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Abstract

Neurons adjust their intrinsic excitability when experiencing a persistent change in synaptic drive. This process can prevent
neural activity from moving into either a quiescent state or a saturated state in the face of ongoing plasticity, and is thought
to promote stability of the network in which neurons reside. However, most neurons are embedded in recurrent networks,
which require a delicate balance between excitation and inhibition to maintain network stability. This balance could be
disrupted when neurons independently adjust their intrinsic excitability. Here, we study the functioning of activity-
dependent homeostatic scaling of intrinsic excitability (HSE) in a recurrent neural network. Using both simulations of a
recurrent network consisting of excitatory and inhibitory neurons that implement HSE, and a mean-field description of
adapting excitatory and inhibitory populations, we show that the stability of such adapting networks critically depends on
the relationship between the adaptation time scales of both neuron populations. In a stable adapting network, HSE can
keep all neurons functioning within their dynamic range, while the network is undergoing several (patho)physiologically
relevant types of plasticity, such as persistent changes in external drive, changes in connection strengths, or the loss of
inhibitory cells from the network. However, HSE cannot prevent the unstable network dynamics that result when, due to
such plasticity, recurrent excitation in the network becomes too strong compared to feedback inhibition. This suggests that
keeping a neural network in a stable and functional state requires the coordination of distinct homeostatic mechanisms that
operate not only by adjusting neural excitability, but also by controlling network connectivity.
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Introduction

Neuronal and synaptic properties exhibit ongoing plasticity

during both early development and adult life: neurons show

continuous turn-over of ion channels, synapses are formed and

eliminated, and existing synaptic connections are altered by

processes such as long-term potentiation and depression [1,2]. At

the same time, the firing rate output of a neuron has a limited

dynamic working range. Typically neurons are in a quiescent state

when input levels are low, whereas the output of the neuron

saturates when input levels are high. A neuron can only transmit

changes in its input when it functions within its dynamic range,

hence, it should avoid both the quiescent and the saturated

regime. A neuron can achieve this by employing feedback mech-

anisms that sense the neuron’s activity level and dynamically

match its intrinsic excitability to the overall level of synaptic input.

Indeed, experiments have demonstrated that neurons regulate

membrane properties in response to altered input levels, thereby

changing their intrinsic excitability on a time scale of many hours

to days [3–9]. Recent experiments showed that such homeostatic

scaling of intrinsic excitability (HSE) can also occur over tens of

minutes [10,11], suggesting a prominent role in neural functioning

on different time scales.

It is often hypothesized that HSE not only serves to keep

neurons within their dynamic range, but that it also promotes

stability of the local network in which the neuron resides.

However, adaptation of intrinsic excitability at the single neuron

level could also adversely affect the dynamics at the network level.

This is particularly relevant in highly recurrent networks of

excitatory and inhibitory neurons, which are ubiquitous through-

out the central nervous system. Experimental and theoretical work

has illustrated that such networks show a delicate balance between

excitation and inhibition for maintaining network stability [12–

14]. Disturbance of this balance can lead either to quiescence, or

to a state in which neurons fire at maximal rates or show

synchronized discharges. Hence, also the dynamics at the network

level determine whether a neuron can operate within its dynamic

range, and importantly, HSE at the single neuron level could

interfere with stability of the network.

Here we investigate the requirements for stability of a recurrent

network of excitatory and inhibitory neurons showing HSE. We

then examine the capacity of HSE to compensate for various

plasticity processes in the neural network, and keep the entire

network in a stable, functional state, such that all cells operate

within their dynamic range. Inspired by the experimental results of

[10,11] we implement HSE as activity-dependent shifts of the

neural response function. The shifting of the response functions

occurs in such a way that the time-averaged output of a cell

remains within its dynamic range. We simulate recurrent networks

of excitatory and inhibitory leaky integrate-and-fire neurons that
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implement HSE. The adapting recurrent network is analyzed

using a mean-field approach, describing the activity levels of

interacting excitatory and inhibitory neurons at the population

level. The mean-field analysis shows the requirements for stable

functioning of a HSE controlled recurrent network, thereby also

indicating the types of plasticity for which HSE can compensate.

Finally, we test the predictions of the mean-field analysis with the

spiking network model and illustrate the functioning of HSE for

different (patho)physiologically relevant forms of plasticity.

Results

Stability requirements for a recurrent network with HSE
We constructed a neural network model consisting of pop-

ulations of recurrently connected excitatory (e-cells) and inhibitory

neurons (i-cells), both receiving excitatory input from external

sources (figure 1A). The neurons are leaky integrate-and-fire cells

to which we added a mechanism that implements HSE. This

mechanism uses a slow (calcium-like) variable that signals the

recent output activity of the cell. In turn, this slow variable up- or

downregulates a membrane conductance gM at a time scale

controlled by tge and tgi for e-cell and i-cells, respectively. The

adaptation time scale is considered to be on the order of tens of

minutes. Up- or downregulation of gM results in, respectively,

right- or leftward shifts of the neural response function (figure 1B).

The slow variable regulates gM in such a way that the time-

averaged output level of the cell remains close to a target value,

which we set to 2 Hz for e-cells and to 8 Hz for i-cells (see

Methods).

Stability of a network with HSE depends crucially on the

relationship between the adaptation time scales of the e-cells and

the i-cells. We illustrate the dynamics of a network with HSE in

response to a persistent increase in the external drive to both the e-

cells and the i-cells (figure 1C–D). The network is initialized in an

adapted state where each cell has a time-averaged firing rate that is

close to its target value. We define r as the ratio of the adaptation

time scale of the i-cells to the e-cells (see Methods). First, we

consider a network where r~2:5, hence the i-cells adapt 2.5 times

more slowly than the e-cells (figure 1C). After two minutes of

simulated time, the mean external drive to the network is

increased by 50%. This causes an instantaneous increase in the

firing rates of cells in both populations. To maintain their time-

averaged activity levels, both cell types decrease their excitability

by slowly increasing gM over the course of *10 minutes (figure 1C,

bottom panel). As a result, the time-averaged activity levels of the

cells gradually approach their target levels.

We next set the adaptation time scale ratio r to 1, i.e., both cell

types adapt on the same time scale (figure 1D). Following the step

increase in the external drive to the network, the network activity

again increases instantaneously, and, as a consequence, all cells

decrease their excitability (by increasing gM) to keep their time-

averaged activity levels close to the target levels (figure 1D, bottom

panel). However, this now leads to unstable network dynamics

with both population rates increasing even further. The activity

levels keep increasing, until the network abruptly falls silent, after

which the network activity slowly builds up again.

The ability of the network to adapt in a stable manner to

changes in external drive increases with r. For a range of values of

r, we determined the maximum step in external drive to which the

network could adapt without showing the unstable dynamics

depicted in figure 1D. In fact, the network shows a gradual

transition between stable and unstable responses when r is varied

(figure 2A). Hence, we needed to define a criterium for what we

consider a stable network response. Upon a step in external drive,

the network activity shows an instantaneous increase, which,

during a stable response, subsequently decays back to its target

level. We define the response as unstable, when, after the initial

instantaneous increase, the activity level grows by more than 50%
(figure 2A, dotted line). For each value of r, we determined how

large the increase in external drive could be without the activity

level exceeding this limit (figure 2B, filled circles). The larger r
(i.e., the slower i-cells adapt), the larger the increases in external

drive that the network can stably adapt to. When i-cells adapt 2

times more slowly than e-cells (r~2), the external drive to the

network can increase by *100% without the network losing

stability. The network is intrinsically unstable when r is smaller

than a critical value (rv0:9); with such small r, the noise in the

network activity is sufficient to produce unstable dynamics as in

figure 1D.

We found the same relationship between r and network stability

when varying other key parameters in the network model. Slowing

down the adaptation rates for all cells by a factor five, resulted in

the same relationship between r and the maximum input increase

(figure 2B, squares), confirming that it is indeed the ratio of the

adaptation time scales that is important for the stability of the HSE

controlled network. Next we tested whether the relationship is

affected by the size of the network model by increasing the number

of neurons in the network from 1000 to 5000. Also under these

conditions we found the same relationship between r and the

maximum input step (figure 2B, triangles). In the above

simulations, all cells within a population used the same target

activity level. In a final series of simulations we tested the effect of

introducing a distribution of target rates within the excitatory and

the inhibitory population, using a standard deviation of 0.75 and

3 Hz around the mean target rates of 2 and 8 Hz for e-cells and i-

cells, respectively. Again, we observed the same relationship

between r and the maximum increase in external drive (figure 2B,

open circles).

Experimental work has demonstrated that i-cells in, e.g.,

neocortical and hippocampal recurrent networks are very diverse

with respect to their intrinsic properties [15,16]. It is therefore

Author Summary

The central nervous system is continuously adapting to a
wide variety of input signals. Single neurons receive from
one to thousands of input signals and need mechanisms
to prevent their output activity from locking up in
quiescence or saturation. One experimentally observed
mechanism is homeostatic scaling of neuronal excitability
(HSE), which adapts neuronal responsiveness at the time
scale of minutes. Most neurons function in networks of
excitatory and inhibitory cells. Maintaining stability of
activity in such networks is highly relevant, because
deviations can result in pathologies like epilepsy. Can
HSE control output activity of single neurons without
interfering with network stability? To address this question
we implement HSE in a neuronal network model. We show
that stable functioning of HSE requires that the adaptation
rate of the inhibitory cells is slower than that of the
excitatory cells. We subsequently investigate various
changes in network organization that demand adaptation
by HSE, showing that HSE can successfully control activity
levels as long as feedback excitation is not stronger than
feedback inhibition. This suggests that maintaining stable,
functional networks requires the coordination of distinct
homeostatic mechanisms, acting not only through adjust-
ments of single cell responsiveness, but also by controlling
network connectivity.

Homeostatic Scaling of Excitability in Networks
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relevant to examine how the stability requirements for a recurrent

network with HSE are affected when the network includes mul-

tiple populations of different types of i-cells. A detailed exam-

ination of such a complex network is beyond the scope of this

study. We restrict ourselves to the scenario where the i-cell

population consists of two subpopulations that adapt on different

time scales. Figure 3A shows the response of the e-cells and the two

types of i-cells to a 100% step increase in the external drive to all

cells. In this simulation, 50% of the i-cells adapt on a time scale that

is two times faster than the e-cells (i.e., r~0:5), whereas the other

50% of the i-cells do not adapt on the depicted time scale of

25 minutes. In contrast to the results presented above (see figure 2),

the network remains stable with such small r when adapting to such

a large perturbation. The time-averaged activity levels of the e-cells

(black curves) and adapting i-cells (red curves) reach their target

levels through adjustments of their excitability, while the activity

level of the non-adapting i-cells (magenta curves) remains elevated.

We next varied the relative size of the two i-cell subpopulations

and determined the value of r that is required for stable adaptation

to a 25% increase of the external drive to all cells (figure 3B). The

results show that the smaller the population of adapting i-cells is, the

faster they can adapt without destabilizing the adaptation dynamics.

No unstable network responses occur when fewer than 30% of i-

cells adapt. Hence, a subpopulation of i-cells can adapt much faster

than the e-cells, as long as another sufficiently large subpopulation

of non-adapting (or, slowly adapting) i-cells guarantees stability of

the HSE controlled network.

In summary, stable functioning of a recurrent network with HSE

depends crucially on how fast inhibitory cells adapt compared to

excitatory cells. The slower inhibitory cells adapt, the more robust

the network is to persistent changes in external drive levels.

Mean-field analysis of a recurrent network with HSE
To determine the precise requirements for stability of a recurrent

network with HSE and the types of plasticity it can cope with, we

next analyze the network using a mean-field description. Details of

the analysis can be found in the Methods. What follows is a

summary of the approach and the main results. We consider a

recurrent network consisting of one excitatory and one inhibitory

population, both receiving input from external sources (figure 4A).

Activity of the excitatory population, E(t), and the inhibitory

population, I(t), is determined by the excitatory external inputs

(ee(t) and ei(t), respectively) and by the recurrent interactions in the

network through the positive weights Jee, Jei, Jie, and Jii. The

population activities in the network evolve according to

te
dE(t)

dt
~ge ee(t)zJeeE(t){JeiI(t){Se(t)½ �z{E(t)

ti
dI(t)

dt
~gi ei(t)zJieE(t){JiiI(t){Si(t)½ �z{I(t),

ð1Þ

where te and ti are the time constants of the dynamics of the two

populations. To make analysis of the network simpler, we describe

Figure 1. Stable and unstable dynamics of a recurrent network showing HSE. A: Schematic of the network model with e-cells (white circles)
and i-cells (red circles) receiving input via recurrent network connections and via excitatory projections from outside the network. B: HSE mechanism
operates by shifting the neural response function. The firing rate of an e-cell receiving DC current input is shown (solid line). An increase of the
membrane conductance gM leads to a rightward shift of the response function (dashed line), making the cell less excitable. Decreasing gM results in a
leftward shift of the response function (dotted line), increasing the cell’s excitability. C–D: Response of a recurrent network with HSE to a persistent
increase in the external drive (top trace) by 50%. In C the i-cells adapt 2.5 times more slowly than the e-cells (r~2:5). In D both cell types adapt on
the same time scale (r~1). Top panels show the population mean of the instantaneous firing rates of the e-cells (black) and i-cells (red), computed
for 1 second bins. Bottom panels show population mean of gM of the e-cells (black) and i-cells (red). The compound external drive to e-cells and i-
cells before the input increase is 1.2 kHz.
doi:10.1371/journal.pcbi.1002494.g001

Homeostatic Scaling of Excitability in Networks
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the response function of each population by a threshold-linear

function g½x�z, where g½x�z~0 if xƒ0, and g½x�z~gx if xw0,

with gains ge and gi for the excitatory and inhibitory population,

respectively. To implement the HSE mechanism, we introduce the

variables Se(t) and Si(t). The mechanism operates via activity-

dependent shifts of the response functions, analogous to the single

cell HSE mechanism in the spiking network model. The HSE

mechanism shifts the response functions in such a way that the time-

averaged activity levels remain close to the target state (E?,I?), so

that both populations function within their dynamic range. The

variables Se(t) and Si(t) evolve as

Figure 2. Stable dynamics of HSE controlled networks depends
crucially on ratio of inhibitory to excitatory adaptation time
scales. A: Response of the excitatory population to a 100% increase of
the external drive to both e-cells and i-cells for three different values of
r, i.e., the ratio of inhibitory to excitatory adaptation time scales. Mean
firing rate of the e-cell population is determined in bins of 2 seconds.
The response of the adapting network is considered unstable (gray
area) when the population rate grows more than 50% compared to the
instantaneous increase following the input step. Note that the
adaptation rates are 15 times faster than in the simulations shown in
figure 1. B: Relationship between r and the maximum increase in
external drive that the network can stably adapt to. This relationship is
determined for: the standard network (see Methods) where all cells
within a population have equal target rates (filled circles); a network
where the adaptation rates are slowed down by a factor 5 (squares); a
network with 5 times as many neurons (i.e., 4000 e-cells and 1000 i-cells;
triangles); and a network in which the target rates of the individual e-
cells and i-cells were randomly chosen from a normal distribution with
mean 2 and 8 Hz and standard deviation 0.75 and 3 Hz, respectively
(open circles). The compound external drive to e-cells and i-cells before
the input increase is 1.2 kHz in the 1000 neuron network and 3.1 kHz in
the 5000 neuron network.
doi:10.1371/journal.pcbi.1002494.g002

Figure 3. Adapting to a persistent change in external drive to a
recurrent network that includes two types of inhibitory cells. A:
Response of a recurrent network with two types of i-cells: half of the i-
cells show HSE while the other half does not show HSE at the depicted
time scale. All cells are perturbed by a 1.2 kHz step increase in the
external drive (top trace). Top panel shows the population mean of the
instantaneous firing rates of the e-cells (black), the adapting i-cells (red),
and the non-adapting i-cells (magenta), computed for 1 second bins.
Bottom panel shows the population mean gM of the three populations.
The adaptation time scale ratio r of the (adapting) i-cells to the e-cells is
0.5. The compound external drive to all cells before the input increase is
1.2 kHz. B: Ratio of adaptation time scales r that is required for
adaptation dynamics to be stable when the fraction of all i-cells that
adapt is varied from 10% to 100%. The network is perturbed from its
adapted state (to a 1.2 kHz external drive) by a 0.3 kHz step increase of
the external drive to all cells. The same criterium for stability of the
adaptation dynamics is used as in figure 2.
doi:10.1371/journal.pcbi.1002494.g003

Homeostatic Scaling of Excitability in Networks
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tse
dSe(t)

dt
~E(t){E?

tsi

dSi(t)

dt
~I(t){I?,

ð2Þ

where tse and tsi determine the adaptation time scales for the

excitatory and the inhibitory population, respectively.

Our aim is to find the conditions for which the target state

(E?,I?) is stable, meaning that perturbations from this state

decay to zero. Since the adaptive process described by equation (2)

is much slower than the population dynamics that are governed by

equation (1), we can consider that equation (1) is always in steady

state at the time scale of adaptation. The behavior of equation (1)

has been studied many times in the past (see, for example, [12]). Its

stability is determined by a pair of conditions that guarantee that

inhibition in the network is strong enough to prevent runaway

excitation. These conditions do not depend on Se, Si, tse or tsi.

This implies that the activity-dependent shifts of the response

function cannot stabilize or destabilize the population dynamics

described by equation (1). Assuming that these stability conditions

are satisfied, we can now obtain the condition for network stability

at the time scale of adaptation:

tsi

tse
w

gi(geJee{1)

ge(giJiiz1)
: ð3Þ

This condition states that the adapting network remains stable

when recurrent excitatory coupling is weak (i.e., geJeev1), since

tsi=tse is always positive. However, in a network with strong

recurrent excitation (i.e., geJeew1), the ratio tsi=tse is central to

the stability of the adapting network, showing that the inhibitory

population needs to adapt sufficiently slow compared to the ex-

citatory population. This corresponds to our findings in the spiking

network model, since the ratio tsi=tse relates directly to the

parameter r. Note that the mean-field model shows an abrupt

transition between a stable and an unstable network response

when tsi=tse crosses a critical value. This contrasts with the spiking

network model, which – due to the nonuniform connectivity –

showed a gradual transition when varying r (see figure 2B). Since

we consider that the network parameters satisfy the stability

conditions for equation (1) (see Methods), we can simplify equation

(3) and find that the condition

tsi

tse
w

gite

geti

ð4Þ

guarantees stability of the adapting network. Hence, when

considering that the time constants (te and ti) as well as the

population gains (ge and gi) are of similar magnitude, we can state

that the adapting network remains stable as long as the inhibitory

population adapts more slowly than the excitatory population.

The process by which HSE can destabilize a recurrent network

is illustrated in figure 4B. The nullclines dE=dt~0 and dI=dt~0
are shown in the E,I -plane. Recurrent excitation is considered to

be strong (i.e., geJeew1) giving the dE=dt-nullcline a positive

slope. This strong recurrent excitation can potentially lead to

unstable adaptation dynamics, depending on the relative adapta-

tion time scales tsi and tse. The activity state of the network lies at

the intersection of the nullclines (open circle). The network activity

has been perturbed from the target state (E?,I?) (filled circle) such

that E(t) and I(t) are larger than E? and I?, respectively. It is

easiest to see how relatively fast adaptation of the inhibitory

population destabilizes the network by considering that tsi%tse.

Because I(t)wI?, the dI=dt-nullcline shifts rightwards (open

arrow), corresponding to a decrease of the excitability of the

inhibitory population. However, as a consequence the network

state (E,I) moves along the dE=dt-nullcline, away from the target

state. The increase of I(t) leads to further rightward shifts of the

dI=dt-nullcline and consequently to further increases of the

network activity. Hence, the network is destabilized when

adaptation of the inhibitory population is fast compared to that

of the excitatory population. In contrast, figure 4C demonstrates

that the network remains stable when the excitatory population

Figure 4. Connectivity and dynamics of the mean-field description of a recurrent network with HSE. A: Scheme of the structure of the
network model. The excitatory (E) and the inhibitory population (I ) connect to themselves (through Jee and Jii) and to each other (through Jei and
Jie). Both populations receive excitatory input from external sources (ee and ei). B–C: The E,I -phase plane showing the nullclines dE=dt~0 (solid line)
and dI=dt~0 (dashed line). The intersection of the nullclines gives the activity state of the network (open circle). The target state E?,I? is indicated
by the filled circle. Recurrent excitation is strong (i.e., geJeew1), giving the dE=dt-nullcline a positive slope. This strong recurrent excitation can lead to
unstable adaptation dynamics, depending on the relative size of the adaptation time scales of the inhibitory population, tsi, and the excitatory
population, tse (see equation (3)). Adaptation is unstable (B) when tsi%tse: the dI=dt-nullcline shifts rightward (open arrow) to decrease excitability of
the inhibitory population, thereby moving the network activity state along the dE=dt-nullcline away from the target state (filled arrow). Adaptation is
stable (C) when tsi&tse : the dE=dt-nullcline moves downward (open arrow) to decrease excitability of the excitatory population and the activity state
moves along the dI=dt-nullcline toward the target state (filled arrow).
doi:10.1371/journal.pcbi.1002494.g004

Homeostatic Scaling of Excitability in Networks
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adapts faster than the inhibitory population (tsi&tse). Now the

dE=dt-nullcline shifts downwards to decrease the excitability of the

excitatory population (open arrow), and as a result, the network

state moves toward the target state (filled arrow).

Summarizing, the mean-field analysis of adapting recurrent

networks shows that HSE can keep the time-averaged activity

levels of the neural populations within their dynamic range. HSE

achieves this for any type of network plasticity that does not

destabilize the fast population dynamics. Stability of the ad-

aptation dynamics itself depends critically on the relationship

between the adaptation time scales of the two neuron populations

combined with the gains of their respective response functions.

HSE keeps cells within their dynamic range for various
forms of plasticity

The previous sections were focussed on the requirements for

HSE to function stably in a recurrent network. Considering that

the purpose of HSE is to keep the time-averaged activity of cells

within their dynamic range in the face of ongoing plasticity, we

next examine the response of the spiking network model to various

(patho)physiologically relevant types of plasticity. We first de-

termine the response of both a non-adapting network and a

network with HSE to varying levels of external drive. Subse-

quently we focus on three changes in network parameters that

affect the excitation-inhibition balance. The balance between the

recurrent excitatory and inhibitory input is crucial to network

stability as many theoretical studies have demonstrated in the past

[14,17–20]. We determine how the various parameters affect the

network activity, to what degree a network with HSE can adapt to

changes in these parameters, and how these parameters affect the

requirements for stable adaptation dynamics.

Adapting to persistent changes in external drive. First,

we consider the steady state response of a recurrent network to

a persistent change in the external drive. Note that the level of

external input is expressed in the compound external drive to each

cell (in kHz). Different levels of this external drive can represent

both changes in the frequency of the external input as well as

changes in the number of external inputs that project to the cells.

The non-adapting network shows an approximately linear

relationship between the output of both the e-cells and i-cells and

the external drive (figure 5A). The firing rates show a wide

distribution (median and 5%–95% percentiles), because the

number of recurrent inputs that the cells receive is variable

(410+16 mean and standard deviation). The large variability in

firing rates reflects that the neural output is very sensitive to the

balance of the excitatory and inhibitory input that a neuron

receives: some neurons are quiescent and others are highly active,

while the number of inputs to each neuron differs by only a few

percent. This emphasizes the need for homeostatic control of

neural activity in a recurrent network.

In the network with HSE, the time-averaged activity levels of all

neurons are indeed controlled over a wide range of external input

levels (figure 5B). The control of the intrinsic excitability in the

HSE network occurs via up- and downregulation of the membrane

conductance gM. The population mean gM of the e-cells and the i-

cells of the adapted network shows a linearly increasing relation

with the external drive (figure 5C). The variability in the number

of recurrent inputs that each neuron receives leads to a narrow

distribution of gM. For low compound external drive (v1 kHz),

the population mean gM of the e-cells and the i-cells becomes very

small, making the cells maximally excitable such that they can

produce their target firing rate output. However, when the

external input level becomes too low and gM approaches zero,

more and more cells cannot reach their target activity levels

anymore. In contrast, for high external input levels the cells can, in

theory, always decrease their excitability sufficiently by increasing

gM. When assuming that gM cannot increase further than 150 nS,

the maximal compound external drive for which the network can

adapt is *4 kHz.

The different levels of external drive to the network do not affect

the stability of the adaptation dynamics when the network receives

Figure 5. Adapting to persistent changes in external drive to
the recurrent network. Response of a non-adapting network and a
network with HSE to a range of external excitatory input levels to both
e-cells and i-cells. Since the number of external inputs and their
frequency are interchangeable in our model, the external excitatory
drive is expressed in the compound rate (in kHz). A: Median firing rate
of e-cells (left) and i-cells (right) in a network without HSE. Error bars
give 5%–95% percentiles. B: As in panel A for network with HSE. Dotted
lines at 2 Hz (left) and 8 Hz (right) give target rates of e-cells and i-cells.
C: Population mean gM of the e-cells (left) and i-cells (right) in the
network with HSE. Error bars give standard deviation. D: Required ratio
of adaptation time scales r for stable adaptation dynamics when the
network is perturbed from its adapted state characterized in panels B
and C. The perturbation consists of a 0.3 kHz step increase of the
external drive to all cells. The same criterium for stability of the
adaptation dynamics is used as in figure 2.
doi:10.1371/journal.pcbi.1002494.g005

Homeostatic Scaling of Excitability in Networks
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further perturbations (figure 5D). We determined the ratio of

adaptation time scales r that is required for stable adaptation

dynamics when the network is perturbed from its adapted state

(characterized in figure 5B–C). For all levels of external drive to

the network, a r of at least 1.4 to 1.6 is required for stable

adaptation to the perturbation, which consists of a 0.3 kHz step

increase of the external drive to all cells in the network.

In summary, for a wide range of external input levels, HSE can

keep the entire recurrent network in a functional state where all

cells operate within their limited dynamic range.

Adapting to persistent changes in the external drive to

excitatory cells. In the above section, the ratio of excitatory to

inhibitory input that each cell receives, changed little when varying

the level of external input, since the external input projects to both

the e-cells and the i-cells. However, external inputs to a local

neural network often target specific cell types (see, for example,

[21]). Plasticity in the number of these inputs (or, equivalently in

our model, persistent changes in the activity of these presynaptic

neurons) can affect the excitation-inhibition balance in the local

network. We examine this with the spiking network model by

varying the compound external drive to the e-cells, while keeping

the compound external drive to the i-cells constant.

Varying the drive to e-cells has strong effects on the activity of

the non-adapting recurrent network (figure 6A). A 50% increase in

the external drive to the e-cells from 1 kHz to 1.5 kHz leads to a

large increase in e-cell activity from *1 Hz to *25 Hz. In turn,

the e-cells also drive the i-cells to high activity levels. In contrast to

the non-adapting network, the time-averaged activity levels of both

e-cells and i-cells in the network with HSE remain close to their

target rates over a wide range of compound external input levels

(figure 6B). As the drive to the e-cells increases, the excitability of

the e-cells decreases (i.e., gM grows, figure 6C). The homeostatic

mechanism only fails when the external drive to the e-cells is so

low (v0:7 kHz) that gM approaches zero and the e-cells cannot

increase their excitability any further to reach the target activity

level.

Different levels of external drive to the e-cells have little effect on

the stability of the adaptation dynamics (figure 6D). To adapt to a

0.1 kHz step increase of the external drive to the e-cells, a r of at

least *1:2 is required for most levels of external drive to the e-

cells. The time scale ratio r can be smaller when only a fraction of

the e-cells is perturbed (figure 6E). However, even when only 5%

of the e-cells receive a perturbation consisting of a 0.3 kHz step

increase in external drive, the i-cells can adapt at most 50% faster

than the e-cells.

Thus, changes in the excitation-inhibition balance resulting

from changes in the external drive can have strong effects on

network activity levels. However, HSE can largely control for such

plasticity and maintain a functional network state.

Adapting to plasticity of the recurrent excitatory

connection strength. Plasticity of the strength of recurrent

excitatory connections is another biologically relevant source of

changes in the excitation-inhibition balance in a network. This can

result from learning processes, such as spike timing-dependent

plasticity [22,23]. We varied the strength of all recurrent excitatory

connections (equivalent to Jee in the mean-field model) in the

spiking network model and determined the resulting state in a

network with or without HSE. Note that under more realistic

conditions, synaptic plasticity is expected to result in increases

of some synaptic weights, while other weights decrease. As a

Figure 6. Adapting to persistent changes in the external drive to excitatory cells. Steady state response of the recurrent network when the
compound external excitatory drive to the e-cells ranges from 0.2 to 2.4 kHz, while the external drive to the i-cells is constant at 1.2 kHz. A: Median
firing rate of e-cells (circles) and i-cells (triangles) in the network without HSE. B: Median firing rate of e-cells (circles) and i-cells (triangles) in the
network with HSE. Dotted lines at 2 and 8 Hz give target rates of both cell types. C: Population mean gM of e-cells (circles) and i-cells (triangles) in the
network with HSE. D: Required ratio of adaptation time scales r for stable adaptation dynamics when the network is perturbed from its adapted state
(characterized in panels B and C). The perturbation consists of a 0.1 kHz step increase of the external drive to the e-cells. The same criterium for
stability of the adaptation dynamics is used as in figure 2. E: As in D, except that a perturbation of 0.3 kHz is applied to 5% to 100% of the e-cells. The
perturbations are applied to a network that is adapted to a compound external input level of 1.2 kHz.
doi:10.1371/journal.pcbi.1002494.g006
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consequence, part of the effects on the excitation-inhibition

balance would cancel.

Activity levels in the non-adapting network rise steeply when

increasing the recurrent excitatory synaptic weights above their

standard values (figure 7A; see Methods for standard values).

Decreasing the recurrent excitatory weights causes a gradual

decrease of the network activity levels. The HSE network is able to

maintain the time-averaged output levels for decreasing values of

the recurrent excitatory synaptic weights (figure 7B), which

requires only moderate changes in cell excitability (figure 7C).

The HSE mechanism also controls the time-averaged output levels

for limited increases of the recurrent weights. However, either with

or without HSE, the network becomes gradually more unstable

when the normalized excitatory weights are increased from 1 to

over 1.15, and starts showing highly synchronized discharges. We

quantified the irregularity of spiking activity in the network by

calculating the coefficient of variation (CV) of the interspike

interval (ISI) distribution of the e-cells (figure 7D). When recurrent

excitatory weights are set to their standard value (or smaller), the

mean CV is close to 1 in both the HSE controlled network and in

the network without HSE, reflecting the irregular, Poisson-like

firing statistics. When the recurrent excitatory weights are

increased, synchronized discharges occur increasingly often, which

is expressed in the rising CV. While HSE can control the time-

averaged activity levels, it cannot prevent these synchronized

discharges from occurring, hence the activity fluctuates between

low and high activity levels. These results agree with the mean-

field analysis, which showed that HSE cannot compensate for

parameter changes that make recurrent excitation too strong

compared to feedback inhibition; this destabilizes the population

dynamics determined by equation (1).

Stability of the adaptation dynamics is largely independent of

the strength of the recurrent excitatory weights (figure 7E). The

adaptation time scale ratio r needs to be larger than 1.5 when the

network adapts to a 0.3 kHz step increase of the external drive to

all cells in the network. Note that even when the weights are

decreased by 50%, recurrent excitation is still very strong and as a

consequence the adaptation dynamics still become unstable when

i-cells adapt too fast.

Summarizing, HSE is able to control activity levels in a re-

current network for decreasing strength of the recurrent excitatory

connections. However, it cannot prevent the loss of stability that

results when the strength of the recurrent excitatory connections

becomes too large.

Adapting to loss of inhibitory cells. A third important

parameter determining the excitation-inhibition balance in a

network is the ratio of the number of e-cells to i-cells. This ratio

can change over time because of pathological conditions, for

example, the decrease in the number of inhibitory cells resulting

from the cell-type specific cell loss in certain forms of epilepsy

[24,25]. In this final section, we examine the network response to a

decrease in recurrent inhibition resulting from the removal of i-

cells from the network.

Removing up to 20% of the i-cells in the non-adapting network

has little effect on activity levels (figure 8A). However, the

population activity levels increase rapidly when larger fractions of

i-cells are removed. In the network with HSE, the time-averaged

firing rates remain under control as an increasing fraction of i-cells

Figure 7. Adapting to plasticity of the recurrent excitatory connection strength. Response of the recurrent network when varying the
normalized strength of the recurrent excitatory connections from 0.5 up to 1.15 (see Methods for the standard values). A: Median firing rate of e-cells
(circles) and i-cells (triangles) in the network without HSE. B: Median firing rate of e-cells (circles) and i-cells (triangles) in the network with HSE. Dotted
lines at 2 and 8 Hz give target rates of both cell types. C: Population mean gM of the e-cells (circles) and i-cells (triangles) in the network with HSE. D:
Population mean coefficient of variation of the interspike intervals (CV) of the e-cells in the network without HSE (filled circles) and in the network
with HSE (open circles). E: Required ratio of adaptation time scales r for stable adaptation dynamics when the network is perturbed from its adapted
state (characterized in panels B and C). The perturbation consists of a 0.3 kHz step increase of the external drive to all cells in the network. The same
criterium for stability of the adaptation dynamics is used as in figure 2.
doi:10.1371/journal.pcbi.1002494.g007
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is removed from the network (figure 8B). The e-cells and the

remaining i-cells accomplish this by gradually decreasing their

excitability (figure 8C). However, when more than 20% of the i-

cells is removed, both the HSE controlled network and the

network without HSE become gradually more unstable on the fast

time scale of the population dynamics and start showing

synchronized discharges. These transitions between low and high

activity levels are reflected in the increased CV of the e-cell ISI

distributions (figure 8D). Hence, while HSE can still control mean

activity levels when more than 20% of i-cells are removed, it

cannot avoid the occurrence of the synchronized discharges.

These results agree with the mean-field analysis in which a

decrease in the number of i-cells corresponds to a decrease in the

weights Jii and Jei. When feedback inhibition becomes too small

compared to recurrent excitation, the network becomes unstable

at the time scale of the population dynamics described by equation

(1), and this instability cannot be counteracted by HSE.

Finally, the fewer i-cells are remaining in the network, the slower

they need to adapt to keep the adaptation dynamics stable (figure 8E).

When perturbing all cells in the network with a 0.3 kHz step increase

of the external drive, the adaptation time scale ratio r needs to be at

least 1.5 when no i-cells are removed from the network, and

increases up to 2.3 when 40% of the i-cells are removed.

Discussion

Recent experimental studies demonstrated activity-dependent

scaling of intrinsic excitability in cortical and hippocampal

excitatory and inhibitory neurons [3–11]. It is generally thought

that this process serves to compensate for the ongoing functional

and morphological plasticity in neuronal and synaptic properties

such that the intrinsic excitability remains matched to the synaptic

input level. In this way, homeostatic scaling of intrinsic excitability

(HSE) ensures that neurons operate within their limited dynamic

range, slowly adapting to specific average input levels, while

keeping up a high sensitivity to changes in synaptic input. In

addition, this process is thought to promote network stability.

Here, we explored the consequences of HSE implemented in

single cells on the stability of recurrent networks, and the ability of

HSE to facilitate adequate responses in a network that undergoes

several forms of long-lasting plasticity.

Experimental and theoretical work has demonstrated that

stability of recurrent networks requires a delicate balance between

excitation and inhibition [12–14]. A central issue in our study was

to determine the requirements for stable functioning of HSE in

such recurrent networks. Simulations with a model consisting of

spiking excitatory and inhibitory cells that implement HSE

demonstrated that the ratio of adaptation rates of the two cell

types is the key parameter determining the stability of HSE

controlled networks (figure 1C–D). The slower inhibitory cells

adapt, the larger the persistent changes in external drive to which

the network can adapt (figure 2). A mean-field model describing

the activity levels of interacting excitatory and inhibitory

populations allowed a mathematical analysis of the stability of a

network with HSE. The results confirmed that stability of the

adapting network critically depends on the ratio of the adaptation

rates of both populations. Assuming that the population gains and

the time constants of the population dynamics are similar, stability

of the adapting network is guaranteed when the inhibitory

population adapts slower than the excitatory population.

With the mean field model we could also demonstrate the

process by which HSE can destabilize a recurrent network

Figure 8. Adapting to loss of inhibitory cells from the recurrent network. Response of the recurrent network when up to 40% of the
inhibitory cells are removed. A: Median firing rate of e-cells (circles) and i-cells (triangles) in the network without HSE. B: Median firing rate of e-cells
(circles) and i-cells (triangles) in the network with HSE. Dotted lines at 2 and 8 Hz give target rates of both cell types. C: Population mean gM of the e-
cells (circles) and i-cells (triangles) in the network with HSE. D: Population mean coefficient of variation of the interspike intervals (CV) of the e-cells in
the network without HSE (filled circles) and in the network with HSE (open circles). E: Required ratio of adaptation time scales r for stable adaptation
dynamics when the network is perturbed from its adapted state (characterized in panels B and C). The perturbation consists of a 0.3 kHz step increase
of the external drive to all cells in the network. The same criterium for stability of the adaptation dynamics is used as in figure 2.
doi:10.1371/journal.pcbi.1002494.g008
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(figure 4B). In our model a HSE-induced decrease in excitability of

the inhibitory population paradoxically leads to increases in its

activity level. This process is closely related to a phenomenon

described by Tsodyks and colleagues [26], who showed that

inhibiting the inhibitory population in a recurrent network can

result in an increase of the inhibitory population activity. In our

HSE controlled network model, the ongoing adaptation reinforces

these changes in population activity levels, consequently leading to

unstable dynamics on the time scale of the homeostatic process.

The above requirements for stable adaptation dynamics are

relaxed somewhat if the inhibitory population consists of multiple

subpopulations of cells that adapt on different time scales. The

adapting network can then remain stable when a subpopulation of

inhibitory cells adapts faster than the excitatory cells, as long as

there is another sufficiently large subpopulation of inhibitory

cells that adapts more slowly (figure 3). To our knowledge, no

experimental studies have assessed the relative adaptation time

scales of excitatory cells and the various types of inhibitory cells

that have been described in recurrent networks [15,16]. In fact,

only few studies have examined the homeostatic changes in

intrinsic excitability of inhibitory cells when network activity levels

are manipulated [4,6,9]. Those studies demonstrated that two

inhibitory subtypes in cortical networks (parvalbumin-positive and

somatostatin-positive neurons) indeed show HSE. Our results

suggest that it is important for future experimental work to

examine the relative adaptation time scales of the various cell types

in recurrent networks. This could be particularly relevant for

pathological conditions in which networks show abnormal

dynamics, e.g., various forms of epilepsy (see also below).

Once we defined the requirements for stable functioning of

HSE in recurrent networks, a key question in this study was to

pinpoint forms of plasticity where HSE could be of relevance and

guarantee that neurons function within their dynamic range. The

results from the mean-field analysis imply that HSE can realize

control for any change in network parameters as long as these

changes do not destabilize the network dynamics described by

equation (1): the conditions that determine the stability of the

network at this fast time scale are not controlled by HSE

(equations (9) and (10)). Simulations with the spiking network

model showed that HSE can indeed adapt to persistent changes in

the external drive to the network (figure 5). The ability of HSE to

compensate for plasticity is particularly important when consid-

ering changes that affect the excitation-inhibition balance in the

network. The results showed that such changes have strong effects

on the activity of a non-adapting recurrent network. We tested

three biologically relevant sources of such plasticity. First we

showed that HSE can adapt the network to persistent changes in

external drive to only the excitatory cell population (figure 6). Such

gross modifications in input strength will be encountered as an

increase in total synaptic input during development, but also as a

decrease in the number of synaptic inputs during degenerative

diseases. We then showed that HSE can also cope with variations

in synaptic strength that could occur under normal physiological

conditions (figure 7). As a final example we illustrated how HSE

can control cell activity when (sub)classes of cells are eliminated, a

situation that is encountered in specific forms of epilepsy (figure 8).

These examples also illustrated that HSE will never prevent

network instabilities that occur when recurrent excitatory con-

nectivity becomes too strong, or for the same token, when the

strength of inhibitory feedback in the network becomes too weak.

The analytical as well as numerical results suggest that, in order

to compensate for ongoing plasticity, recurrent networks need, in

addition to HSE, mechanisms that control connectivity (e.g., the

number of inputs per cell) and synaptic efficacy (e.g., the mean

synaptic efficacy of inputs to the cell). Indeed, experiments have

demonstrated that the ratio of the number of excitatory and

inhibitory synapses onto pyramidal neurons is maintained [27,28].

Also, a series of studies have demonstrated a mechanism that

regulates the overall efficacy of the synapses impinging on a single

cell, a process known as synaptic scaling [29,30]. Like HSE,

synaptic scaling has been hypothesized to serve as a homeostatic

control mechanism for maintaining neural activity levels to keep

cells within their dynamic range. There are indications that

synaptic scaling is particularly relevant during development and

acts on a very slow time scale (hours to days). A key difference with

HSE is that in order to preserve the relative synaptic weights of all

synapses, synaptic scaling needs to be proportional for all thou-

sands of synapses over the dendritic tree of a neuron. This is

important as it is assumed that information is stored in the relative

weights of the synapses. The HSE mechanism in our study that

acts via up- and downregulation of ion channels that control

excitability, avoids this problem. It has not yet been investigated in

detail how synaptic scaling interferes with network stability (but see

[31]). It is important for future studies to determine how the

various homeostatic control mechanisms operate together and

maintain a functional neural network (for review, see [32]).

As a concluding remark, we want to emphasize that our results

suggest that a defect in the HSE mechanism can have severe

consequences for network functioning. For example, when ex-

citatory neurons cannot adapt effectively (e.g., because of a defect

in the molecular mechanism underlying HSE) the network can

become unstable or be in a state that is close to instability. Possibly

such defects are involved in certain pathologies, such as epilepsy.

It is important to realize that such defects are not necessarily

observable in either abnormal cell excitability or network con-

nectivity, but rather in the adaptation dynamics that accompany

ongoing plasticity. This suggests that it is important to consider the

adaptation properties of cells as a possible source of the abnormal

network dynamics seen in several pathologies.

Methods

Network model of spiking neurons
Network. The network parameters are based on a model

described in [33] that consists of 4000 e-cells and 1000 i-cells with

20% connection probability between any pair of cells. In most

simulations, we scale the number of neurons down by a factor five

to reduce simulation time, leading to a network of 800 e-cells

and 200 i-cells. The connection probability and weights of the

connections are adjusted according to rules derived by [34] to

compensate for the decrease in the number of connections in the

smaller network. This gives a connection probability of 41% for all

four connection types: e-cells to e-cells, e-cells to i-cells, i-cells to e-

cells and i-cells to i-cells. In addition to the 410+16 recurrent

inputs, the neurons also receive external excitatory input consisting

of independent Poisson spike trains with a given mean rate. The

default compound external drive to each neuron is 1.2 kHz.

Neurons. The neurons are modeled as leaky integrate-and-

fire neurons (LIF). The membrane potential Vi(t) of neuron i
evolves according to

C
dVi(t)

dt
~gi,ex(t) Eex{Vi(t)ð Þzgi,in(t) Ein{Vi(t)ð Þz

gi,M(t) EM{Vi(t)ð Þ,

with membrane capacitance C~0:5 nF for the e-cells and

C~0:2 nF for the i-cells. The total excitatory synaptic conduc-
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tance gi,ex(t) with reversal potential Eex~0 mV consists of the

sum of all excitatory synaptic conductances to neuron i (see below).

Equivalently, the total inhibitory synaptic conductance gi,in(t) with

reversal potential Ein~{70 mV consists of the sum of all

inhibitory synaptic conductances to neuron i. The spike threshold

is {52 mV, the reset potential is {59 mV, and the absolute

refractory period is 2 ms for e-cells and 1 ms for i-cells. The

voltage-independent membrane conductance gi,M(t) with reversal

potential EM~{70 mV is a variable in many of our simulations

(see below) and represents the sum of the various subthreshold

conductances that neurons possess. When simulating non-adapting

networks, gi,M is set to 25 nS for e-cells and 20 nS for i-cells,

yielding membrane time constants of 20 ms and 10 ms, respec-

tively.

Synapses. The excitatory AMPA-type synapses and the

inhibitory GABAergic synapses are modeled as conductance

changes that activate with a certain delay after the presynaptic

spike. The delays are determined by a uniform distribution between

0 and 2 ms. The time courses of the conductance changes are

modeled as the difference of two exponential functions (see, for

example, [33]). The rise and decay times are 0.5 and 2 ms,

respectively, for the AMPA synapse, and 0.5 and 5 ms, respectively,

for the GABA synapse. The peak conductances of both types of

synapses are taken from [33] and are scaled for simulations with the

smaller network of 1000 neurons (see above) according to the rules

derived in [34]. The values for the AMPA synapse are 3.8 nS

(external input to e-cells), 3.1 nS (external input to i-cells), 2.9 nS (e-

cells to e-cells) and 2.3 nS (e-cells to i-cells). For the GABA synapse

the values are 18.9 nS (i-cells to e-cells) and 15.1 nS (i-cells to i-cells).

At a membrane potential of {55 mV these peak conductances lead

to excitatory and inhibitory postsynaptic potentials of *0:8 mV

and *2 mV, respectively.

HSE mechanism. A mechanism is added to the LIF neurons

to implement the homeostatic scaling of intrinsic excitability. The

mechanism attempts to keep a neuron within its dynamic range by

keeping the time-averaged output activity close to a value that is

within the neuron’s dynamic range. Experiments in hippocampal

and cortical networks demonstrated that HSE typically leads to

changes of the input resistance and shifts of the neural response

function, while having little effect on the resting membrane

potential [6,7,9–11]. Inspired by these results, we implement HSE

as an activity-dependent regulation of the total subthreshold

membrane conductance gi,M(t). Varying gi,M(t) results in shifts of

the neural response function (see figure 1B, and, for example,

[35]), and determines the input resistance. We use a mechanism

for regulating gi,M(t) that is closely related to mechanisms

proposed in [36,37] for regulating ion conductance densities in

order to maintain specific firing patterns. A slow variable ai(t),
which could reflect an intracellular calcium concentration [38], is

added to the LIF neurons and evolves as

ta
dai(t)

dt
~{ai(t)z

X
j

DaSd t{t
j
i

� �
,

where d(t) denotes the Dirac delta function. The equation implies

that with every spike produced by neuron i, occurring at time t
j
i ,

the slow variable ai(t) is increased by a value DaS. In between

spikes ai(t) decays exponentially with time constant ta. Inspired by

experimental data on calcium dynamics, we set the values

ta~100 ms and DaS~150 nM [39]. The dynamics of ai(t) lead

to a linear relation between the time-averaged firing rate of neuron

i and the value of ai(t). Hence, we can now define a target value

ai,tr that is related to the target time-averaged firing rate of neuron

i. The conductance density gi,M(t) is upregulated when ai(t) is

larger than ai,tr and downregulated when ai(t) is smaller than ai,tr:

tA
dgi,M(t)

dt
~f (gi,M(t)) ai(t){ai,trð Þ, A~ge,gi

where the function f (gM) serves to bound gM(t) between 0 nS and

�ggM~150 nS. For 0vgMv�ggM we have f (gM)~gM(1{gM=�ggM),
and otherwise f (gM)~0. The time scale of adaptation for the cells

is determined by the constants tge (for the e-cells) and tgi (for the i-

cells) and the function f (gM). We define the ratio of the adaptation

time scales of i-cells to e-cells as r~
tgigMe(�ggM{gMe)

tgegMi(�ggM{gMi)
, where gMe

is the population average gM of the e-cells, and gMi is the

population average gM of the i-cells.

On the basis of data from [10,11], the adaptation time scales

should be such that adaptation evolves at the time scale of tens of

minutes to hours. It is important to realize that the network

activity will reflect input variations that occur on shorter time

scales. In many simulations we decrease tge and tgi by a factor

*15 to reduce simulation time, while making sure that this does

not affect the results (see figure 2B). In most simulations we set the

target time-averaged firing rates of the excitatory and the

inhibitory neurons to 2 and 8 Hz, respectively, based on the

typical low mean firing rates recorded in cortical neurons in vivo

(see, for example, [40,41]).

Mean field analysis of network showing HSE
We analyze the dynamics of an adapting recurrent network that

consists of an excitatory and an inhibitory population that both

receive excitatory input from external sources. Using a mean-field

approach we describe the average activity of the cells within each

population. The activity of the excitatory population E(t) and the

inhibitory population I(t) is determined by the excitatory external

inputs ee(t) and ei(t), respectively, and by the recurrent in-

teractions in the network through the positive weights Jee, Jei, Jie,

and Jii (see figure 4A). Assuming first order kinetics, the population

activities in the network evolve according to

te
dE(t)

dt
~ge ee(t)zJeeE(t){JeiI(t){Se(t)½ �z{E(t)

ti
dI(t)

dt
~gi ei(t)zJieE(t){JiiI(t){Si(t)½ �z{I(t),

ð5Þ

where te and ti are the time constants of the dynamics of the

excitatory and the inhibitory population, respectively. The

response function of each population is described by a threshold-

linear function g½x�z, where g½x�z~0 if xƒ0, and g½x�z~gx if

xw0, with gain g~ge for the excitatory population and g~gi for

the inhibitory population. The variables Se(t) and Si(t) are

introduced to implement the HSE mechanism (performing the

same role as gi,M(t) in the spiking network model), operating via

activity-dependent shifts of the response functions. We assume that

the HSE mechanism shifts the response functions in such a way

that the time-averaged network activity levels remain close to a

target state (E?,I?) in which both populations function within

their dynamic range. The variables Se(t) and Si(t) evolve as

tse
dSe(t)

dt
~E(t){E?

tsi

dSi(t)

dt
~I(t){I?,

ð6Þ
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where tse and tsi determine the time scales of the adaptation

process for the excitatory and the inhibitory population. We can

consider equation (5) in steady state at the time scale of adaptation

since the adaptive process described by equation (6) is much slower

than the population dynamics that are governed by equation (5).

The steady state solution of (5) is located at the intersection of the

nullclines dE=dt~0 and dI=dt~0. The nullclines are given by

E~{
ge(ee{JeiI{Se)

geJee{1

I~
gi(ei{JieE{Si)

giJiiz1
,

ð7Þ

where the activities E and I are strictly positive. The explicit

steady state solution reads

Ess~
ge(ee(giJii{giJeirz1){Se(giJiiz1)zSigiJei)

L

Iss~
gi(ee(geJie{geJeerzr){SegeJiezSi(geJee{1))

L
,

ð8Þ

where L:gegiJeiJie{(geJee{1)(giJiiz1) and r:ei=ee. Stability

of this solution requires that the matrix of coefficients of equation

(5) has eigenvalues with a negative real part. This is guaranteed

when

ti(geJee{1)

te(giJiiz1)
v1 ð9Þ

L

teti

w0: ð10Þ

We now assume that conditions (9) and (10) are satisfied and

thus that equation (5) has a stable solution. We can then use the

steady state values of equation (8) and substitute these in equation

(6) to formulate the evolution of the adaptation variables Se(t) and

Si(t) as

tse
dSe(t)

dt
~

ge(ee(giJii{giJeirz1){Se(t)(giJiiz1)zSi(t)giJei)

L
{E?

tsi

dSi(t)

dt
~

gi(ee(geJie{geJeerzr){Se(t)geJiezSi(t)(geJee{1))

L
{I?,

ð11Þ

We now want to determine the stability conditions for the solution

of equation (11). Stability of the solution, where both dSe=dt~0
and dSi=dt~0, requires that perturbations from the solution

decay to zero. Using the same approach as above, we can derive

the stability conditions:

tsi

tse

w

gi(geJee{1)

ge(giJiiz1)
ð12Þ

gegiL

tsetsi

w0: ð13Þ

Since we assume that condition (10) holds and we only allow

positive gains, condition (13) is always fulfilled. However,

condition (12) imposes extra restrictions on the stability of a

recurrent network with HSE. This condition will determine the

stability of the adaptation dynamics and, thus, whether the time-

averaged activity state of the network will approach the target state

E?,I?. Since we assumed that condition (9) holds, we know that

tsi

tse
w

gite

geti

ð14Þ

is a sufficient condition to fulfill inequality (12) and to guarantee

stability of the HSE controlled network.
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