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Quantitative Systems Pharmacology (QSP)1 combines 
pharmacokinetic (PK) and pharmacodynamic (PD) mod-
eling with Systems Biology2 models of biology underlying 
disease to support development of new therapeutics. A 
typical workflow3 starts from extensive literature mining 
and discussion with domain experts to agree the scope 
and granularity of the biological mechanisms represented 
in the model. Because biologists commonly use informal 
mechanistic diagrams in textbooks, publications, and pre-
sentations, specification of the biological scope and main 
modeling assumptions usually involve construction of a 
graphical biological process map. The map is then con-
verted into a mathematical model, most frequently for-
mulated as a system of Ordinary Differential Equations 
(ODE). The model is subsequently calibrated with data 
and validated by simulation of datasets not used for cal-
ibration. Lessons learned from discrepancies between 
model predictions and data inform changes to the model. 
Frequently, multiple learn and confirm cycles are con-
ducted before the model gains sufficient confidence of 

the drug development team to inform their decisions. If 
the biological process map is drawn informally in a dia-
gram editor separate from modeling software, the incon-
sistencies between original graphical representation and 
complex mathematical model inevitably arise during the 
iterative modeling project. This confuses communication, 
increases effort of passing the model between team mem-
bers, and may negatively impact confidence of interdis-
ciplinary experts in the model. These problems can be 
resolved by the modeling software providing a biological 
process map editor with graphical notation, allowing cre-
ation of diagrams easy to understand by biologists, and 
at the same time formally associating state variables, rate 
equations, parameters, algebraic assignments, events, and 
constraints with the map.

The idea of using formal graphical notation and graph-
ical model building is of course not new nor invented by 
QSP and Systems Biology communities. Formal technical 
drawings and blueprints have been used in engineering 
long before computers were invented. Electronic circuit 
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diagrams formally specify complex technological sys-
tems allowing precise design communication between 
engineers who may not even speak the same language. 
In software engineering, Uniform Modeling Language4 
is a commonly used graphical notation supporting every 
stage of design and development. The idea to represent 
chemical reactions and complex, concurrent, technolog-
ical systems by formal graphical notation dates back to 
the 1960s when Carl Petri introduced bipartite graphs 
representing system variables and transitions.5 Petri Nets 
became an active field of research producing tools and 
algorithms applied in multiple fields of science and tech-
nology. Graphical mathematical model editing, coupled 
to simulation algorithms has been used in numerous 
software tools, such as the popular SimuLink6 toolbox of 
MATLAB.

Systems Biology2 emerged as a field aiming to bring the 
methodology of exact science and engineering to molecu-
lar biology, which included research on formal graphical 
notation and software tools for graphical model building. 
The Systems Biology Graphical Notation (SBGN)7 imple-
mented first in CellDesigner software8 is commonly used. 
Petri Nets were also applied. For example, Snoopy soft-
ware provides a Petri Net editor and a wide range of ODEs, 
stochastic, and hybrid simulation algorithms.9 In the PK/
PD field, models are simpler and have standard structures 
making graphical model editors less beneficial and popu-
lar. However, Certara Phoenix software does allow graph-
ical model building. When Systems Biology motivated the 
expansion of mechanistic modeling in PK/PD, leading 
to emergence of the QSP field, graphical model editors 
were also adopted. The MATLAB SimBiology toolbox,10 a 
frequently used tool in QSP, provides a graphical model 
editor with bipartite graph notation, similar to SBGN and 
Petri Nets, where state variables are represented as species 
interacting through reactions representing rate laws. The 
MoBi11 software, part of the Open QSP11 environment, 
also provides a graphical editor using species/reactions 
notations.

QSP model editors need to address considerable chal-
lenges and trade-offs. Graphical notation must be flexible 
and easy to understand for scientists who do not have 
modeling experience, but at the same time formal, so 
they can represent mathematical models as precisely as 
possible. Ideally, notation should represent the full rela-
tionship among variables, parameters, and rate laws, but 
for a model with tens or hundreds of variables and rate 
law terms this may lead to overcomplicated diagrams. 
Frequently, models involve combinatorial explosions of 
species and reactions (for example, full allosteric bind-
ing model) necessitating creation of very large graphs, 
with repeated copies of the same basic sub-graph. Having 
encountered these challenges in our QSP practice, we 

proposed an extended graphical notation and imple-
mented it in a software tool called QSP Designer. We 
introduced modules to represent complex models hier-
archically, with different levels of granularity addressing 
different audiences. We also introduced arrays of model-
ing objects and rules for automatic rate law generation to 
handle the challenge of combinatorial explosions within 
the graphical language. We recognize that the QSP com-
munity is using several different mathematical modeling 
environments and therefore created a software where the 
model formulated in the diagram editor can be exported 
to multiple languages. In the following part of this tuto-
rial, we will introduce graphical modeling with a Modular 
Biological Process Map and demonstrate its benefits for 
both the QSP modeling community and the wider com-
munity of pharmacology scientists interacting with QSP 
modelers and possibly using QSP models. We will also 
demonstrate how the model built with the QSP Designer 
can be exported to MATLAB, R, or Julia code and there-
fore used by different modeling communities.

INTRODUCTION TO QSP DESIGNER 
AND MODULAR BIOLOGICAL 
PROCESS MAP

QSP Designer is a QSP modeling and simulation software 
with graphical, Modular Biological Process Map interface 
(Figure  1). The user builds the model using the graphi-
cal editor (Figure 1a). The editor provides a palette with 
objects, which can be moved to the canvas and connected 
by edges. Each object has properties, such as rate laws and 
initial values, that are specified via a property inspector. 
The diagram is compiled into the ODE system, which 
can also be examined within the graphical user interface 
(Figure 1b). The model can then be calibrated and simu-
lated using the parameter estimation and simulation en-
gine available within QSP Designer. Simulation output is 
saved either in formatted Excel files with plots or in CSV 
files facilitating custom plotting. Alternatively, the user 
may choose to use the model within a mathematical mod-
eling environment to develop custom analysis methods 
or capitalize on a legacy of simulation and analysis code 
already available within the group and community. The 
QSP Designer provides model code export to R (Figure 1c), 
R with model equations in C, Julia, and MATLAB. Full 
model code is exported, rather than the code using calls 
to application programming interface (API). Therefore, 
the user can transfer the model to mathematical modeling 
environment of their choice and use it independently of 
QSP Designer. Figure  1d shows an example simulation 
output, which can be produced with stand-alone engine 
or exported code.
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QSP Designer uses Modular Biological Process Map 
graphical notation to facilitate building and communi-
cation of complex models, saved in workspaces, within 
interdisciplinary scientific communities. Figure  2 
shows the basic graphical notation, a full set of sym-
bols and formal specification is available in Section 1 
of Data  S1. As depicted in Figure  2a, the core graph-
ical building blocks are nodes representing species, 
parameters, and reactions, edges connecting them, 
and compartments. The chemical species symbol rep-
resents a state variable. Reactions represent changes 
to state variables and contain rate law formulas. 
Substrate and product edges connecting species to re-
actions define whether reactions consume (decrease) 
or produce (increase) the species (state variable value). 

Parameters of rate laws can be connected to reactions 
by modifier edges to visualize parameter dependencies. 
Modifier edges, indicating that quantities connected to 
a reaction are not changed, can also be used to con-
nect a species to a reaction in the case when the state 
variable value is used as rate law parameter, but not 
changed (e.g., enzyme concentration in enzyme catal-
ysis reaction). Upon compilation of the ODE system, 
species define ODEs, reactions define ODE terms, and 
edges define the sign (positive or negative) with which 
each term is included in the ODE. Assignment sym-
bols allow re-setting of species or parameter values ei-
ther at the start of simulation (initial assignment) or 
at every iteration of the solver (repeated assignment). 
The assignment symbol contains an algebraic formula. 

F I G U R E  1   Overview of the QSP Designer. (a) The user builds the model using the Modular Biological Process Map Editor. (b) The ODE 
model is compiled and ODEs can be examined within the QSP Designer interface. (c) The user can choose to generate model code in R, R 
with model equations in C, Julia, or MATLAB. (d) The user simulates the model using exported code or simulation engine provided within 
the QSP Designer. ODE, Ordinary Differential Equation; QSP, Quantitative Systems Pharmacology.
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F I G U R E  2   Basic elements of the Modular Biological Process Map notation. (a) A simple model with a single reaction between substrate 
and product species in a compartment with a rate constant parameter is created. A repeated assignment is added to make the compartment 
volume vary with time. An index is attached to species, parameters, and the compartments to convert into an array of parallel models. 
Part of the model is placed within a module and connected to the rest via a channel. (b) The module is collapsed allowing hierarchical 
representation. (c) An equivalent model without indices. (d) When the ODE system is compiled, indices are used to automatically 
generate multiple species and parameter names as well as reactions and assignments, thus combining graphical modeling and scripting 
functionalities. (e) The algebraic equations for compartment volumes. (f) Definition of basic node symbols used in examples a–c. (g) 
Definition of basic edge types used. See Data S1 for documentation of all features. ODE, Ordinary Differential Equation.
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Parameter dependencies can be visualized by connect-
ing parameter symbols to assignments with modifier 
edges. Compartments contain information about vol-
umes. Compilation of the graphical notation to ODE 
system involves unit dimensionality verification and 
unit conversion, allowing user to input values with 
suffixes (e.g., milli and micro) of their convenience. 
The unit system also allows the automatic generation 
of volume multiplications for reactions which transfer 
substance between compartments.

Building large QSP models using only the basic graph-
ical notation described above is challenging, as diagrams 
quickly become overcomplicated and thus unsuitable 
for communication of the model to an interdisciplin-
ary audience. In QSP Designer, we introduced modules, 
which encapsulate part of the model and connect it to 
other modeling objects through interfaces. The module 
can be collapsed, hiding the underlying complexity, or 
expanded to allow full examination. Modules are used 
for visualization purposes only and do not translate to 
ODEs. In case study 1, we will show how modules can be 
used to present cell / cell interactions to biology experts 
whereas also allowing modelers to access all details. 
Another challenge frequently encountered in graphical 
model building is combinatorial explosion of species 
and reactions due to binding reactions (e.g., allosteric 
binding) or repeated occurrences of the same model 
structure (different clones in immune system models, 
physiologically-based pharmacokinetic [PBPK] models 
for multiple compounds). To enable handling of combi-
natorial complexity, we introduced indices, which define 
arrays of species and parameters. Upon compilation of 
an ODE system, QSP Designer generates ODEs automat-
ically for all array elements. Such an automatic genera-
tion of ODEs usually requires coding by expert modeler. 
QSP Designer provides this functionality through graphic 
user interface, thus eliminating the need for error prone 
ad hoc scripting and making it available to scientists who 
are comfortable with modeling, but not coding in pro-
gramming languages. In case studies 2 and 3, we show 
how this functionality is applied in modeling of immune 
system and allosteric binding.

The enhanced modular biological process map no-
tation contains other advanced features, which will not 
be covered in the main text of this tutorial but are pre-
sented in detail in different sections of extensive Data S1. 
Modularity is further enhanced by import symbols 
(Section 1.8.2), which represent and connect models 
stored in separate workspace files. Index ranges can be de-
fined run-time by parameters (Sections 1.6 and 3.3). We 
also provide graphical notation for doses (Sections 1.1.2 
and 1.2), algebraic constraints (Sections 1.1.2 and 3.5), and 
functions (Sections 1.3 and 1.4).

CASE STUDY 1:  MECHANISTIC 
MODEL OF T- CELL 
PROLIFERATION ASSAY

Undesired immune response to therapeutic protein is a 
major challenge in drug development.12 The immune sys-
tem may generate antidrug antibodies (ADAs) binding 
engineered, non-self fragments of therapeutic proteins, 
thus affecting the concentration of free drug and efficacy. 
This response is patient-specific, with ADA positive and 
negative patient groups observed in many trials. A major, 
although not the only, source of this variability is varia-
bility of human leukocyte antigen (HLA) genes encoding 
major histocompatibility complex II (MHC II) receptors. 
Different affinity of MHC II receptors encoded by HLA al-
leles affects the presentation of T-cell epitopes, therapeu-
tic protein fragments resulting from endosomal digestion. 
Antigen presentation is required to recruit the helper T-
cell response, which is in turn required for initiation of 
antibody production by B-cells. Several bioinformatics 
approaches are used to predict T-cell epitopes and their 
affinity to MHC II receptors. Currently, these methods 
are used for calculation of static ADA risk indicator for 
a compound. In 2014, Chen, Hickling, and Vicini pub-
lished QSP, a model (CHV model)13,14 for simulation of 
ADA response dynamics for a patient with specific HLA 
genotype. This model uses bioinformatics prediction of 
T-cell epitopes and MHC II as input but allows predic-
tion of ADA synthesis as a function of dosing regime and 
crucially, impact of ADA on compound PKs. Expansion of 
this model by an industry consortium has led to develop-
ment of the IG Simulator.15,16

T-cell proliferation assays are used in biologics drug de-
velopment as a preclinical screen for the propensity of the 
compound to cause unwanted ADA response. Peripheral 
blood mononuclear cells obtained from blood donors are 
treated with the compound in vitro. T-cell proliferation is 
assessed and compared with a baseline. Frequently, blood 
samples are genotyped for HLA genes. TCPro is a mech-
anistic model of T-cell proliferation assay intended by the 
authors to be used in lieu of actual, expensive, experimen-
tal work.17 TCPro is based on the MHC II pathway and 
T-cell proliferation processes in the CHV model. The IG 
Simulator team also created a T-cell proliferation assay 
model. The assay model is used to infer parameters of T-
cell response from T-cell proliferation assay data and sub-
sequently these parameters are used in the IG Simulator 
model of clinical ADA response.

Here, we use the T-cell proliferation assay model to 
demonstrate the application of modules and indices, 
two major features of the enhanced graphical notation 
in QSP Designer. Figure 3 shows the Modular Biological 
Process Map of the T-cell proliferation assay model 
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created in QSP Designer and exported to Scalable Vector 
Graphics (SVG) image file. Figure  3a shows the map 
with all modules collapsed, which illustrates the major 
biological processes: dendritic cell activation, uptake of 
antigen into MHC II pathway, activation of T-cells in-
volving interaction of MHC II/T-cell epitope and T-cell 
receptor (TCR), proliferation of T-cells, and differentia-
tion of naïve T-cells into memory and functional T-cells. 
QSP Designer allows embedding of arbitrary images 
into diagram symbols. Here, T-cells and dendritic cells 
are distinguished by images embedded into collapsed 
module symbols. This diagram can be used to discuss 
the biological scope of the model with an interdisciplin-
ary team. The diagram in Figure 3b shows the map with 
all modules expanded. Now the user can appreciate the 
full model structure. The MHC II pathway is a detailed 
mechanistic model of endosome digestion and MHC II 
binding including binding of competing peptides. Each 
of the modules representing cells contains detailed rep-
resentation of state variables, reactions, parameters, 
and algebraic assignments defining dynamics of cel-
lular differentiation and proliferation processes. This 
view can be used to communicate details of the model 
to modeling team. The user of QSP Designer software 
can navigate the map fully interactively, expand or col-
lapse individual volumes, and zoom on any part of the 
map. Parameter values, variable initial states, rate, and 
assignment equations can be then accessed in property 
inspector invoked upon selection of the diagram symbol.

Binding of five T-cell epitopes to MHC receptors en-
coded by six HLA alleles (2 × HLA-DR, 2 × HLA-DQ, 2 
× HLA-DP) creates 30 T-cell epitope/MHC II receptors 
complexes, all following association/dissociation, degra-
dation, and membrane circulation processes. Therefore, 
there are 30 instances of the ODEs describing these pro-
cesses. Moreover, the model contains T-cell clone specific 
to each of five epitopes, which creates five instances of 
T-cell differentiation, proliferation, and death processes. 
Graphical model building of these reactions is not prac-
tical, both due to the repetitive effort of graphical editing 
and the clarity of the resulting diagram. Even if such a 
diagram were created, changing it for a compound spe-
cific number of T-cell epitopes would not be practical. In 
the CHV model,13,14 the MATLAB code for ODEs was au-
tomatically generated, for a specific number of epitopes, 
by a bespoke MATLAB script. This way of working has 
a number of disadvantages. First, a model diagram con-
sistent with the equations can no longer be created. Even 
if automatic layout techniques were used, the resulting 
diagram would not be as good an illustration of the un-
derlying processes as a map created manually by an ex-
pert modeler. Furthermore, scripting as a way of model 
building requires advanced coding skills in a specific lan-
guage and thus limits some expert scientists from partic-
ipating in model building. In addition, ad hoc coding is 
error prone and the resulting code difficult to communi-
cate even between different members of the same team. 
Figure  4 shows how these challenges are addressed by 

F I G U R E  3   Mechanistic model of T-cell proliferation assay. Modular Biological Process Map diagrams created by SVG export from 
QSP Designer. (a) The map with collapsed modules focusing on biological scope. Compound (Ag) is dosed into the in vitro reaction 
compartment, taken up by dendritic cells, and subject to digestion and presentation through the MHC II pathway. Maturation signal (MS) 
induces differentiation of immature dendritic cells (ID) to mature dendritic cells (MD). Naïve helper T-cells (NT) are activated (AT_N) by 
MD which involves formation of TCR:MHC complex. Activated T-cells may differentiate to memory (MT) or functional T-cell (FT). Memory 
T-cells may be re-activated (AT_M), which requires MD and TCR:MHCII complex. Total number of T-cells (Ttot) is readout of the assay 
and also affects activation through cell density feedback. (b) The map with expanded modules showing all variables, reactions, parameters, 
compartments and assignments (466 visual entities). Indices i and j are used to automatically generate species and reactions for five T-cell 
epitopes and six MHCII receptors, creating the model with 120 ODEs and 177 parameters. QSP, Quantitative Systems Pharmacology; SVG, 
Scalable Vector Graphics.
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QSP Designer. The detailed diagram of the MHC II path-
way module is shown in Figure 4a. Indices i and j are used 
to create one- or two-dimensional arrays of variables and 

parameters. Index i assumes integer values of 1 to 5 and 
denotes T-cell epitopes, whereas index j is used to create 
an array of six MHC receptors. Two dimensional arrays of 

F I G U R E  4   MHC pathway module of T-cell proliferation assay model. (a) Biological process map. Antigen in endosome (AgE) is 
digested into T-cell epitope peptides P, which bind MHC receptors. Index i represents five epitopes, index j six loci of MHC II receptor genes. 
Competitive binding of other peptides in endosome (CptE) is also included. (b) Automatically generated ODEs for a complex of peptide and 
MHC receptor in membrane (P_MHC). QSP Designer LaTex rendering of 13 out of 30 ODEs is shown. Indexes are used to automatically 
generate specie and parameter names and equations. (c) Part of exported R code defining all 30 dissociation reactions of P_MHC species. 
Reactions define first term of ODE shown in b. (d) Simulation of full T-cell proliferation assay model for 100 blood samples from donors with 
different HLA genotypes. The 30 binding constants for five epitopes and six MHC receptors produced by six HLA alleles are predicted by 
bioinformatics and input into Kd_epitope parameter indexed with i and j indexes. ODE, Ordinary Differential Equation; QSP, Quantitative 
Systems Pharmacology.
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30 complexes are created by both indices. Indices are an 
intuitive way of creating arrays, very similar to diagram 
drawing. Upon compilation of the model, all ODEs are au-
tomatically generated, without any coding required from 
the user. Figure 4b shows 13 out of 30 ODEs created by 
QSP Designer for the state variables describing the num-
ber of membrane-bound complexes of MHC II receptors 
and peptides. The automatically generated R codes for all 
30 ODEs describing this molecular species are shown in 
Figure 4c. The same index i is also used to create arrays 
of variables and parameters describing proliferation, dif-
ferentiation, and death of T-cell clones specific to T-cell 
epitopes. Figure  4d shows the application of the model 
to population simulation of subjects with different HLA 
genotypes. QSP Designer reads files with patient specific 
parameters generated based on bioinformatics predictions 
of T-cell epitope binding to MHC II receptors and allele 
frequencies in North American populations.

In summary, this case study demonstrates the utility of 
modules and arrays, two major features of the advanced 
graphical notation in QSP Designer. Modules are used to 
present the model at different levels of detail to different 
audiences. Arrays provide graphical notation that allows 
automatic model generation for cases when the same 
model structure is repeated multiple times. The model 
can be constructed with graphical editor without the need 
for creating error-prone, ad hoc scripts for generation of 
multiple ODEs.

CASE STUDY 2:  MODELING 
ALLOSTERIC LIGAND BINDING TO 
CALMODULIN

Although the model presented in case study 1 illustrates 
the application of species and parameter arrays in han-
dling models with repeated instances of the same sub-
model, it does not illustrate the full capability of QSP 
Designer in creating models with a combinatorial explo-
sion of ODEs. In this case study, we present the model 
of allosteric binding of two protein ligands to calmodu-
lin molecule. Calmodulin is a calcium-binding protein 
involved in calcium-regulated cellular processes, such as 
synaptic plasticity, muscle contraction, cell cycle, and cir-
cadian rhythms. It is composed of two globular domains 
joined by a linker region. Each domain can take alterna-
tive conformations, affected by the binding of calcium 
and target proteins. Here, we reproduce the model of Lai 
et al.18 containing four calcium binding sites, one site in 
each lobe of the calmodulin dimer, two allosteric states, 
and binding of two protein ligands. Binding and confor-
mational transitions are represented in detailed Monod-
Wyman-Changeux framework, leading to a combinatorial 

explosion of reactions. Due to its ubiquitous presence in 
cellular signaling, calmodulin is likely to be a part of the 
QSP Models, but the combinatorial explosion of reactions 
would necessitate model generation by scripting and pre-
vent concise graphical representation. Here, we show how 
the advanced graphical notation in the QSP Designer can 
be used to create concise graphical representation of the 
model of Lai et al.,18 which can be used as a module in 
larger QSP Models.

Figure  5a shows the Biological Process Map of the 
model. The combinatorial explosion of state variables 
representing different forms of calmodulin is modeled by 
one species node with six indices. The indices represent 
four calcium binding sites (ASite, BSite, CSite, and DSite), 
one ligand binding site (ligand) and the conformational 
state. Calcium binding site indices have two values each 
indicating whether calcium is bound or not at the specific 
site. The unbound state is indicated by underscore symbol 
“_” and the bound state is indicated by the letter code of 
the site (e.g., “A” for site A). The ligand binding site index 
assumes one of three values: “0,” “rbp,” or “tbp,” repre-
senting unbound, RBP-bound, or TBP-bound calmodulin/
ligand complexes. Finally, conformational state index as-
sumes values “RR,” “RT,” “TR,” and “TT” corresponding 
to conformational state names. These six indices define 
all 192 state variables required to represent all forms of 
calmodulin molecule defined by conformational changes 
and calcium or ligand binding. For example, “cam_TR_
tbp___B_C__” is a chemical species representing calm-
odulin in TR conformation, bound to tbp, with calcium 
bound at B and C, but not A site. During automatic model 
generation, the QSP Designer creates the ODE for this spe-
cies and the time profile of the number of the molecules in 
this specific chemical state is produced during simulation. 
As an example, automatically generated ODE is shown in 
Figure 5e.

The use of indices in the calmodulin case study is 
more advanced than in the case of the T-cell prolifera-
tion assay module, where the indices were used solely 
to generate copies of the model structure, connected 
only by assignments summing variable values (e.g., 
sum of all MHC II:T-cell epitope bound complexes). 
Here, reactions connecting specific forms of calmod-
ulin molecule must be defined. Figure  5b shows the 
property inspector window with the definition of the 
calcium association reaction at site A (Aon). The index 
mapping formula [ASite] = > [ASite + 1] defines reac-
tions from each value of the ASite index to the next 
value. Because, in this case, the ASite index only has 
two values, this results in reactions with substrates 
that are states with index value “_” and products that 
are states with index value “A.” Reactions from index 
value “A” to the next value are not generated because 
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F I G U R E  5   Calmodulin. (a) Biological process map. A single species node (cam) is used to represent all the possible states of calmodulin 
via the attachment of six static indices. Four indices (ASite, BSite, CSite, and DSite) are to represent whether calcium (Ca) is bound at each 
of four binding sites, one (state) is to represent the overall conformational state and one (ligand) is to represent which ligand (or none) 
is bound. The values of the calcium sites indices are, for example, “_” and “A.” Those of the conformational state index are “RR,” “RT,” 
“TR,” and “TT.” Those of the ligand binding index are “0,” “rbp,” and “tbp.” Reaction nodes representing transitions are automatically 
expanded out via implicit indexing to generate ODE terms for all relevant pairs of states. (b) The rate and index mapping expressions for the 
reaction node for one of the calcium binding transitions. (c) The rate and index mapping expressions for the reaction node for one of the 
conformational state transitions. (d) The rate and index mapping expressions for the reaction node for one of the ligand binding transitions. 
(e) One of the ODEs automatically generated for the model. ODE, Ordinary Differential Equation.
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there is no next value. This formula generates all 95 
reactions (rate law terms) of calcium binding at site 
A to calmodulin species with unbound A site. In this 
case, the same reactions could also be obtained using 
an index mapping [ASite = $_] = > [ASite = $A], which 
uses specific index values rather than specifying an off-
set. The second order mass action rate law with bind-
ing rate constant k_on_A, free calcium and calmodulin 
(unbound site A) species is assigned to all 95 reactions. 
Figures  5c,d show two further examples: conforma-
tional transition from TT to RT form and TBP dissocia-
tion from the ligand binding site.

In summary, the use of indices allows manual 
graphical creation of the Biological Process Map with 
four state variable, 20 reaction, 28 parameter, nine as-
signment, one compartment, and one module symbols 
which automatically generates the mathematical code 
of the model with 195 ODEs, 1408 reactions, 125 pa-
rameters, and 19 assignments. Whereas complex tran-
sitions need to be defined, no coding skills are required 
and no ad hoc scripts need to be created for model code 
generation. The user is assisted by syntax and unit 
consistency checking, minimizing the likelihood of er-
rors. Once the model is generated, it can be simulated 
through the QSP Designer GUI or exported to code in 
R, in R with numerical code in C, MATLAB, or Julia. 
The model workspace can also be copied as a module 
or imported in a separate file into mechanistic models 
of biological processes involving calmodulin. Finally, 
this case study not only demonstrates the model of a 
molecule common in many pharmacologically relevant 
biological processes, but also the power of the QSP 
Designer in modeling complex ligand binding and con-
formational transition systems frequently of interest in 
drug development.

CASE STUDY 3:  QSP MODEL OF 
mRNA COVID -19 VACCINES

Following the outbreak of the coronavirus disease 2019 
(COVID-19) pandemic, Certara re-purposed their IG 
Simulator for virtual trials of COVID-19 mRNA vac-
cines to support dose and dose interval selection in vac-
cine development projects.19 As described in case study 
1, the IG Simulator was originally created to simulate 
unwanted immune response to therapeutic protein. 
Because the basic biology of the humoral immune re-
sponse is the same regardless of whether unwanted 
ADA response to therapeutic proteins or desired immu-
nogenicity to a vaccine antigen are modeled, the QSP 
Model was quickly expanded by developing a vaccine 
administration module. This effort is described in more 

detail in our previous article, here, we will use the QSP 
Model of COVID-19 mRNA vaccines to demonstrate 
application of the QSP Designer to large scale, QSP 
Platform models.

The COVID-19 vaccine model is composed of 426 
ODEs, 850 rate law terms (reactions), 526 parameters, 
15 compartments, and 398 algebraic assignments. The 
relationships among these mathematical model objects 
are represented by 2510 visual objects (graph nodes and 
edges) within the QSP Designer workspace. A model of 
this size and complexity would be extremely difficult, 
if not impossible, to represent as one readable diagram 
which makes hierarchical representation with modules 
essential. Figure  6 shows the top-level view of the bi-
ological process map of the COVID-19 vaccine model, 
as presented to the QSP Designer user. The modules 
provide a high-level overview of biological processes in-
cluded in the model. The model is composed of three 
major modules: (i) minimal PBPK model for protein an-
tigen, (ii) the model of antibody response, and (iii) the 
model of lipid nanoparticle (LNP) mRNA PKs and pro-
tein expression. Because we use a well-known biologics 
PBPK model, this part of the model does not need to be 
presented in detail and the module is collapsed in the 
top-level view. The LNP mRNA PK model is new and 
relatively small, and is thus presented in detail. The im-
mune system model is complex, but its biological scope is 
important to communicate. The top-level view presents 
compartments and assignment of cellular populations 
to these compartments. General cell types are marked by 
images embedded into module symbols. Modules repre-
senting biological processes of affinity maturation, anti-
body distribution, B-cell receptor function, and MHC II/
TCR synapse are labeled by text.

All modules in the top-level view are set to “wireless”: 
the edges connected to the modules are visible only when 
the user selects the module. When the user browses the 
map they can examine connections of the module of in-
terest, expand the module, zoom, and examine all details. 
Figure 6 shows selection of the module representing naïve 
T-cells in the plasma compartment. The edges represent-
ing exit from the lymph node and circulation between vas-
cular and peripheral blood are highlighted upon selection. 
The user also expands the module to subsequently zoom 
and examine rate laws describing naïve T-cell behavior. 
Interactive visualization of edges upon module selection 
is frequently the only way to represent connections in very 
large models where the number of connected elements 
makes construction of clear diagram impossible, due to 
the unavoidable overlap of graph edges.

Although this is not apparent in the top-level view, 
the model shown in Figure 6 makes extensive use of in-
dices. The model contains the MHC II pathway module 
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presented in case study 1. The T-cell variables are also in-
dexed, as described in case study 2, to represent the T-cell 
specific clones. Moreover, additional index is introduced 
to represent polyclonal antibody response. The B-cells and 
all antibody species are indexed to represent five classes of 
antibodies spanning biologically plausible range of anti-
body affinity.

Figure 7 shows virtual trial results obtained with the 
internal engine of the QSP Designer. The output was 
exported to CSV and plotted with R. Population vari-
ability was generated by providing individual HLA gen-
otype and PBPK parameters generated by the Simcyp 
Simulator covariate system. The QSP Designer GUI pro-
vides input for a Virtual Population (VPop) file: a CSV 
file where each row specifies model input vector for an 
individual subject. This allows easy coupling with other 
tools that are frequently needed to generate virtual pop-
ulations for a specific project (e.g., bioinformatics tools 
for T-cell epitope prediction).

In summary, this case study demonstrates that the QSP 
Designer is capable of editing, communicating, maintain-
ing, and simulating large scale QSP platform models.

VERIFICATION OF EXPORTED 
CODE

Whereas the QSP Designer includes simulation and 
parameter estimation engines it also allows full model 
code generation in MATLAB, R, C, and Julia to support 
multiple modeling communities. Exported code can be 
verified by comparing time profiles calculated by the 
QSP Designer and exported models. The CSV output 
of the QSP Designer facilitates comparison of simula-
tion outputs and we include example R scripts in case 
study distributions (VERIFY.R). Section 3.11 in Data S1 
and Appendix B of Data  S1 show application of these 
scripts in case studies 1 and 2. We demonstrate that 

F I G U R E  6   QSP model of mRNA vaccines. The map provides overview of biological processes included into the model. The model 
of 426 ODEs is represented by 2510 visual objects visualizing relationships between state variables, compartments, parameters, and 
assignments. The diagram of this size cannot be shown with all detail. Therefore, the modules are created in “wireless” mode, where edges 
connected to module interfaces are shown only when the module is selected. Figure shows expanded and selected module representing 
naïve T-cells. The user can examine equations governing naïve T-cell dynamics and see connections representing egress from lymph node 
and circulation between peripheral and vascular blood. Figure legends were also created within the QSP Designer, using empty modules. 
Thus, the figure shows top level view in user interface, which can be zoomed and expanded to access every detail of the model. The same 
file is also used for simulation code generation guaranteeing consistency of visual and mathematical representation. PBPK, physiologically-
based pharmacokinetic; QSP, Quantitative Systems Pharmacology.
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for two complex QSP models and different parameter 
inputs simulation of MATLAB, R, and Julia code ex-
ports results in time profiles overlapping with simula-
tion in the QSP Designer (root mean square deviations 
in a range of 1e-8–1e-4). We conclude that simulations 
with model code exported from the QSP Designer are 
practically indistinguishable between different code 
exports and built-in numerical engine. Moreover, if 
the specific context of use requires verification of code 
export for specific model, we show that it can be eas-
ily implemented and automated for repeated compari-
son of simulation profiles. We also note that automatic 
code export offers unique opportunity of demonstrating 
that the model produces the same results with differ-
ent ODE solvers, which can be very useful evidence in 
the technical verification step of model qualification 
process.

DISCUSSION

A major motivation for the development of the QSP 
Designer was to create a graphical model editor expand-
ing on functionality available in existing tools as well as 
providing model code export to multiple mathematical 
modeling environments. Graphical model building has 
been widely adopted in engineering and Systems Biology 
and has already been recognized as an important tool in 
QSP. SimBiology and MoBi, two popular tools in the field, 
provide graphical model editors, using bipartite graph no-
tation, where state variables are represented as chemical 

species connected through reactions representing rate 
laws. The QSP Designer further expands this capability by 
introduction of modules and arrays.

We demonstrate, with three case studies, how modules 
facilitate presentation of the model at different levels of 
granularity for different expert communities involved in 
drug development project. The high-level representation 
can be used to visualize biological interactions, without 
showing mathematical model details. This is useful when 
discussing model with biologists and seeking their ap-
proval of scope, granularity, and congruence of assumed 
mechanisms with knowledge of underlying biology. 
Modules allow representation of interactions in an inter-
action network graph, rather than bipartite graph format 
more common in diagrams used in biology literature. The 
modules also allow “wireless” visualization mode, where 
interactions are shown only upon selection of the module. 
This way of presenting the model may be the best option 
for very large platform models where an informative dia-
gram could not have been created otherwise due to over-
lapping edges.

When discussion of scope and qualitative assumptions 
is completed, modules can be expanded to present the 
model to modeling experts. Here, bipartite graph nota-
tion is used with clear distinction between state variables 
(species), parameters, and rate law terms (reactions). We 
decided to adopt notation motivated by Extended Petri 
Nets, where the modifier edge connecting a species to a 
reaction indicates that the value of state variable is used 
as a parameter and not changed in the ODE system. This 
is different from the notation used in SimBiology, where 
ODE terms increasing and decreasing state variables are 
added to represent this situation. We believe that notation 
used in the QSP Designer leads to simpler mathematical 
representation of the model. The modifier edge is also 
used to connect parameters to reactions and assignments 
thus enhancing visualization of parameter dependencies. 
Although many modelers prefer typing ODEs directly into 
the mathematical modeling environment, it is our expe-
rience that model building in bipartite, species/reaction, 
graph editor with formal unit dimensionality validation 
is faster and less error prone. For example, the rate law 
term is created once as a reaction and then connected to 
all state variables it modifies, rather than having to be cop-
ied multiple times across the code as positive or negative 
contribution in multiple ODEs. It is also our experience 
that visualization of parameter dependencies is frequently 
advantageous for model communication to expert model-
ers over browsing of model code.

The modules with clearly defined interfaces provide 
a powerful tool for modelers in the sense of introducing 
object-oriented concepts into graphical model build-
ing. Parts of the model can be created by different team 

F I G U R E  7   Example application of mRNA vaccine model. Plot 
shows ratio of anti-receptor binding domain IgG to the geometric 
mean of convalescent serum concentrations, plotted by red 
horizontal line. The model was calibrated with mRNA-1273 data 
and used to predict antibody response for third dose administered 
after 1 year. The black lines show simulation results for 85 virtual 
patients. Colored lines show clinical data available for first 
120 days. A 100 ug dose was given at days 0, 28, and 365.
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members and encapsulated into modules. Interfaces fa-
cilitate re-use of the modules across different models. A 
team member using a submodel they did not build can 
focus on understanding inputs and outputs rather than 
all details. This way of working is further facilitated by 
allowing import of models from separate workspace 
files. Import functionality allows individual namespaces 
in models, which are composed, as well as definition 
of which variables and parameters can be accessed 
(equivalent of “public” and “private” in object-oriented 
programming).

All three case studies used models where mechanis-
tic knowledge dictated combinatorial explosion of state 
variables and interactions. In the case studies 1 and 3, 
binding of MHC II receptors produced by six HLA al-
leles to multiple T-cell epitopes required creation of 
6*j (where j is number of epitopes) copies of binding 
reaction network, all contributing to total number of 
MHCII:peptide complexes. Case study 2 presents Monod-
Wyman-Changeux mechanism of allosteric conforma-
tional changes of calmodulin upon binding calcium at 
three binding sites and binding two ligands at one site 
which requires construction of 195 ODEs with 1408 rate 
law terms. It is our experience that these examples rep-
resent a frequent, rather than unusual situation (other 
examples: PBPK models for multiple tissues, compounds 
and antibody-drug conjugates, and polymerization reac-
tions). The number of reactions in these models makes 
manual generation of ODEs impractical or impossible 
and modelers usually apply ad hoc scripting to automati-
cally generate model code. This practice is not only error 
prone, but also precludes visualization with informative, 
manually edited diagram. Motivated by these and other 
examples, we introduced model element arrays into our 
graphical modeling language. The user can attach an 
index with a list of values to a species or parameter and 
the software automatically creates ODEs. Case study 2 
shows the additional syntax of reaction definitions that 
allows creation of arbitrary models using species and 
parameter arrays to handle combinatorial explosion. 
The modeler using the QSP Designer can create large 
numbers of ODEs automatically, without the need for 
creating an ad hoc script. They can also create an in-
formative model layout, where intuitive index notation 
helps to visualize multiple occurrences of the same sub-
model structure. Similar functionality is also available in 
Colored Petri Nets implemented in Snoopy software, but 
graphical representation of array indices is not provided. 
We believe that indices and arrays are a unique novel 
feature of the QSP Designer significantly facilitating 
model building and communication in a large number 
of cases.

Although the QSP Designer includes a computational 
engine allowing simulation and parameter estimation 
within its GUI, it can also be used to export model code 
to R, R with model equations in C, MATLAB, and Julia. 
We export full model code rather than calls to an API. 
This means that the code can be used independently of 
the QSP Designer. This is a different strategy from MoBi, 
which provides R and MATLAB APIs allowing running 
model executed in MoBi. Whereas the SimBiology model 
editor provides MATLAB code very closely integrated 
with MATLAB, the model cannot be used without the 
SimBiology toolbox. In addition, contrary to the QSP 
Designer, SimBiology does not support mathematical 
modeling environments other than MATLAB. We are 
not aware of graphical model editors for the QSP Models 
in Julia. The pumas20 environment does not provide a 
model editor. Thus, the QSP Designer provides a unique 
solution, where the model is built once in a GUI with 
unit dimensionality verification and exported to multi-
ple mathematical modeling environments. Availability 
of a full model code, rather than calls to an API allows 
user full examination of the numerical code as well as 
more flexibility in adapting this code for use in custom 
algorithms.

We are aware that use of exported code may necessitate 
its verification, thus introducing additional step in model-
ing workflow. We demonstrated above that exported code 
can be verified by automated comparison with time pro-
files generated by the stand-alone QSP Designer. It is our 
experience, that, in many applications, benefits of using ex-
ported code by far outweigh the cost of this relatively sim-
ple verification step. For example, the modeling team may 
be interacting with a client who requires the model to be 
run within their pipeline implemented in a specific mod-
eling language. It is much easier for the modeling team to 
export the final model to the code, verify it, and distribute 
it to the client, than to change their modeling environment 
for the purpose of a specific project. Distribution of the 
model in open-source modeling language like Julia or R 
may be attractive for regulators. In this case, demonstration 
that exported code and the QSP Designer used for develop-
ment produce the same results, within the qualified range 
of parameters, adds very little additional work compared to 
the effort dedicated to other qualification steps. In another 
scenario, the team including members with experience in 
different modeling environments may wish to adopt spe-
cific toolboxes or legacy code to solve parameter estima-
tion challenges, which are otherwise difficult to solve. The 
benefit of solving difficult problem with a specific legacy 
code running an exported model by far outweighs the cost 
of having to verify that time profiles of exported code and 
original model are indistinguishable. In the application 
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where the QSP Designer is used solely as a graphical edi-
tor of the model, which will be calibrated and simulated in 
R or Julia, demonstration of equivalence with stand-alone 
numerical engine, not used in the project, is not necessary. 
Finally, automatic code export offers unique capability of 
demonstrating that model produces the same results with 
different ODE solvers, which can be very useful evidence in 
technical verification step of model qualification process. 
We would also like to note that the QSP Designer contains 
a comprehensive set of features that might be expected in 
a graph editor. The user can define edit points on the edges 
and decide whether they are connected with straight or 
curved lines. The editor contains an undo feature, with a 
sophisticated queue interface allowing full flexibility with 
revoking unwanted changes. All textboxes where formulas 
are edited provide predictive text completion. There is au-
tomatic updating of user-defined expressions in response 
to changes to variable names, as well as simplified, par-
tially automatic transfer of values in arrays on changes to 
index ranges. There are both quick and advanced search 
interfaces. Syntax, unit, and other error messages displayed 
during verification are linked to graph objects and, where 
relevant, provide error highlighting within associated ex-
pressions. The graph and spreadsheet interfaces are also 
fully linked. Workspace import functionality includes 
a range of graphical overviews of the graphs formed by 
imports in workspaces that are themselves imported, etc. 
Different types of import that allow for one global copy 
or multiple copies of the same workspace to be used are 
supported, as well as the ability to inject variables from 
the importing workspace into the imported workspace. 
Although many of these features are available in MoBi 
and SimBiology editors, the QSP Designer provides a more 
comprehensive, integrated toolbox.

In conclusion, we present the QSP Designer, a QSP 
model editor with enhanced graphical notation, which 
enables hierarchical presentation with modules and han-
dling of combinatorial complexity with diagram node 
arrays. Whereas the software includes a simulation en-
gine its major feature is full model code generation in 
MATLAB, R, C, and Julia to support multiple modeling 
communities. We believe that the QSP Designer could be a 
software of choice for creation of large scale QSP platform 
models and analysis of these models with bespoke work-
flows integrating the strengths of multiple mathematical 
modeling communities.
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