proteins or desired immu-
nogenicity to a vaccine antigen are modeled, the QSP
Model was quickly expanded by developing a vaccine
administration module. This effort is described in more

detail in our previous article, here, we will use the QSP
Model of COVID-19 mRNA vaccines to demonstrate
application of the QSP Designer to large scale, QSP
Platform models.

The COVID-19 vaccine model is composed of 426
ODEs, 850 rate law terms (reactions), 526 parameters,
15 compartments, and 398 algebraic assignments. The
relationships among these mathematical model objects
are represented by 2510 visual objects (graph nodes and
edges) within the QSP Designer workspace. A model of
this size and complexity would be extremely difficult,
if not impossible, to represent as one readable diagram
which makes hierarchical representation with modules
essential. Figure 6 shows the top-level view of the bi-
ological process map of the COVID-19 vaccine model,
as presented to the QSP Designer user. The modules
provide a high-level overview of biological processes in-
cluded in the model. The model is composed of three
major modules: (i) minimal PBPK model for protein an-
tigen, (ii) the model of antibody response, and (iii) the
model of lipid nanoparticle (LNP) mRNA PKs and pro-
tein expression. Because we use a well-known biologics
PBPK model, this part of the model does not need to be
presented in detail and the module is collapsed in the
top-level view. The LNP mRNA PK model is new and
relatively small, and is thus presented in detail. The im-
mune system model is complex, but its biological scope is
important to communicate. The top-level view presents
compartments and assignment of cellular populations
to these compartments. General cell types are marked by
images embedded into module symbols. Modules repre-
senting biological processes of affinity maturation, anti-
body distribution, B-cell receptor function, and MHC II/
TCR synapse are labeled by text.

All modules in the top-level view are set to “wireless”:
the edges connected to the modules are visible only when
the user selects the module. When the user browses the
map they can examine connections of the module of in-
terest, expand the module, zoom, and examine all details.
Figure 6 shows selection of the module representing naïve
T-cells in the plasma compartment. The edges represent-
ing exit from the lymph node and circulation between vas-
cular and peripheral blood are highlighted upon selection.
The user also expands the module to subsequently zoom
and examine rate laws describing naïve T-cell behavior.
Interactive visualization of edges upon module selection
is frequently the only way to represent connections in very
large models where the number of connected elements
makes construction of clear diagram impossible, due to
the unavoidable overlap of graph edges.

Although this is not apparent in the top-level view,
the model shown in Figure 6 makes extensive use of in-
dices. The model contains the MHC II pathway module

     |  899QSP DESIGNER

presented in case study 1. The T-cell variables are also in-
dexed, as described in case study 2, to represent the T-cell
specific clones. Moreover, additional index is introduced
to represent polyclonal antibody response. The B-cells and
all antibody species are indexed to represent five classes of
antibodies spanning biologically plausible range of anti-
body affinity.

Figure 7 shows virtual trial results obtained with the
internal engine of the QSP Designer. The output was
exported to CSV and plotted with R. Population vari-
ability was generated by providing individual HLA gen-
otype and PBPK parameters generated by the Simcyp
Simulator covariate system. The QSP Designer GUI pro-
vides input for a Virtual Population (VPop) file: a CSV
file where each row specifies model input vector for an
individual subject. This allows easy coupling with other
tools that are frequently needed to generate virtual pop-
ulations for a specific project (e.g., bioinformatics tools
for T-cell epitope prediction).

In summary, this case study demonstrates that the QSP
Designer is capable of editing, communicating, maintain-
ing, and simulating large scale QSP platform models.

VERIFICATION OF EXPORTED
CODE

Whereas the QSP Designer includes simulation and
parameter estimation engines it also allows full model
code generation in MATLAB, R, C, and Julia to support
multiple modeling communities. Exported code can be
verified by comparing time profiles calculated by the
QSP Designer and exported models. The CSV output
of the QSP Designer facilitates comparison of simula-
tion outputs and we include example R scripts in case
study distributions (VERIFY.R). Section 3.11 in Data S1
and Appendix B of Data S1 show application of these
scripts in case studies 1 and 2. We demonstrate that

F I G U R E 6   QSP model of mRNA vaccines. The map provides overview of biological processes included into the model. The model
of 426 ODEs is represented by 2510 visual objects visualizing relationships between state variables, compartments, parameters, and
assignments. The diagram of this size cannot be shown with all detail. Therefore, the modules are created in “wireless” mode, where edges
connected to module interfaces are shown only when the module is selected. Figure shows expanded and selected module representing
naïve T-cells. The user can examine equations governing naïve T-cell dynamics and see connections representing egress from lymph node
and circulation between peripheral and vascular blood. Figure legends were also created within the QSP Designer, using empty modules.
Thus, the figure shows top level view in user interface, which can be zoomed and expanded to access every detail of the model. The same
file is also used for simulation code generation guaranteeing consistency of visual and mathematical representation. PBPK, physiologically-
based pharmacokinetic; QSP, Quantitative Systems Pharmacology.

900  |     MATTHEWS et al.

for two complex QSP models and different parameter
inputs simulation of MATLAB, R, and Julia code ex-
ports results in time profiles overlapping with simula-
tion in the QSP Designer (root mean square deviations
in a range of 1e-8–1e-4). We conclude that simulations
with model code exported from the QSP Designer are
practically indistinguishable between different code
exports and built-in numerical engine. Moreover, if
the specific context of use requires verification of code
export for specific model, we show that it can be eas-
ily implemented and automated for repeated compari-
son of simulation profiles. We also note that automatic
code export offers unique opportunity of demonstrating
that the model produces the same results with differ-
ent ODE solvers, which can be very useful evidence in
the technical verification step of model qualification
process.

DISCUSSION

A major motivation for the development of the QSP
Designer was to create a graphical model editor expand-
ing on functionality available in existing tools as well as
providing model code export to multiple mathematical
modeling environments. Graphical model building has
been widely adopted in engineering and Systems Biology
and has already been recognized as an important tool in
QSP. SimBiology and MoBi, two popular tools in the field,
provide graphical model editors, using bipartite graph no-
tation, where state variables are represented as chemical

species connected through reactions representing rate
laws. The QSP Designer further expands this capability by
introduction of modules and arrays.

We demonstrate, with three case studies, how modules
facilitate presentation of the model at different levels of
granularity for different expert communities involved in
drug development project. The high-level representation
can be used to visualize biological interactions, without
showing mathematical model details. This is useful when
discussing model with biologists and seeking their ap-
proval of scope, granularity, and congruence of assumed
mechanisms with knowledge of underlying biology.
Modules allow representation of interactions in an inter-
action network graph, rather than bipartite graph format
more common in diagrams used in biology literature. The
modules also allow “wireless” visualization mode, where
interactions are shown only upon selection of the module.
This way of presenting the model may be the best option
for very large platform models where an informative dia-
gram could not have been created otherwise due to over-
lapping edges.

When discussion of scope and qualitative assumptions
is completed, modules can be expanded to present the
model to modeling experts. Here, bipartite graph nota-
tion is used with clear distinction between state variables
(species), parameters, and rate law terms (reactions). We
decided to adopt notation motivated by Extended Petri
Nets, where the modifier edge connecting a species to a
reaction indicates that the value of state variable is used
as a parameter and not changed in the ODE system. This
is different from the notation used in SimBiology, where
ODE terms increasing and decreasing state variables are
added to represent this situation. We believe that notation
used in the QSP Designer leads to simpler mathematical
representation of the model. The modifier edge is also
used to connect parameters to reactions and assignments
thus enhancing visualization of parameter dependencies.
Although many modelers prefer typing ODEs directly into
the mathematical modeling environment, it is our expe-
rience that model building in bipartite, species/reaction,
graph editor with formal unit dimensionality validation
is faster and less error prone. For example, the rate law
term is created once as a reaction and then connected to
all state variables it modifies, rather than having to be cop-
ied multiple times across the code as positive or negative
contribution in multiple ODEs. It is also our experience
that visualization of parameter dependencies is frequently
advantageous for model communication to expert model-
ers over browsing of model code.

The modules with clearly defined interfaces provide
a powerful tool for modelers in the sense of introducing
object-oriented concepts into graphical model build-
ing. Parts of the model can be created by different team

F I G U R E 7   Example application of mRNA vaccine model. Plot
shows ratio of anti-receptor binding domain IgG to the geometric
mean of convalescent serum concentrations, plotted by red
horizontal line. The model was calibrated with mRNA-1273 data
and used to predict antibody response for third dose administered
after 1 year. The black lines show simulation results for 85 virtual
patients. Colored lines show clinical data available for first
120 days. A 100 ug dose was given at days 0, 28, and 365.

     |  901QSP DESIGNER

members and encapsulated into modules. Interfaces fa-
cilitate re-use of the modules across different models. A
team member using a submodel they did not build can
focus on understanding inputs and outputs rather than
all details. This way of working is further facilitated by
allowing import of models from separate workspace
files. Import functionality allows individual namespaces
in models, which are composed, as well as definition
of which variables and parameters can be accessed
(equivalent of “public” and “private” in object-oriented
programming).

All three case studies used models where mechanis-
tic knowledge dictated combinatorial explosion of state
variables and interactions. In the case studies 1 and 3,
binding of MHC II receptors produced by six HLA al-
leles to multiple T-cell epitopes required creation of
6*j (where j is number of epitopes) copies of binding
reaction network, all contributing to total number of
MHCII:peptide complexes. Case study 2 presents Monod-
Wyman-Changeux mechanism of allosteric conforma-
tional changes of calmodulin upon binding calcium at
three binding sites and binding two ligands at one site
which requires construction of 195 ODEs with 1408 rate
law terms. It is our experience that these examples rep-
resent a frequent, rather than unusual situation (other
examples: PBPK models for multiple tissues, compounds
and antibody-drug conjugates, and polymerization reac-
tions). The number of reactions in these models makes
manual generation of ODEs impractical or impossible
and modelers usually apply ad hoc scripting to automati-
cally generate model code. This practice is not only error
prone, but also precludes visualization with informative,
manually edited diagram. Motivated by these and other
examples, we introduced model element arrays into our
graphical modeling language. The user can attach an
index with a list of values to a species or parameter and
the software automatically creates ODEs. Case study 2
shows the additional syntax of reaction definitions that
allows creation of arbitrary models using species and
parameter arrays to handle combinatorial explosion.
The modeler using the QSP Designer can create large
numbers of ODEs automatically, without the need for
creating an ad hoc script. They can also create an in-
formative model layout, where intuitive index notation
helps to visualize multiple occurrences of the same sub-
model structure. Similar functionality is also available in
Colored Petri Nets implemented in Snoopy software, but
graphical representation of array indices is not provided.
We believe that indices and arrays are a unique novel
feature of the QSP Designer significantly facilitating
model building and communication in a large number
of cases.

Although the QSP Designer includes a computational
engine allowing simulation and parameter estimation
within its GUI, it can also be used to export model code
to R, R with model equations in C, MATLAB, and Julia.
We export full model code rather than calls to an API.
This means that the code can be used independently of
the QSP Designer. This is a different strategy from MoBi,
which provides R and MATLAB APIs allowing running
model executed in MoBi. Whereas the SimBiology model
editor provides MATLAB code very closely integrated
with MATLAB, the model cannot be used without the
SimBiology toolbox. In addition, contrary to the QSP
Designer, SimBiology does not support mathematical
modeling environments other than MATLAB. We are
not aware of graphical model editors for the QSP Models
in Julia. The pumas20 environment does not provide a
model editor. Thus, the QSP Designer provides a unique
solution, where the model is built once in a GUI with
unit dimensionality verification and exported to multi-
ple mathematical modeling environments. Availability
of a full model code, rather than calls to an API allows
user full examination of the numerical code as well as
more flexibility in adapting this code for use in custom
algorithms.

We are aware that use of exported code may necessitate
its verification, thus introducing additional step in model-
ing workflow. We demonstrated above that exported code
can be verified by automated comparison with time pro-
files generated by the stand-alone QSP Designer. It is our
experience, that, in many applications, benefits of using ex-
ported code by far outweigh the cost of this relatively sim-
ple verification step. For example, the modeling team may
be interacting with a client who requires the model to be
run within their pipeline implemented in a specific mod-
eling language. It is much easier for the modeling team to
export the final model to the code, verify it, and distribute
it to the client, than to change their modeling environment
for the purpose of a specific project. Distribution of the
model in open-source modeling language like Julia or R
may be attractive for regulators. In this case, demonstration
that exported code and the QSP Designer used for develop-
ment produce the same results, within the qualified range
of parameters, adds very little additional work compared to
the effort dedicated to other qualification steps. In another
scenario, the team including members with experience in
different modeling environments may wish to adopt spe-
cific toolboxes or legacy code to solve parameter estima-
tion challenges, which are otherwise difficult to solve. The
benefit of solving difficult problem with a specific legacy
code running an exported model by far outweighs the cost
of having to verify that time profiles of exported code and
original model are indistinguishable. In the application

902  |     MATTHEWS et al.

where the QSP Designer is used solely as a graphical edi-
tor of the model, which will be calibrated and simulated in
R or Julia, demonstration of equivalence with stand-alone
numerical engine, not used in the project, is not necessary.
Finally, automatic code export offers unique capability of
demonstrating that model produces the same results with
different ODE solvers, which can be very useful evidence in
technical verification step of model qualification process.
We would also like to note that the QSP Designer contains
a comprehensive set of features that might be expected in
a graph editor. The user can define edit points on the edges
and decide whether they are connected with straight or
curved lines. The editor contains an undo feature, with a
sophisticated queue interface allowing full flexibility with
revoking unwanted changes. All textboxes where formulas
are edited provide predictive text completion. There is au-
tomatic updating of user-defined expressions in response
to changes to variable names, as well as simplified, par-
tially automatic transfer of values in arrays on changes to
index ranges. There are both quick and advanced search
interfaces. Syntax, unit, and other error messages displayed
during verification are linked to graph objects and, where
relevant, provide error highlighting within associated ex-
pressions. The graph and spreadsheet interfaces are also
fully linked. Workspace import functionality includes
a range of graphical overviews of the graphs formed by
imports in workspaces that are themselves imported, etc.
Different types of import that allow for one global copy
or multiple copies of the same workspace to be used are
supported, as well as the ability to inject variables from
the importing workspace into the imported workspace.
Although many of these features are available in MoBi
and SimBiology editors, the QSP Designer provides a more
comprehensive, integrated toolbox.

In conclusion, we present the QSP Designer, a QSP
model editor with enhanced graphical notation, which
enables hierarchical presentation with modules and han-
dling of combinatorial complexity with diagram node
arrays. Whereas the software includes a simulation en-
gine its major feature is full model code generation in
MATLAB, R, C, and Julia to support multiple modeling
communities. We believe that the QSP Designer could be a
software of choice for creation of large scale QSP platform
models and analysis of these models with bespoke work-
flows integrating the strengths of multiple mathematical
modeling communities.

FUNDING INFORMATION
This work was conducted and funded by Certara UK Ltd.

CONFLICT OF INTEREST STATEMENT
All authors declared no competing interests for this work.

ORCID
Piet H. van der Graaf https://orcid.
org/0000-0003-1314-3484

REFERENCES
	 1.	 Vicini P, van der Graaf PH. Systems pharmacology for drug dis-

covery and development: paradigm shift or flash in the pan?
Clin Pharmacol Ther. 2013;93:379-381.

	 2.	 Kitano H. Systems biology: a brief overview. Science.
2002;295:1662-1664.

	 3.	 Gadkar K, Kirouac DC, Mager DE, van der Graaf PH,
Ramanujan S. A six-stage workflow for robust application of
systems pharmacology. CPT Pharmacometrics Syst Pharmacol.
2016;5:235-249.

	 4.	 Grady Booch JR, Jacobson I. Unified Modeling Language User
Guide. Addison-Wesley Professional; 2005.

	 5.	 Petri C. Kommunikation mit Automaten. PhD thesis, University
of Bonn. 1962.

	 6.	 SimuLink. https://www.mathw​orks.com/produ​cts/simul​ink.html
	 7.	 Le Novere N, Hucka M, Mi H, et al. The systems biology graph-

ical notation. Nat Biotechnol. 2009;27:735-741.
	 8.	 Funahashi A, Morohashi M, Matsuoka Y, Jouraku A, Kitano

H. CellDesigner: a graphical biological network editor and
workbench interfacing simulator. In: Choi S, ed. Introduction to
Systems Biology. Humana Press; 2007:422-434.

	 9.	 Rohr C, Marwan W, Heiner M. Snoopy-a unifying Petri net
framework to investigate biomolecular networks. Bioinformatics.
2010;26:974-975.

	10.	 SimBiology. https://www.mathw​orks.com/produ​cts/simbi​
ology.html

	11.	 PK-SIM® and MOBI® for PBPK and Quantitative Systems
Pharmacology.

	12.	 Wang YM, Wang J, Hon YY, et al. Evaluating and reporting
the immunogenicity impacts for biological products-a clinical
pharmacology perspective. AAPS J. 2016;18:395-403.

	13.	 Chen X, Hickling TP, Vicini P. A mechanistic, multiscale mathe-
matical model of immunogenicity for therapeutic proteins: part
1-theoretical model. CPT Pharmacometrics Syst Pharmacol.
2014;3:e133.

	14.	 Chen X, Hickling TP, Vicini P. A mechanistic, multiscale mathe-
matical model of immunogenicity for therapeutic proteins: part
2-model applications. CPT Pharmacometrics Syst Pharmacol.
2014;3:e134.

	15.	 Kierzek AM, Hickling TP, Figueroa I, et al. A quantitative sys-
tems pharmacology consortium approach to managing immu-
nogenicity of therapeutic proteins. CPT Pharmacometrics Syst
Pharmacol. 2019;8:773-776.

	16.	 Franssen LC, Swat MJ, Kierzek AM, et al. Learn-confirm in
model-informed drug development: assessing an immuno-
genicity quantitative systems pharmacology platform. CPT
Pharmacometrics Syst Pharmacol. 2023;12:139-143.

	17.	 Yogurtcu ON, Sauna ZE, McGill JR, Tegenge MA, Yang H.
TCPro: an in silico risk assessment tool for biotherapeutic pro-
tein immunogenicity. AAPS J. 2019;21:96.

	18.	 Lai M, Brun D, Edelstein SJ, Le Novere N. Modulation of
calmodulin lobes by different targets: an allosteric model with
hemiconcerted conformational transitions. PLoS Comput Biol.
2015;11:e1004063.

https://orcid.org/0000-0003-1314-3484
https://orcid.org/0000-0003-1314-3484
https://orcid.org/0000-0003-1314-3484
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simbiology.html
https://www.mathworks.com/products/simbiology.html

     |  903QSP DESIGNER

	19.	 Giorgi M, Desikan R, van der Graaf PH, Kierzek AM.
Application of quantitative systems pharmacology to guide the
optimal dosing of COVID-19 vaccines. CPT Pharmacometrics
Syst Pharmacol. 2021;10:1130-1133.

	20.	 pumas Pharmaceutical Modeling and Simulation. https://julia​
hub.com/produ​cts/pumas/

SUPPORTING INFORMATION
Additional supporting information can be found online in
the Supporting Information section at the end of this article.

How to cite this article: Matthews RJ,
Hollinshead D, Morrison D, van der Graaf PH,
Kierzek AM. QSP Designer: Quantitative systems
pharmacology modeling with modular biological
process map notation and multiple language code
generation. CPT Pharmacometrics Syst Pharmacol.
2023;12:889-903. doi:10.1002/psp4.12972

https://juliahub.com/products/pumas/
https://juliahub.com/products/pumas/
https://doi.org/10.1002/psp4.12972

	QSP Designer: Quantitative systems pharmacology modeling with modular biological process map notation and multiple language code generation
	Abstract
	INTRODUCTION TO QSP DESIGNER AND MODULAR BIOLOGICAL PROCESS MAP
	CASE STUDY 1: MECHANISTIC MODEL OF T-­CELL PROLIFERATION ASSAY
	CASE STUDY 2: MODELING ALLOSTERIC LIGAND BINDING TO CALMODULIN
	CASE STUDY 3: QSP MODEL OF mRNA COVID-­19 VACCINES
	VERIFICATION OF EXPORTED CODE
	DISCUSSION
	FUNDING INFORMATION
	CONFLICT OF INTEREST STATEMENT
	REFERENCES

