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OBJECTIVE—Activation of extracellular signal–regulated ki-
nase-(ERK)-1/2 by cytokines in adipocytes is involved in the
alterations of adipose tissue functions participating in insulin
resistance. This study aims at identifying proteins regulating
ERK1/2 activity, specifically in response to inflammatory cyto-
kines, to provide new insights into mechanisms leading to
abnormal adipose tissue function.

RESEARCH DESIGN AND METHODS—Kinase activities
were inhibited with pharmacological inhibitors or siRNA. Lipol-
ysis was monitored through glycerol production. Gene expres-
sion in adipocytes and adipose tissue of obese mice and subjects
was measured by real-time PCR.

RESULTS—I�B kinase-(IKK)-� inhibition prevented mitogen-
activated protein (MAP) kinase kinase (MEK)/ERK1/2 activation in
response to interleukin (IL)-1� and tumor necrosis factor (TNF)-�
but not insulin in 3T3-L1 and human adipocytes, suggesting that
IKK� regulated a MAP kinase kinase kinase (MAP3K) involved in
ERK1/2 activation induced by inflammatory cytokines. We show
that the MAP3K8 called Tpl2 was expressed in adipocytes and that
IL-1� and TNF-� activated Tpl2 and regulated its expression
through an IKK� pathway. Pharmacological inhibition or silencing
of Tpl2 prevented MEK/ERK1/2 activation by these cytokines but
not by insulin, demonstrating its involvement in ERK1/2 activation
specifically in response to inflammatory stimuli. Importantly, Tpl2
was implicated in cytokine-induced lipolysis and in insulin receptor
substrate-1 serine phosphorylation. Tpl2 mRNA expression was
upregulated in adipose tissue of obese mice and patients and
correlated with TNF-� expression.

CONCLUSIONS—Tpl2 is selectively involved in inflammatory
cytokine–induced ERK1/2 activation in adipocytes and is impli-
cated in their deleterious effects on adipocyte functions. The
deregulated expression of Tpl2 in adipose tissue suggests that
Tpl2 may be a new actor in adipose tissue dysfunction in obesity.
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O
besity and type 2 diabetes are characterized by
an insulin-resistant state that could be due to
the development of an inflammatory state in
the adipose tissue (1,2). Indeed, adipose tissue

from obese subjects is infiltrated by bone marrow–derived
macrophages that largely contribute to the increased level
of proinflammatory cytokines, including tumor necrosis
factor (TNF)-� and interleukin (IL)-1�. These cytokines
could act locally to impinge insulin signaling and action in
adipocytes and could alter insulin action in liver and
muscles (2). Furthermore, TNF-� and IL-1� exert lipolytic
effects on adipocytes that participate in the increased free
fatty acid (FFA) level during obesity. A paracrine loop
involving FFAs and inflammatory cytokines between adi-
pocytes and macrophages would establish a vicious circle
that aggravates inflammatory changes in adipose tissue
and that worsens insulin resistance (3).

Although the exact mechanisms by which increased
inflammatory cytokines contribute to insulin resistance
and lipolysis are still unknown, it is now accepted that
activation of protein kinases such as I�B kinase (IKK) and
mitogen-activated protein (MAP) kinases including extra-
cellular signal–regulated kinase (ERK)-1/2 plays an impor-
tant role (2,4,5). Elevated activity of ERK is found in
adipose tissue or muscles of obese and insulin-resistant
rodents and humans (6,7). The ERK signaling pathway is
activated by various inflammatory cytokines including
TNF-� and IL-1� and is involved in insulin resistance in
adipocytes through an increase in insulin receptor sub-
strate (IRS)-1 serine phosphorylation and/or a decrease in
its expression (7–9). The ERK pathway is also involved in
cytokine-induced lipolysis in adipocytes (10 –12). An
important clue for the physiological importance of the
ERK pathway in insulin resistance came from the study
of genetically modified mice. Indeed, mice lacking the
MAP kinase ERK1 are protected from obesity and
insulin resistance when challenged on a high-fat diet
(13), and overexpression of the MAP kinase phospha-
tase-4/dual-specificity phosphatase (MKP-4/DUSP-9)
that dephosphorylates ERK1/2 protects against stress-
induced insulin resistance (14). Conversely, mice deficient
in p62, an ERK inhibitor, have a high basal level of ERK
activity and develop mature-onset obesity and insulin
resistance (15). However, depending on the stimuli, the
ERK outcome response is totally different, and this path-
way is involved in numerous effects in addition to inflam-
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mation and insulin resistance. Thus, the identification of
regulatory proteins that govern the activity of ERK specif-
ically in response to inflammatory cytokines may provide
important insights into mechanisms that promote meta-
bolic diseases, and these proteins could be potential
targets to alleviate these diseases.

MAP kinase and IKK/nuclear factor (NF)-�B pathways
often act synergistically to mediate cytokine action (16). It
is therefore possible that in adipocytes, proteins that
control cytokine-induced ERK activation are regulated by
the IKK/NF-�B pathway. One interesting candidate could
be MAP kinase kinase kinase (MAP3K), which regulates
ERK through the phosphorylation and activation of MAP
kinase kinase (MEK) (17), because some of these path-
ways have been involved in ERK activation selectively
downstream of innate immunoreceptors (18).

Therefore, the aim of the present study was to identify
kinases specifically involved in ERK activation by inflam-
matory cytokines in adipocytes and to address their impli-
cation in the alteration in adipocyte biology in obesity. We
report for the first time that the MAP3K8 called tumor
progression locus 2 (Tpl2) in mouse or Cancer Osaka
thyroid (Cot) in human (19) is expressed in adipocytes and
is specifically involved in ERK pathway activation by IL-1�
and TNF-�, whereas it is dispensable for ERK activation
by insulin. We provide the first evidence that the Tpl2
signaling pathway is implicated in cytokine-induced lipol-
ysis and IRS-1 serine phosphorylation. We showed that
Tpl2 mRNA expression is upregulated in adipose tissue of
obese subjects and rodents and that inflammatory stimuli
regulated Tpl2 expression.

RESEARCH DESIGN AND METHODS

Reagents. Dulbecco’s modified Eagle’s medium (DMEM) and FCS were
obtained from Invitrogen SARL (Cergy Pontoise, France). Insulin was ob-
tained from Lilly (Paris, France). Murine and human IL-1� and TNF-� were
from PreProtech (Neuilly, France). U0126, Tpl2 kinase inhibitor [4-(3-chloro-
4-fluorophenylamino)-6-(pyridine-3-yl-methylamino)-3-cyano-(1,7)-napthyridine]
(20,21), and IKK� inhibitor (InSolution IKK-2 Inhibitor IV) were obtained from
Calbiochem (La Jolla, CA). Tpl2 inhibitor acts as a potent, reversible, and
ATP-competitive inhibitor of Tpl2 with an IC50 of 50 nmol/l. It displays
significant selectivity over other related kinases such as EGF receptor, MEK,
mitogen-activated protein kinase–activated protein kinase-2 (MK2), p38, Src,
and protein kinase C. This inhibitor blocks lipopolysaccharide (LPS)-induced
TNF-� production in human monocytes with an IC50 of 700 nmol/l (21). IKK�
inhibitor (2-[{ami-nocarbonyl}amino]-5-[4-fluorophenyl]-3-thiophenecarbox-
amide) is a potent, selective, and ATP-competitive inhibitor that inhibits IKK�
activity in vitro (IC50 � 18 nmol/l) and prevents LPS-induced cytokines
production in monocytes. This inhibitor is at least 550-fold more selective for
IKK� versus other kinases, including p38, c-Jun NH2-terminal kinase (JNK),
and ERK2 (22,23). Proteasome inhibitor MG132 was obtained from Sigma-
Aldrich (St. Louis, MO). siRNA against Tpl2 and p65/NF-�B were purchased
from Dharmacon (Thermo Fisher Scientific, Waltham, MA). Polyvinylidene

difluoride (PVDF) membranes were purchased from Millipore (Bedford, MA).
Bicinchoninic reagent was obtained from Pierce Biotechnology (Rockford,
IL). Enhanced chemiluminescence reagent was purchased from PerkinElmer
Life Sciences (Boston, MA). All other chemical reagents were purchased from
Sigma-Aldrich.
Antibodies. Antibodies against Tpl2 and I�B were obtained from Santa Cruz
Biotechnology (Tebu, France). Antibody against IRS-1 was purchased from
Upstate Biotechnology (Waltham, MA). All other antibodies were purchased
from Cell Signaling Technology (Beverly, MA). Horseradish peroxidase–
conjugated secondary antibodies were obtained from Jackson Immunore-
search Laboratories (West Grove, PA).
Cells culture and differentiation. 3T3-L1 fibroblasts and human adipocytes
were grown and induced to differentiate in adipocytes as described (8,24).
Lipolysis. Glycerol content of the incubation medium was determined as an
index of lipolysis using a colorimetric assay (GPO-Trinder; Sigma, St. Louis,
MO). Lipolysis data were calculated as micrograms of glycerol per milligram
of protein.
Animals. Male ob/ob, db/db mice and their lean littermates (ob/� and db/�)
(Charles River Laboratories, St. Aubin les Elbeuf, France) were maintained on
a 12-h light, 12-h dark cycle and were provided free access to water and
standard rodent diet. Seven- to 10-week-old male C57BL/6 mice (Janvier, Le
Genest-St-Isle, France) were fed a standard diet (TD2016; Harlan) or a high-fat
diet (36% fat, TD99249; Harlan) for 15 weeks. Mice were killed by cervical
dislocation and epididymal fat pads were removed, freeze-clamped in liquid
nitrogen, and stored at �80°C. Principles of laboratory animal care were
followed, and the ethical committee of the Faculty of Medicine approved the
animal experiments.
Subjects population. Two populations were studied and their clinical and
biological characteristics are listed in Table 1.

Obese subjects without or with type 2 diabetes and healthy lean subjects
participated in the study. None of the lean subjects had impaired glucose
tolerance or a history of diabetes, obesity, dyslipidemia, or hypertension. The
type 2 diabetic patients interrupted, under medical control, their usual
antidiabetes treatment at least 1 week before the investigation. All studies
were performed after an overnight fast.

Morbidly obese women were selected through the Department of Digestive
Surgery (Nice Hospital), where they underwent an elective bariatric surgery.
Control subcutaneous adipose tissue was obtained from lean women under-
going lipectomy for cosmetic purposes.

Subcutaneous adipose tissue biopsies were taken during surgery or under
local anesthesia, immediately frozen in liquid nitrogen, and stored at �80°C.
The study was performed according to the French legislation regarding ethics
and human research (Huriet-Serusclat Law).
siRNA transfection. siRNA transfection in differentiated 3T3-L1 adipocytes
was performed by electroporation using a Nucleofector II system (Amaxa
Biosystems). Seven days–differentiated 3T3-L1 adipocytes were trypsinized
with 5 � trypsin/EDTA for 2 min at 37°C, and trypsinization was stopped with
DMEM, 10% calf serum supplemented with 4% glycerol. Cells (2 � 106 per
nucleofection sample) were centrifuged at 900g for 5 min. Pellet was
resuspended in Nucleofector Solution L (100 �l), mixed with siRNA (100
pmol), and transferred into an Amaxa cuvette, and nucleofection was done
using the program A-033. Then cells were seeded in a 12-well precoated plate
(collagen type I; Sigma) in DMEM and 10% FCS and were used 72 h after
nucleofection.
Western blot analysis. Proteins from lysates were separated by SDS-PAGE
and transferred to PVDF membranes as previously described (8). Membranes
were incubated with the indicated antibody, and horseradish peroxidase–
coupled anti-species antibodies were then added and chemiluminescence was

TABLE 1
Characteristics of the lean, obese, obese and diabetic, and morbidly obese subjects in the fasting state

Lean
population 1

Obese
population 1

Obese and type 2
diabetic

population 1
Lean

population 2
Morbidly obese

population 2

n 11 11 11 4 6
Sex (F/M) 3/8 2/9 2/9 4/0 6/0
BMI (kg/m2) 22.4 	 0.6 32.3 	 1.4* 32.6 	 0.9* 20.9 	 0.5 44.3 	 7.2†
Age (years) 44 	 4 45 	 5 54 	 2 37.2 	 11.3 32.0 	 8.5
Glucose (mmol/l) 4.91 	 0.19 5.50 	 0.11* 11.08 	 1.00*‡ 5.08 	 1.44 4.99 	 0.49
Insulin (mU/l) 6.70 	 0.90 13.05 	 1.89* 13.70 	 1.81* ND 10.67 	 3.11

Data are means 	 SE and were compared using the nonparametric Mann-Whitney test. *P 
 0.05; †P 
 0.01 vs. lean subjects; ‡P 
 0.05 vs.
obese subjects. ND, not determined.
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detected using a Fujifilm Las-3000 apparatus (Fujifilm Life Science, F.S.V.T
Courbevoie, France). Some membranes were subsequently reprobed with the
indicated antibody as a loading control. Quantifications were realized using
MultiGauge software (Fujifilm Life Science).
Real-time RT-PCR. RNAs were prepared using the RNeasy Total RNA Kit
(Qiagen, Courteboeuf, France), treated with DNase (Applied Biosystems), and
used to synthesize cDNAs using a Transcriptor First Strand cDNA Synthesis
Kit (Roche, France). Real-time quantitative PCR was performed with sequence
detection systems (ABI PRISM 7500; Applied Biosystems) and SYBR green dye
as described (8). Levels of mRNA were expressed relative to mouse or human
RPLP0. The relative amount of mRNA between two groups was determined by
using the second derivative maximum method. The results were expressed
relative to the mean of the group of controls, which was arbitrarily assigned
to a value of 1. Primers used (a list is available upon request at tanti@unice.fr)
were designed using Primer Express software (Applied Biosystems, Austin,
TX) and synthesized by Eurogentec (Seraing, Belgium).
Statistical analysis. Statistical analysis was performed by Student t or
Mann-Whitney test. Correlation between two variables was analyzed using
Spearman rank-correlation test. The analyses were performed with MINITAB
software. A P value 
0.05 was considered significant.

RESULTS

IKK� is involved in MEK and ERK1/2 activation
specifically in response to IL-1� and TNF-� but not in
response to insulin. Inflammatory cytokines induce al-
teration of adipocytes biology that may involve activation
of both ERK and IKK�/NF-�B pathways (25). To determine
whether there is a cross-talk between these two pathways,
the effect of pharmacological inhibition of IKK� on IL-1�
and TNF-�–induced MEK and ERK1/2 activation was
determined. IKK� inhibitor (22,23) prevented both IL-1�
and TNF-�–induced MEK and ERK1/2 phosphorylation.
Importantly, insulin effect was unaltered (Fig. 1A and B).
This inhibition was not due to modification in the time
course of activation (data not shown). The same results
were obtained in human adipocytes (Fig. 1C).
Tpl2 is activated by IL-1� and TNF-� through an
IKK� pathway. The results described above suggested
that inflammatory signals and insulin regulated the ERK
pathway differently and that IKK� could regulate an
MAP3K upstream of MEK, which is involved in ERK1/2
activation specifically in response to inflammatory cyto-
kines. In macrophages, Tpl2 is an MAP3K that activates
the MEK/ERK pathways in response to LPS through an
IKK�-dependent pathway (26,27). In 3T3-L1 adipocytes,
we found that an anti-Tpl2 antibody detected two bands of
58 and 52 kd (Fig. 2A) that likely correspond to the long
(Tpl2L) and the short forms (Tpl2S) of Tpl2 that arise from
alternative translational initiation (28). The mRNA and
protein expression of Tpl2 was increased in 3T3-L1 cells
following differentiation in adipocytes, and the expression
level of both isoforms in 3T3-L1 adipocytes was similar to
the level found in macrophages (Fig. 2A). We then inves-
tigated whether Tpl2 was activated by TNF-� and IL-1� by
monitoring its degradation, which is tightly coupled to its
activation (29,30). The two cytokines significantly de-
creased total Tpl2 protein amount after 30 min of treat-
ment and for at least 90 min (Fig. 2B), and Tpl2L was
preferentially prone to degradation. Pharmacological inhi-
bition of IKK� or proteasome abolished Tpl2 degradation
(Fig. 2C).
Tpl2 is involved in ERK1/2 activation specifically in
response to IL-1� and TNF-� and is implicated in
IRS-1 serine phosphorylation. To demonstrate that Tpl2
was involved in ERK1/2 activation in response to IL-1� or
TNF-�, we treated 3T3-L1 adipocytes with a Tpl2 inhibitor
(20) for 1 h before cytokines or insulin stimulation. Tpl2
inhibition markedly blunted the effects of IL-1� and TNF-�
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FIG. 1. Pharmacological inhibition of IKK� prevents MEK and ERK1/2
activation in response to IL-1� and TNF-� but not in response to
insulin in adipocytes. A and B: 3T3-L1 adipocytes were treated without
(�) or with (f) an IKK� inhibitor (5 �mol/l) for 1 h and then
stimulated or not with IL-1� or TNF-� (20 ng/ml) for 20 min or with
insulin (100 nmol/l) for 10 min. Lysates were subjected to Western
blotting with antibodies against phosphorylated or total MEK or
ERK1/2. Representative immunoblots and quantification of five inde-
pendent experiments are shown. Data are expressed as fold of MEK
and ERK1/2 phosphorylation over basal in cells without inhibitor
treatment and presented as the means � SE. *P < 0.05 and **P < 0.01
vs. stimulus effect in control cells. C: Human adipocytes were treated
or not with an IKK� inhibitor (2.5 �mol/l) for 30 min and then
stimulated or not as described above. ERK1/2 phosphorylation and
ERK1/2 total protein amount were analyzed as described above. Rep-
resentative immunoblots of three independent experiments are shown.
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FIG. 2. Tpl2 is expressed and activated by IL-1� and TNF-� in 3T3-L1 adipocytes. A: Proteins from cell lysates were prepared from 3T3-L1 confluent
fibroblasts (fibro), 3T3-L1 differentiated adipocytes (adipo), and RAW264.7 macrophages (macro). Lysates were subjected to Western blotting with an
antibody against Tpl2. A representative immunoblot and a quantification of three independent experiments are shown. Total mRNA were prepared
from 3T3-L1 confluent fibroblasts (fibro, �) and 3T3-L1 differentiated adipocytes (adipo, f), and the relative amount of Tpl2 mRNA was determined
by real-time PCR. Tpl2 mRNA expression was normalized using mouse RPLP0 RNA level. Results are expressed in arbitrary units, with the control value
taken as 1, and are the means � SE of four independent experiments. B: 3T3-L1 adipocytes were stimulated for the indicated times with IL-1� or with
TNF-� (20 ng/ml). Tpl2 protein expression was detected using a specific antibody. Representative immunoblots and a quantification of five independent
experiments are shown. Data are expressed as a percentage of Tpl2 protein amount in untreated cells and presented as the means � SE. *P < 0.05;
**P < 0.01; ***P < 0.001 vs. untreated cells. C: 3T3-L1 adipocytes were treated or not with an IKK� inhibitor (5 �mol/l) for 1 h (left panel) or with
MG132, a proteasome inhibitor (10 �mol/l), for 5 h (right panel) and then stimulated without (�) or with (f) 20 ng/ml of IL-1� or TNF-� (p) for 90
min. Tpl2 protein expression was determined using a specific antibody. Representative immunoblots and the quantification of three independent
experiments are shown. Data are expressed as a percentage of Tpl2 protein amount in untreated cells and presented as the means � SE. *P < 0.05 and
**P < 0.01 vs. untreated cells, effect of IKK� or proteasome inhibitors significant with †P < 0.01 or with ‡P < 0.05.
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on ERK1/2 phosphorylation (Fig. 3A and B). The same
results were obtained for MEK phosphorylation (data
not shown). In contrast, activation of JNK1/2 and p38
were not modified (supplementary Fig. S1A [available at
http://diabetes.diabetesjournals.org/cgi/content/full/db09-0470/
DC1]). Importantly, insulin effects on ERK1/2 (Fig. 3A and
B) and on protein kinase B (PKB) phosphorylation were
not modified (supplementary Fig. S1A). In human adipo-
cytes, pharmacological inhibition of Tpl2 also inhibited
ERK1/2 activation induced by IL-1� and TNF-�, whereas
insulin effect was not significantly modified (Fig. 3C).

Activation of ERK1/2 promotes IRS-1 serine phosphor-
ylation (31), and, among the different serine residues,
serine 632 is located in a MAP kinase consensus phosphor-
ylation site. We showed that the phosphorylation of IRS-1
on serine 632 induced by IL-1� or TNF-� treatment was
strongly prevented when cells were pretreated with the
Tpl2 inhibitor (Fig. 3D and E). As expected, U0126 inhib-
ited cytokine-induced IRS-1 serine phosphorylation (Fig.
3D and E).

We then used siRNA against Tpl2 to confirm its impli-
cation in ERK1/2 activation in response to inflammatory

cytokines. Transfection of siRNA against Tpl2 achieved
�80% efficiency in reducing endogenous Tpl2 protein
levels (Fig. 4A). Tpl2 knockdown markedly decreased
MEK and ERK1/2 phosphorylation induced by IL-1� or
TNF-� (Fig. 4B). In contrast, Tpl2 silencing did not modify
cytokine-induced I�B degradation (Fig. 4B) or JNK1/2 or
p38 phosphorylation (supplementary Fig. S1B), indicating
that the observed effects did not result from a general
inhibitory effect on cytokine signaling. Furthermore, Tpl2
siRNA did not affect the ability of insulin to induce
MEK/ERK phosphorylation (Fig. 4B and C) or PKB phos-
phorylation (supplementary Fig. S1B).
Tpl2 is involved in IL-1� and TNF-�–induced lipoly-
sis. Proinflammatory cytokines increase lipolysis in adipo-
cytes via activation of the MAP kinase family (10). We
determined whether Tpl2 inhibition modified the lipolytic
effect of TNF-� or IL-1� by measuring glycerol release as
an index of lipolysis. The absolute stimulatory effect of
IL-1� and TNF-� on glycerol release was decreased by 56
and 63%, respectively, in 3T3-L1 adipocytes (Fig. 5A) and
by 85% in human adipocytes (Fig. 5B). MEK inhibition by
U0126 treatment slightly decreased basal lipolysis and
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FIG. 3. Pharmacological inhibition of Tpl2 decreases ERK1/2 phosphor-
ylation and IRS-1 serine phosphorylation in response to IL-1� and
TNF-� in adipocytes. A and B: 3T3-L1 adipocytes were treated without
(�) or with (f) a Tpl2 inhibitor (30 �mol/l) for 1 h and then stimulated
or not with IL-1� or TNF-� (20 ng/ml) for 20 min or insulin (100 nmol/l)
for 10 min. Lysates were subjected to Western blotting with antibodies
against phosphorylated or total ERK1/2. Representative immunoblots
and quantification of five independent experiments are shown. Data are
expressed as fold of ERK1/2 phosphorylation over basal in control cells
and presented as the means � SE. *P < 0.01 and **P < 0.001 vs. stimulus
effect in control cells. C: Human adipocytes were treated or not with a
Tpl2 inhibitor (20 �mol/l) for 30 min and then stimulated or not with
IL-1�, TNF-�, or insulin as described in A. ERK1/2 phosphorylation and

ERK1/2 total protein amount were analyzed as described above. Representative immunoblots of three independent experiments are shown. D and
E: 3T3-L1 adipocytes were treated without (�) or with (f) a Tpl2 inhibitor (30 �mol/l), or with a MEK inhibitor U0126 (10 �mol/l, p) for 1 h
and then stimulated or not with IL-1� or TNF-� (20 ng/ml) for 20 min. Proteins were immunoprecipited (IP) with anti–IRS-1 antibody, resolved
by SDS-PAGE, and immunoblotted with a phosphospecific antibody against serine 632 (�pSer632). The membrane was stripped and probed using
anti–IRS-1 antibody. Representative immunoblots and quantification of three independent experiments are shown. Results were normalized for
the amount of IRS-1 present in the immunoprecipitation and are the means � SE. *P < 0.05 and **P < 0.01 vs. stimulus effect in control cells.
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inhibited cytokines effect to a level comparable to the
effect observed following Tpl2 inhibition (Fig. 5A and B).
siRNA-mediated silencing of Tpl2 also reduced IL-1� and
TNF-�–induced glycerol release (Fig. 5C). These results
suggest that Tpl2 is involved in the lipolytic effect of IL-1�
and TNF-� in both rodent and human adipocytes through
activation of the MEK/ERK pathway.
Tpl2 mRNA level is increased in adipose tissue of
obese mice and subjects. ERK activity and lipolysis are
increased in adipose tissue of obese rodents and obese
subjects (5). We therefore investigated whether Tpl2 ex-
pression could be altered in adipose tissue in obesity. We
showed that Tpl2 mRNA expression was increased in
epididymal adipose tissue of ob/ob, db/db, and high-fat diet
obese mice compared with their lean control littermates
(Fig. 6A). Moreover, Tpl2 mRNA expression was positively

correlated with TNF-� mRNA expression (Fig. 6B). A
positive correlation was also found with IL-1� mRNA for
adipose tissue of genetically obese mice and their lean
controls (data not shown). We then examined the expres-
sion of Tpl2 mRNA in subcutaneous adipose tissue of
obese patients without or with type 2 diabetes and mor-
bidly obese subjects (Table 1). Tpl2 mRNA expression was
increased in subcutaneous adipose tissue of obese
subjects independently of diabetes and in adipose tissue
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FIG. 4. siRNA-mediated silencing of Tpl2 decreases MEK and ERK1/2
phosphorylation in response to IL-1� and TNF-� in 3T3-L1 adipocytes.
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Tpl2 (f) siRNA by nucleofection using the Amaxa nucleofector, and
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were subjected to Western blotting with antibodies against phosphor-
ylated MEK or ERK1/2 or antibodies against Tpl2, I�B, MEK, and
ERK1/2 proteins. Representative immunoblots (A and B) and quanti-
fication of four independent experiments (C) are shown (tub: tubulin).
Data are expressed as fold of MEK and ERK1/2 phosphorylation over
basal in control siRNA nucleofected cells and presented as the means �
SE. *P < 0.05 and **P < 0.01 vs. stimulus effect in control siRNA
nucleofected cells.
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FIG. 5. Tpl2 inhibition decreases lipolysis in response to IL-1� and
TNF-� in adipocytes. 3T3-L1 adipocytes (A) or human adipocytes (B)
were treated without (�) or with (f) a Tpl2 inhibitor (10 �mol/l) or
with a MEK inhibitor U0126 (10 �mol/l, o) for 1 h and then stimulated
or not with IL-1� or TNF-� (20 ng/ml) for 24 h. Glycerol release was
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adipocytes were transfected with control siRNA (�) or Tpl2 (f) siRNA
by electroporation using the Amaxa nucleofector, and 72 h after
electroporation, the cells were stimulated or not with IL-1� or TNF-�
(20 ng/ml) for 24 h and glycerol release was measured. Data are
expressed as micrograms of glycerol released in the culture medium
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0.01, and *** P < 0.001 vs. stimulus effect in control cells or in control
siRNA electropored cells.
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of morbidly obese subjects compared with lean subjects
(Fig. 6C).
Tpl2 expression is increased by chronic IL-1� and
TNF-� treatment via an IKK�/NF-�B pathway. Be-
cause Tpl2 mRNA expression was positively correlated
with TNF-� and IL-1� mRNA in mice adipose tissues, we
investigated whether these inflammatory cytokines could
increase the expression of Tpl2 in adipocytes. Whereas
acute treatment with IL-1� or TNF-� (45 min) induced
Tpl2 degradation in 3T3-L1 adipocytes, prolonged treat-
ment with IL-1� (18 h) increased Tpl2 protein amount by
threefold, whereas TNF-� (18 h) restored Tpl2 protein
amount to the level of unstimulated adipocytes (Fig. 7A).
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an IKK�/NF-�B pathway in 3T3-L1 adipocytes. A: 3T3-L1 adipocytes
were stimulated for the indicated times with IL-1� or with TNF-� (20
ng/ml). Tpl2 protein expression was determined using a specific anti-
body. Representative immunoblots and quantification of three inde-
pendent experiments are shown. Data are expressed as percentage of
Tpl2 protein amount in untreated cells and presented as the means �
SE. B: 3T3-L1 adipocytes were stimulated for 0, 5, and 18 h with 20
ng/ml of IL-1� (f) or TNF-� (p). Total RNAs were extracted and the
relative amount of Tpl2 mRNA was determined by real-time PCR. Tpl2
mRNA expression was normalized using mouse RPLP0 RNA level.
Results are expressed in arbitrary units with the control value taken as
1 and are the means � SE of three independent experiments. C: 3T3-L1
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untreated cells; *P < 0.05 vs. cells treated with TNF-�.
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FIG. 6. Tpl2 mRNA expression is increased in adipose tissue of obese
mice and subjects. A: Epididymal fat pads were isolated from ob/ob,
db/db, and high-fat diet (HFD) mice (n � 10, 6, and 8, respectively; f)
and their lean control littermates (ob/� n � 10, db/� n � 6, and normal
diet [ND] n � 8; �). Total RNAs were extracted and the relative
amount of Tpl2 mRNA was determined by real-time PCR. Tpl2 mRNA
expression was normalized using mouse RPLP0 RNA level. Results are
expressed in arbitrary units with the control value (ob/�, db/�, or ND)
taken as 1 and are the means � SE of the number of mice in each group.
*P < 0.05 and **P < 0.001 vs. lean control mice. B: Correlations
between Tpl2 and TNF-� mRNA expression levels (�	Ct) in ob/ob,
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extracted and the relative amount of Tpl2 mRNA was determined by
real-time PCR. Tpl2 mRNA expression was normalized using human
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number of subjects in each group. *P < 0.05; **P < 0.001 vs. lean
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IL-1� or TNF-� treatment for 18 h increased Tpl2 mRNA
level by 7.9- and 2.7-fold, respectively (Fig. 7B). IKK�
inhibition or p65/NF-�B silencing (Fig. 7C and D) pre-
vented the increase in Tpl2 mRNA level, whereas the MEK
inhibitor U0126 had no effect. We then showed that the
increase in Tpl2 abundance in response to a long time of
stimulation with IL-1� (18 h) resulted in an enhancement
in ERK1/2 phosphorylation induced by a further acute
TNF-� stimulation (Fig. 7E, lanes 3 and 4).

DISCUSSION

ERK pathway is constitutively activated in inflamed adi-
pose tissue of obese patients and rodents and participates
in the deregulation of adipocyte functions (5). Identifica-
tion of regulatory proteins that govern ERK activity,
specifically in response to inflammatory cytokines, may
thus provide new insight into mechanisms involved in
abnormal adipose tissue function.

We found that IKK� inhibition prevented MEK/ERK1/2
activation in response to IL-1� and TNF-�, but not insulin,
in both 3T3-L1 and human adipocytes. These data sug-
gested that IKK� regulated an MAP3K involved in ERK1/2
activation selectively by inflammatory cytokines. Among
the MAP3Ks that regulate the ERK pathway, Tpl2 is more
specifically activated by inflammatory stimuli (26,32). Tpl2
is expressed primarily in immune cells (33) and is involved
in TNF-� production (34) following ERK1/2 activation by
immunoreceptors (16,35–37). In macrophages, short and
long Tpl2 isoforms are expressed due to alternative trans-
lational initiation (28,30). We found that these two iso-
forms were expressed in 3T3-L1 adipocytes. Expression of
the long form, which is involved in MEK/ERK activation
(29), was increased following adipocyte differentiation.
Apart from their role in energy homesotasis, adipocytes
also produce inflammatory mediators and contribute to
the innate immune response (38). Thus, it makes sense
that the signaling machinery that mediates this proinflam-
matory response is positively regulated during adipocyte
differentiation.

In 3T3-L1 adipocytes, TNF-� and IL-1� rapidly de-
creased the amount of the long isoform of Tpl2 through
a proteasome-dependent process. These data strongly
support an activation of Tpl2, because Tpl2 degradation by
the proteasome is tightly coupled to its activation in
macrophages (29,30). Furthermore, we showed that Tpl2
degradation was prevented following IKK� inhibition, in-
dicating that IKK� is an essential component of the Tpl2
signaling pathway in adipocytes. This is in agreement with
studies performed in immune cells (29,30). Indeed, in
nonstimulated macrophages, Tpl2 is stabilized and is inac-
tive due to its binding to NF-�B1/p105 (29,30). Inflamma-
tory stimuli activate IKK�, which in turn phosphorylates
NF-�B1/p105, triggering its proteolysis and the release and
activation of Tpl2.

In both 3T3-L1 and human adipocytes, we demonstrated
that Tpl2 was involved in MEK/ERK1/2 activation in re-
sponse to IL-1� and TNF-�. In contrast, we found that Tpl2
was not involved in p38MAP kinase or JNK activation. This
result is similar to what has been found in macrophages
and �-cells (34,35) but differs from MEF cells, in which
Tpl2 is involved in both ERK1/2 and JNK activation (39).
Inhibition of IKK� in adipocytes nearly suppressed the
cytokine-induced MEK or ERK1/2 phosphorylation, whereas
after inhibition of Tpl2, some phosphorylation remained.
This could be because siRNA knockdown or pharmaco-

logical inhibition of Tpl2 was not sufficient to completely
shutdown Tpl2 activity. Alternatively, we cannot exclude
that another kinase in addition to Tpl2 is involved in ERK
activation. One important finding of our study is that Tpl2
was not required for the activation of ERK or PKB
pathways by insulin. Similarly, Tpl2 is dispensable for ERK
activation induced by phorbol myristate acetate (PMA)
(29). Thus, Tpl2 does not respond to mitogens, and its
activation in adipocytes seems to be selectively restricted
to inflammatory stimuli. Tpl2 could thus be an attractive
target against the deleterious effects of inflammatory cy-
tokines on adipocyte functions.

Inflammatory cytokines, such as TNF-�, stimulate lipol-
ysis (10–12), and free fatty acids would have proinflam-
matory effects on adipose tissue macrophages, worsening
inflammation and insulin resistance (3). By using both
pharmacological and siRNA approaches, we showed that
Tpl2 activation was required for cytokine-induced lipoly-
sis. One important molecular event in TNF-�–induced
lipolysis is the downregulation of perilipin through, at
least in part, ERK activation (10), suggesting that the
Tpl2/ERK signaling pathway could negatively regulate
perilipin expression. However, Tpl2 inhibition did not
totally block the lipolytic effect of TNF-� or IL-1�. It seems
unlikely that this could be due to the residual ERK activity
because the MEK inhibitor U0126, which completely pre-
vents ERK activation, had a similar effect. It is more
conceivable that additional pathways besides the ERK
pathway could mediate the lipolytic effect and remain
active following Tpl2 inhibition. Potential candidates are
JNK and NF-�B, which have been shown to participate in
the lipolytic effect of TNF-� (40,41). Furthermore, TNF-�,
through activation of NF-�B, negatively regulates the
transcription of the peroxisome proliferator–activated re-
ceptor � (42). The consequence is the downregulation of
lipid droplet–associated proteins such as CIDEA and
FSP27, which contributes to the increase in lipolysis
(43,44).

Abnormal ERK activation in adipocytes is also involved
in alteration of insulin signaling through, at least in part,
IRS-1 serine phosphorylation (7,31). We showed that inhi-
bition of Tpl2 markedly reduced IL-1� or TNF-�–induced
phosphorylation of IRS-1 on serine 632. This serine site is
located in a consensus sequence for MAP kinase phos-
phorylation, and its phosphorylation is increased in obese
and diabetic patients (45) and rodents (7). This phosphor-
ylation negatively regulates the association of IRS-1 with
phosphoinositide 3-kinase (46), suggesting that Tpl2 could
also be involved in the downregulation of insulin signaling
induced by inflammatory cytokines. This hypothesis de-
serves further future investigations.

The implication of Tpl2 in cytokine-induced lipolysis
and IRS-1 serine phosphorylation suggested that abnormal
activation and/or expression of Tpl2 could be involved in
adipose tissue dysfunction in obesity. Interestingly, we
found that Tpl2 mRNA expression was increased and was
positively correlated with TNF-� mRNA levels in adipose
tissue of obese rodents and subjects. This correlation
strongly suggests that chronic inflammation may be in-
volved in increased Tpl2 mRNA expression. In agreement
with this possibility, a long-lasting treatment of 3T3-L1
adipocytes with TNF-� or IL-1� increased Tpl2 mRNA and
restored or even increased the pool of Tpl2 protein. An
elevated expression of most of the kinases in the MAP
kinase pathway does not necessary result in an increase in
the activity of the pathway. However, the results presented
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in Fig. 7E, and the observation that Tpl2 overexpression
increases ERK1/2 activity (32), suggest that Tpl2 expres-
sion could be rate-limiting for the activation of ERK
pathway. The increase in Tpl2 mRNA level was prevented
by both IKK� inhibition and NF-�B/p65 gene silencing, and
informatics analysis of the Tpl2 promoter suggests a
potential NF-�B binding site. Thus, it is likely that the
IKK�/NF-�B pathway is involved in the upregulation of
Tpl2 mRNA, whereas IKK� regulates Tpl2 activation and
stability through the phosphorylation and degradation of
NF-�B1/p105. In agreement with this hypothesis, Tpl2 gene
expression is not modified in nf�b1�/� macrophages,
whereas Tpl2 protein expression is markedly reduced due
to its degradation (29). Thus, inflammation linked to
obesity could promote both the activation of Tpl2 that is
coupled to its rapid degradation and the stimulation of
Tpl2 gene transcription. This coordinated molecular mech-
anism could allow the rapid replenishment of the Tpl2
pool in inflamed adipocytes and could be responsible for
the elevated activity of ERK found in adipose tissue of
obese and insulin-resistant rodents and humans (7).

The pharmacological targeting of inflammatory kinases
such as IKK� has demonstrated beneficial effects in obe-
sity. Our data suggest that Tpl2 could be also a new target
to improve adipose dysfunction. Furthermore, compared
with Tpl2 inhibitors, drugs that inhibit IKK� would be
expected to have more unwanted effects because the
activation of NF-�B would be suppressed. Indeed, as
recently discussed (26), NF-�B has many roles outside the
immune system, and IKK� is activated by many stimuli
in addition to inflammatory mediators. Furthermore,
whereas IKK� knockout mice are embryonic lethal, the
invalidation of Tpl2 is well tolerated with no obvious
severe defects of the mice (34).

In conclusion, our work demonstrates that Tpl2 is
expressed in adipocytes and is specifically involved in
ERK pathway activation by IL-1� and TNF-�, whereas it is
dispensable for insulin signaling. We demonstrate that
inflammatory cytokines regulate both the activity and the
expression of Tpl2, and this latter seems dependent on
NF-�B. Finally, we provide evidence that Tpl2 signaling
pathway is implicated in adipocyte lipolysis induced by
these cytokines and in IRS-1 serine phosphorylation. The
deregulated expression of Tpl2 in adipose tissue of obese
subjects suggests that Tpl2 may be a new actor in abnor-
mal adipose tissue function.
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