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Abstract

Drug resistance is a primary obstacle in cancer treatment. In many patients who at first

respond well to treatment, relapse occurs later on. Various mechanisms have been explored

to explain drug resistance in specific cancers and for specific drugs. In this paper, we con-

sider resistance to anti-PD-1, a drug that enhances the activity of anti-cancer T cells. Based

on results in experimental melanoma, it is shown, by a mathematical model, that resistances

to anti-PD-1 can be significantly reduced by combining it with anti-TNF-α. The model is used

to simulate the efficacy of the combined therapy with different range of doses, different initial

tumor volume, and different schedules. In particular, it is shown that under a course of treat-

ment with 3-week cycles where each drug is injected in the first day of either week 1 or week

2, injecting anti-TNF-α one week after anti-PD-1 is the most effective schedule in reducing

tumor volume.

Introduction

Drug resistance is one of the primary causes for suboptimal outcomes in cancer therapy [1].

Patients respond well at first, but relapse occurs for many cancer patients [2]. One common

resistance is associated with the ATP-binding cassette (ABC) transporters. These protein

pumps act to protect cells by ejecting variety of toxins, and they are overexpressed during anti-

cancer treatment with chemotherapy and targeted therapy [1–3].

Other mechanisms of drug resistance are associated with mutations and epigenetic changes

[4]. There are many mathematical models of drug resistance, particularly resistance to chemo-

therapy; e.g., a model of evolution of resistance [5], and a model of resistance associated with

symmetric/asymmetric division of stem cells [6]. Article [7] reviews the mathematical models

up to 2011, and very recent reviews are found in [8, 9]. Recent models considered multi-muta-

tions in drug resistance for specific cases [10], and optimal therapy design to reduce drug resis-

tance [11]. A list of the mathematical and computational methods used to simulate models of

drug resistance are given in [12, 13]; in particular, articles [4, 14] use PDE models, as do the

recent papers [15, 16] and the present one.
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There are different mechanisms of resistance to different drugs. In this paper we consider

resistance to the immunotherapy drug anti-PD-1, and show that injection of TNF-α will

reduce the resistance.

PD-1 is a checkpoint on T cells. Its ligand PD-L1 is expressed on both T cells and cancer

cells. The formation of the complex PD-1-PD-L1 initiates a signaling cascade that results in

blocking the anti-cancer activity of T cells. PD-1 blockade by anti-PD-1 drugs, is currently

increasing used in the treatment of cancers.

Internal mechanisms of drug resistance to anti-PD-1 include the following:

• B2M mutation: Loss of b2-microglobulin (B2M) expression results in impaired cell surface

expression of HLA class I (MHC class I), which in turn impairs antigen presentation to cyto-

toxic T cells, and thereby leads to anti-PD-1 resistance [17–20].

• JAK-1/JAK-2 mutation: INF-γ released by T cells activates the signalling pathway. JAK1/

JAK2-STAT1/STAT2/STAT3-IRF1, which leads to upregulation of PD-L1 on cancer cells

[21]. Acquired resistance to PD-1 blockade immunotherapy in patients with melanoma was

associated with defects in the pathways involved in interferon-receptor signaling, such as

mutation of interferon-receptor-associated Janus kinase 1 (JAK1) or Janus kinase 2 (JAK2)

[17, 20, 22]. Inability to respond to IFN-γ leads to reduced expression of PD-L1 on cancer

and hence to reduced effectiveness of anti-PD-1.

• Loss of neoantigen: Genetic mutations that make cells become cancer cells may result in

production of proteins that immune system can recognize as antigen; these are called neoan-

tigens. Anti-PD-1 treatment may cause mutations in cancer cells that result in loss of neoan-

tigens, and, correspondingly, to a decrease in immune response, including decreases in the

number of active anti-cancer T cells, and hence a decrease in the effectiveness of anti-PD-1

[23].

Another form of drug resistance is associated with a change undergoing in the anti-cancer

CD8+ T cells (cytotoxic T cells, CTLs):

• TIM-3 checkpoint: Under anti-PD-1 treatment, T-cell immunoglobulin mucin-3 (TIM-3) is

upregulated on T cells [24]. Its ligand, Galectin-9 (Gal-9) is expressed on cancer cells, and

the complex formed by the checkpoint TIM-3 and its ligand Gal-9 induces apoptosis of Th1

cells [25, 26], and, consequently, a reduction in CD8+ T cells whose proliferation depends on

Th1-secreted IL-2.

Recent approaches to overcome anti-PD-1 drug resistance focus on combination strategies

[27]. A prime example is the combination of anti-PD-1 and anti-CTL-4 [28–31].

TNF-α is a pleiotropic cytokine that is involved in diverse functions. In immune response

to cancer it acts as immunosuppressive [32]. TNF-α has been shown to enhance the expression

of PD-L1 on CD8+ T cells in cancer [33], including melanoma [34]. TNF-α elicits an increase

in TIM-3+ CD8+ T cells, and anti-PD-1 triggers TIM-3 expression in TNF-α dependent man-

ner [32]. Hence blockade of TNF-α overcomes resistance to anti-PD-1 by reducing TIM-3 and

PD-L1 expression.

For simplicity, we shall combine CD4+ Th1 cells with CD8+ T cells, since they play similar

roles in the response to anti-PD-1 drug resistance, and refer to the combined populaltion of T

cells as cytotoxic lymphocytes (CTL).

In the present paper we develop a mathematical model of combination therapy with anti-

PD-1 and anti-TNF-α. The model will be used to simulate the efficacy of anti-PD-1 under dif-

ferent amount of anti-TNF-α, and under different schedules of treatment.
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The model includes the densities of cancer cells (C), dendritic cells (D) and CTL cells (T),

the concentrations of cytokines TNF-α and IL-12, and the proteins PD-1, PD-L1, TIM-3 and

Gal-9. Resistance to anti-PD-1 treatment is modeled by upregulation of TIM-3 [24]. The

model is based on the network shown in Fig 1, and will be represented by a system of partial

differential equations.

The model equations

The list of variables is given in Table 1 in unit of g/cm3; the unit of time is taken to be 1 day.

We assume that the total density of cells within three tumor remains constant in space and

Fig 1. Interaction of immune cells with cancer cells. Sharp arrows indicate proliferation/activation, blocked arrows indicate killing/blocking. C:

cancer cells, D: dendritic cells, T: activated CTL cells. T cells express PD-1, PD-L1, TIM-3; cancer cells express PD-L1 and Gal-9.

https://doi.org/10.1371/journal.pone.0231499.g001

Table 1. List of variables (in units of g/cm3).

Notation Description

C density of cancer cells

D density of dendritic cells

T density of activated CTL cells

Tα TNF-α concentration

I12 IL-12 concentration

P PD-1 concentration

L PD-L1 concentration

Q1 PD-1-PD-L1 concentration

Q2 TIM-3-Gal-9 concentration

TM TIM-3 concentration

G Gal-9 concentration

A anti-PD-1 (e.g. nivolumab)

B anti-TNF-α (e.g. infliximab)

https://doi.org/10.1371/journal.pone.0231499.t001
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time:

Dþ T þ C ¼ constant: ð1Þ

Under the assumption (1), proliferation of cancer cells and immigration of immune cells

into the tumor give rise to internal pressure among the cells, which results in cells movement.

We assume that all the cells move with the same velocity, u; u depends on space and time and

will be taken in units of cm/day. We also assume that all the cells undergo dispersion (i.e., dif-

fusion), and that all the cytokines and anti-tumor drugs are also diffusing within the tumor.

Equations for DCs (D)

By necrotic cancer cells we mean cancer cells undergoing the process of necrosis. Necrotic can-

cer cells release HMGB-1 [35]. Dendritic cells are activated by HMGB-1 [36, 37], and we

assume that the density of HMGB-1 is proportional to the density of cancer cells. Hence the

dynamics of activated dendritic cells is given by

@D
@t
þr � ðuDÞ
|fflfflfflfflffl{zfflfflfflfflffl}

velocity

� dDr
2D

|fflfflffl{zfflfflffl}
difusion

¼ lDCD̂0

C
KC þ C

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
activation by necrotic cells

� dDD|{z}
death

; ð2Þ

where D̂0 is the density of immature dendritic cells which we assume to be constant, δD is the

dispersion (or diffusion) coefficients of DCs, and dD is the death rate of DCs.

Equations for CTL cells (T)

Inactive T cells are activated by IL-12 [38, 39]. The processes of activation and proliferation

of T cells are inhibited by the complexes PD-1-PD-L1 (Q1) and TIM-3-Gal-9 (Q2). We repre-

sents these inhibitions by factors 1

1þQ1=K0TQ1

and 1

1þQ2=K0TQ2

, respectively, and take (see Eq (10))

1

1þQ1=K0TQ1

¼ 1

1þPL=KTQ1

and, similarly, 1

1þQ2=K0TQ2

¼ 1

1þTMG=KTQ2

. Hence T satisfies the following equa-

tion:

@T
@t
þr � ðuTÞ � dTr

2T ¼ lTI12
T̂ 0 �

I12

KI12
þ I12

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
activation by IL� 12

�
1

1þ PL=KTQ1|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
inhibition by PD� 1� PD� L1

�
1

1þ TMG=KTQ2|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
inhibition by TIM� 3� Gal� 9

� dTT|{z}
death

ð3Þ

where T̂ 0 is the density of the inactive T cells.

Equation for tumor cells (C)

We assume a logistic growth for cancer cells with carrying capacity (CM) in order to account

for competition for space among these cells. Cancer cells are killed by T cells. The equation for

C takes the form:

@C
@t
þr � ðuCÞ � dCr

2C ¼ lCC 1 �
C
CM

� �

|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
proliferation

� ZTC
|ffl{zffl}

killing byTcells

� dCC;|ffl{zffl}
death

ð4Þ
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where η are the killing rates of cancer cells by T, and dC is the natural death rate of cancer cells

(by apoptosis).

Equation for IL-12 (I12)

The proinflammatory cytokine IL-12 is secreted by activated DCs [38, 39], so that

@I12

@t
� dI12

r2I12 ¼ lI12D
D

|fflffl{zfflffl}
production by DCs

� dI12
I12:

|fflffl{zfflffl}
degradation

ð5Þ

Since the diffusion coefficients of proteins are very large compared to those of cells, their

advection velocity may be neglected.

Equation for TNF-α (Tα)

Macrophages are attracted to the tumor, and they produce TNF-α [40]. For simplicity, we do

not include macrophages in the model, and represent their TNF-α contribution as a source

ATa
. The cytokine TNF-α is also secreted by T cells, so that

@Ta
@t
� dTar

2Ta ¼ ATa
þ lTaT

T
|fflffl{zfflffl}

production byTcells

� mTaB
TaB � dTaTa;|fflffl{zfflffl}

degradation

ð6Þ

where B is the TNF-α inhibitor.

Equation for PD-1 (P), PD-L1 (L) and PD-1-PD-L1 (Q1)

PD-1 is expressed on the surface of activated CD8+ T cells [41, 42]. We denote by ρT the mass

of all the PD-1 in one T cell divided by the mass of a T cell, so that

P ¼ rPT: ð7Þ

PD-L1 is expressed on the surface of activated CD8+ T cells [42] and cancer cells [42, 43].

We denote by ρL the mass of all the PD-L1 in one T cell divided by the mass of the cell, and by

ρL εC the mass of all the PD-L1 in one cancer cell divided by the mass of the cell, so that

L ¼ rLðT þ εCCÞ:

The expression of PD-L1 is upregulated by TNF-α [33], so that

L ¼ rLðT þ εCCÞ 1þ aL
Ta

KTa
þ Ta

 !

: ð8Þ

The coefficient ρP is constant when no anti-PD-1 drug is administered. And in this case, to

a change in T, given by @T
@t , there corresponds a change of P, given by rP

@T
@t . For the same reason,

r � (uP) = ρPr �(uP) andr2 P = ρPr2 P when no anti-PD-1 drug is injected. Hence, P satis-

fies the equation

@P
@t
þr � ðuPÞ � dTr

2P ¼ rP
@T
@t
þr � ðuTÞ � dTr

2T
� �

:
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Recalling Eq (3) for T, we get

@P
@t
þr � ðuPÞ � dTr

2P ¼ rP½RHS of Eq: ð3Þ�:

When anti-PD-1 drug (A) is applied, PD-1 is depleted by A, and the ratio P
T may change. In

order to include in the model both cases of with and without anti-PD-1, we replace ρP in the

previous equation by P
T. Hence,

@P
@t
þr � ðuPÞ � dTr

2P ¼
P
T
RHS of Eq: ð3Þ½ � � mPAPA;|fflfflffl{zfflfflffl}

depletion by anti� PD� 1

ð9Þ

where μPA is the depletion rate of PD-1 by anti-PD-1.

PD-L1 from T cells or cancer cells combines with PD-1 on the plasma membrane of T cells

to form a complex PD-1-PD-L1 (Q1) on the T cells [42, 43]. Denoting the association and dis-

association rates of Q1 by αPL and dQ1
, respectively, we can write

P þ LÐ
aPL

dQ1

Q1:

The half-life of Q1 is less then 1 second (i.e. 1.16 × 10−5 day) [44], so that dQ1
is very large.

Hence we may approximate the dynamical equation for Q1 by the steady state equation,

aPLPL ¼ dQ1
Q1, or

Q1 ¼ s1PL; ð10Þ

where s1 ¼ aPL=dQ1
. Hence, K 0TQ1

¼ s1KTQ1
.

Equation for TIM-3 (TM), Gal-9 (G) and TIM-3-Gal-9 (Q2)

TIM-3 is expressed on the surface of activated CD8+ T cells. If we denote by ρM the ratio

between the mass of all the TIM-3 proteins in one T cell and the mass of one T cell, then

TM ¼ rMT:

The expression of TIM-3 is enhanced by TNF-α [32], and further upregulated by anti-PD-1

[24, 32], so that

TM ¼ rMT 1þ aT
Ta

Ka þ Ta
1þ aMA

A
KA þ A

� �� �

: ð11Þ

Gal-9 is expressed on the surface of cancer cells. We denote by ρG the ratio between the

mass of all the Gal-9 proteins in one cancer cell and the mass of a cancer cell, so that

G ¼ rGC: ð12Þ

Similarly to Eq (10), we represent the concentration of the complex TIM-3-Gal-9 in the

form:

Q2 ¼ s2TMG; ð13Þ

Hence, K 0TQ2
¼ s2KTQ2

.

From Eq (11), we see that resistance to anti-PD-1 is due to upregulation of TIM-3 [24], as

represented by the parameter αMA, but the level of resistance depends on the concentration of

TNF-α. This suggests that anti-TNF-α will reduce resistance to anti-PD-1.
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Equation for anti-PD-1 (A)

We shall consider simple mice experiments where the anti-PD-1 drug is administered in equal

amount γA at days t1, t2, . . ., and set gAðtÞ ¼ gA
P

ti<t
e� bðt� tiÞ for some β> 0. Some of the drug is

depleted in the process of blocking PD-1 and some is degraded, or washed out at rate dA.

Hence A satisfies the following equation:

@A
@t
� dAr

2A ¼ gAðtÞ � mPAPA|fflffl{zfflffl}
depletion through blocking PD� 1

� dAA:|ffl{zffl}
degradation

ð14Þ

Equation for anti-TNF-α (B)

Similarly to Eq (14), we take the dynamics of B to be:

@B
@t
� dBr

2B ¼ gBðtÞ � mTaB
TaB

|fflfflfflffl{zfflfflfflffl}
depletion through blocking TNF� a

� dBB;|ffl{zffl}
degradation

ð15Þ

where gBðtÞ ¼ gB
X

t0i<t

e� bðt� t0iÞ.

Equation for cells velocity (u)

As estimated in the section on parameter estimation, the average steady state densities of the

immune cells D, T8 and C are taken to be (in units of g/cm3)

D ¼ 4� 10� 4; T ¼ 1� 10� 3; C ¼ 0:4: ð16Þ

To be consistent with Eq (1), we take the constant on the RHS of Eq (1) to be 0.4014. We

further assume that all cells have approximately the same diffusion coefficient. Adding Eqs

(2)–(4), we get

0:4014�r � u ¼
X4

j¼2

½right � hand side of Eq: ðjÞ�: ð17Þ

To simplify the computations, we assume that the tumor is spherical and denote its radius

by r = R(t). We also assume that all the densities and concentrations are radially symmetric,

that is, they are functions of (r, t), where 0� r� R(t). In particular, u = u(r, t) er, where er is

the unit radial vector.

Equation for free boundary (R)

We assume that the free boundary r = R(t) moves with the velocity of cells, so that

dRðtÞ
dt
¼ uðRðtÞ; tÞ: ð18Þ

Boundary conditions. We assume that inactive CTL cells that migrated from the lymph

nodes into the tumor microenvironment have constant density T̂ at the tumor boundary, and,

upon crossing the boundary, they are activated by IL-12. We then have the following flux
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conditions for T cells and P at the tumor boundary:

@T
@r
þ sTðI12ÞðT � T̂Þ ¼ 0; at r ¼ RðtÞ; ð19Þ

@P
@r
þ sTðI12ÞðP � rPT̂Þ ¼ 0; at r ¼ RðtÞ; ð20Þ

where we take sTðI12Þ ¼ s0

I12

KI12
þI12

. We also assume

no‐flux for D; I12;Ta;A and B at r ¼ RðtÞ; ð21Þ

the boundary condition for C is determined by Eq (1).

Initial conditions. The initial conditions must be consistent with Eqs (1) and (16),

namely,

Dþ T þ C ¼ 0:4014 g=cm3; ð22Þ

and

P ¼ rPT at t ¼ 0: ð23Þ

The last condition ensures that in the control case (where A� 0), the function P = ρP T is

the solution of Eq (9) with the boundary condition (20). The specific choice of initial condi-

tions for our simulations is

D0 ¼ 2� 10� 4; T0 ¼ 1� 10� 4;C0 ¼ 0:4011; I12;0 ¼ 1� 10� 10; Ta;0 ¼ 1� 10� 11;

Rð0Þ ¼ 0:5 cm or Rð0Þ ¼ 1 cm:
ð24Þ

However, other choices give similar simulation results after a few days.

Results

The simulations of the model were performed by Matlab based on the moving mesh method

for solving partial differential equations with free boundary [45] (see the section on computa-

tional method). Fig 2, in the control case (no drugs), shows the average densities of cells and

concentrations of cytokines for the first 30 days, and the growth of tumor volume; We note

that the average concentrations of each species, X, tends to steady state X0. In estimating some

production parameters (in section of parameter estimation) we made the assumption that

each “half-saturation” parameter KX is equal to X0, and X0 is estimated from clinical/experi-

mental data. By comparing the values of KX in Table 2 with the values X0 from Fig 2 we see

that this assumption is approximately satisfied. Fig 2 shows that, as tumor progresses, the aver-

age densities of the anti-cancer immune cells (D, T) increase, as do the average concentrations

of the inflammatory cytokines (I12, Tα), while the tumor volume is increasing exponentially.

We can also simulate the spatial variations of the variables, but we are interested, in this paper,

only in the average profiles of the variables in order to determine the tumor volume growth

(or shrinkage, under treatment). We note however that the diffusion coefficients of cells and

cytokines differ by several orders of magnitude, and the boundary condition (19) brings new T

cells into the tumor. For these reasons an ODE system cannot adequately represent the

dynamics of the tumor volume.

Bertrand et al. [32] demonstrated, in a mouse model, that TNF-α blockade overcomes resis-

tance to anti-PD-1 in melanoma. In [32] mice were injected with 3 × 105 melanoma cells, and

the tumor became detectible by day 6. Drugs (anti-PD-1 and anti-TNF-α) were injected at
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days 6,10,13 in (see Fig 6(d) of [32]) and at days 13, 16, 19 in (see Fig 6(e) of [32]); the tumor

volume increase was in the range of 100-350 mm3.

Fig 3 shows the growth of tumor volume under treatment with anti-PD-1 (γA) and anti-

TNF-α (γB). Taking γA = 10−10 g/cm3 � day−1, γB = 10−6 g/cm3 � day−1, and using the same

schedules of treatment as in Bertrand et al. [32], Fig 3(a) is in qualitative agreement with Fig-

ure 6(d) of Bertrand et al. [32], and Fig 3(b) is in qualitative agreement with Figure 6(e) of

[32].

Clinical trials in silico

We proceed with treatment of humans, given in cycle of 3 weeks. We compare the different

scheduling options in a cycle:

• (S1) Both anti-PD-1 (nivolumab) and anti-TNF-α (infliximab) are injected in the first day of

week 1;

• (S2) Anti-PD-1 is injected in the first day of week 1 and anti-TNF-α is injected in the first

day of week 2;

• (S3) Anti-TNF-α is injected in the first day of week 1 and anti-PD-1 is injected in the first

day of week 2.

A course of cancer treatment may take 3 to 8 cycles. As in [46–48] we shall evaluate the effi-

cacy of a treatment by the tumor volume reduction rate (TVRR) at the end-point (final day) of

Fig 2. Average densities/concentrations, in g/cm3, of all the variables of the model in the control case (no drugs). All parameter values are the same

as in Table 2, for the mouse model.

https://doi.org/10.1371/journal.pone.0231499.g002
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Table 2. Summary of parameter values.

Notation Description Value used References

δD diffusion coefficient of DCs 8.64 × 10−7 cm2 day−1 [49]

δT diffusion coefficient of T cells 8.64 × 10−7 cm2 day−1 [49]

δC diffusion coefficient of tumor cells 8.64 × 10−7 cm2 day−1 [49]

dI12
diffusion coefficient of IL-12 7.17 × 10−2 cm2 day−1 estimated

dTa diffusion coefficient of TNF-α 8.46 × 10−2 cm2 day−1 estimated

δA diffusion coefficient of anti-PD-1 4.76 × 10−2 cm2 day−1 estimated

δB diffusion coefficient of anti-TNF-α 4.75 × 10−2 cm2 day−1 estimated

σ0 flux rate of T cells at the boundary 1 cm−1 [49]

η killing rate of tumor cells by T cells 328.55 cm3/g � day [50]

μPA blocking rate of PD-1 by anti-PD-1 1.03 × 107 cm3/g � day estimated

μTα B blocking rate of TNF-α by anti-TNF-α 2.56 × 108 cm3/g � day estimated

ρP expression of PD-1 in T cells 2.49 × 10−7 [50]

ρL expression of PD-L1 in T cells 3.25 × 10−7 [50]

ρM expression of TIM in T cells 1.5 × 10−7 estimated

ρG expression of Gal-9 in cancer cells 2 × 10−8 estimated

εC the ratio of mass of PD-L1 in cancer cell and T cell 0.1 estimated

αL upregulation rate of PD-L1 by TNF-α 1 estimated

αT upregulation rate of TIM-3 by TNF-α 1 estimated

αMA enhancement of upregulation of TIM-3 by anti-PD-1 2 estimated

lDCD̂0
activation rate of DCs by tumor cells 8 × 10−5 g/cm3 � day [50]

lTI12
T̂ 0

activation rate of T cells by IL-12 6.48 × 10−4 g/cm3 � day estimated

λC growth rate of cancer cells in mice 1.295 day−1 estimated

λC growth rate of cancer cells in humans 0.895 day−1 estimated

λI12 D production rate of IL-12 by DCs 2.76 × 10−6 day−1 estimated

λTα T production rate of TNF-α by T cells 6.48 × 10−4 day−1 estimated

dD death rate of DCs 0.1 day−1 estimated

dT death rate of T cells 0.197 day−1 estimated

dC death rate of tumor cells 0.17 day−1 [49]

dI12
degradation rate of IL-12 1.38 day−1 [51]

dTa degradation rate of TNF-α 216 day−1 [52]

dA degradation rate of anti-PD-1 0.046 day−1 estimated

dB degradation rate of anti-TNF-α 0.069 day−1 estimated

KD half-saturation of dendritic cells 4 × 10−4 g/cm3 [50]

KT half-saturation of T cells 1 × 10−3 g/cm3 [50]

KC half-saturation of tumor cells 0.4 g/cm3 [49]

KI12
half-saturation of IL-12 8 × 10−10 g/cm3 [50, 53]

KTa
half-saturation of TNF-α 3 × 10−11 g/cm3 [54]

KTQ1
inhibition of function of T cells by PD-1-PD-L1 1.36 × 10−18 g2/cm6 estimated

KTQ2
inhibition of function of T cells by Tim-3-Gal-9 1.365 × 10−18 g2/cm6 estimated

CM carrying capacity of cancer cells 0.8 g/cm3 estimated

T̂ density of CD8+ T cells from lymph node 2 × 10−3 g/cm3 estimated

β drug control parameter 1.55 g/cm3 fitted

https://doi.org/10.1371/journal.pone.0231499.t002
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the treatment, where we define

TVRR ¼
Vð0Þ � VðteÞ

Vð0Þ
� 100%;

and V(0) = initial tumor volume, V(te) = end-point tumor volume.

We note that the doses γA and γB used in the model are correlated to, but not the same as,

the dose amounts used in actual treatments of patients; in particular, the fact that in our model

γB is several orders of magnitude larger than γA does not mean that it is relatively larger than

γA in clinical treatment. But it is reasonable to expect that the reduction in the doses in the

model will have the same effect on the tumor volume growth if the corresponding reduction

was made in the treatment of patients. The doses of γA, γB in Fig 3 were chosen in order to fit

the simulations with experimental results. For humans we took a smaller tumor cells growth,

and smaller ranges of γA, γB in Figs 4 and 5 (below) in order to get the reduction of tumor vol-

ume to be in the same range as in clinical data; In [47], under two 3-week cycles in treatment

of breast cancer, TVRR was >65%, and in [48], under four 2-week cycles treatment of rectal

cancer, TVRR median was 52% but, for significant number of patients, it was>65%.

In Fig 4 we simulated the TVRR for a tumor with initial radius R(0) = 0.5 cm (volume

0.5236 cm3), in the upper row, and R(0) = 1 cm (volume 3.1456 cm3) in the lower row, under 5

cycle treatment course, undergoing 5 cycles with doses of γA and γB in the ranges of 0.1 × 10−-

11−1 × 10−11 g/cm3 � day and 0.1 × 10−6−1 × 10−6 g/cm3 � day, respectively. We see that, in the

treatment of both tumors, S2 is somewhat more effective than S1, while S1 is significantly

more effective than S3. We can explain this as follows:

Under S1, resistance to anti-PD-1 begins at day 1 of a cycle, but its effect may be still small

in the first few days. So it is more effective to apply the resistance-blocking drug (γB) in the

first day of week 2 of a cycle rather than immediately in day 1 of week 1. On the other hand,

under schedule S3, blocking anti-PD-1 resistance when γA is injected in day 1 of the second

Fig 3. Growth of tumor volume without treatment, or under treatment with γA, or combination (γA, γB). (a) The treatment is at days 6, 10 and 13.

(b) The treatment is at days 13, 16 and 19. γA = 10−10 g/cm3 � day, γB = 10−6 g/cm3 � day. All other parameter values are the same as in Table 2, for the

mouse model.

https://doi.org/10.1371/journal.pone.0231499.g003
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Fig 4. Efficacy map for three schedules: S1 (left), S2 (middle) and S3 (right). The color columns indicate the tumor volume reduction rate (TVRR)

after 5 cycles; tumor is initially with the radius R(0) = 0.5 cm (upper row) and R(0) = 1 cm (lower row).

https://doi.org/10.1371/journal.pone.0231499.g004

Fig 5. Efficacy map for three schedules: S1 (left), S2 (middle) and S3 (right). The color columns indicate the tumor volume reduction rate (TVRR)

after 5 cycles (upper row) and 10 cycles (lower row); tumor is initially with radius R(0) = 1 cm.

https://doi.org/10.1371/journal.pone.0231499.g005
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week of a cycle will occur only 2 weeks later when γB is injected in day 1 of week 1 of the fol-

lowing cycle. Hence the blockade of resistance comes “too late” and is not very effective. We

conclude that, in order to overcome the resistance to anti-PD-1 drug (γA) most effectively, the

anti-TNF-α drug (γB) should be injected not too soon but definitely not too late after the injec-

tion of γA.

In Fig 5 we repeated the simulations of Fig 4 with R(0) = 1 cm and a smaller range of doses;

we did it for one treatment with 5 cycles and an extended treatment with 10 cycles. We first

see that, once again, S2 is somewhat more effective than S1, and S1 is significantly more effec-

tive than S3. But we can also see from Fig 5 the benefits of extended treatment. For example,

under schedule S2, with R(0) = 1 cm, the TVRR will increase from 75%, 85% and 90% to 96%,

97.8% and 99%, respectively, if the treatment is extended from 5 cycles to 10 cycles. By com-

paring the treatments with different ranges of dose, in the case of schedule S2 with R(0) = 1

cm, we see that if the range is decreased by a factor of 1/10 then the TVRR will decrease, for

instances, from 98–99% to 82–85%. We also see from Fig 4 that under the sane treatment, the

TVRR is larger for the tumor with the smaller initial volume. This can be explained by the fact

that concentration of the same dose injected into a small tumor is larger than that injected into

a larger tumor.

Conclusion

Drug resistance is a major obstacle to cancer treatment. Patients respond well for several

months, or even years, but relapse eventually occurs. This is the case with both chemotherapy

and immune therapy drugs. Anti-Cancer T cells have ‘brakes’ (called checkpoints) on their

activities in the form of membranous proteins such as PD-1 and TIM-3; when PD-L1 (or Gal-

9) combines with PD-1 (or TIM-3) the T cell activation is inhibited. A drug, anti-PD-1, is

increasing used in the treatment of cancer, and in the present paper we considered the prob-

lem of how to deal with cancer resistance to anti-PD-1. We focused on the role of TNF-α in

reducing this resistance.

TNF-α increases the production of PD-L1, which renders anti-PD-1 less effective. TNF-α
also activates expression of TIM-3, which enables Gal-3, expressed on cancer cells, to block T

cells by combing with TIM-3 on T cells membrane. These facts suggest that anti-TNF-α could

be an effective drug in reducing resistance to anti-PD-1.

We developed a mathematical model where anti-PD-1 is combined with anti-TNF-α. The

model is represented by a system of PDEs. The model is ‘minimal’ in the sense that it includes

only cancer cells, T cells and dendritic cells, and the most relevant protein populations needed

to address the effectiveness of the combined therapy. Simulations of the model were shown to

be in agreement with mice experiments.

The model can be used to assess the efficacy of various protocols of treatment with the

combination of the two drugs. As an example, we considered the following scheduling

cycles.: Both drugs administered in day 1 of week 1 (S1), anti-PD-1 injected in day 1 of week

1 and anti-TNF-α injected in day 1 of week 2 (S2), or in the inverse order (S3). For each pair

of (anti-PD-1, anti-TNF-α) in some range we marked on the color columns the tumor vol-

ume reduction rate (TVRR) at the end of the treatment. In Figs 4 and 5 it was shown that

schedule S2 is somewhat more beneficial than schedule S1, while schedule S1 is significantly

more beneficial than schedule S3; these results mean that in order for the blockade of the

drug resistance to anti-PD-1, anti-TNF-α should not be injected too late after the injection of

anti-PD-1, but also not too early. This result should be viewed as an hypothesis, to be vali-

dated in clinical trials.
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Figs 4 and 5 also show how TVRR increases as the dose level increases when the range of

doses increases by a factor of 10, or when the treatment, with the same dose range, is given to a

tumor with a smaller volume.

The model developed in this paper can be used also be explore the efficacy of schedules

with shorter cycles when such clinical trials become more prevalent.

Supplementary materials

Computational method

We consider the following convection-diffusion equation to illustrate our computational

method:

@X
@t
þ divðvXÞ ¼ Dr2X þ FX; ð25Þ

where FX accounts for all the right-hand side terms. Since the model we consider is a free

boundary problem, we employ the moving mesh method to compute it. We write Eq (25) can

be written in the total derivative form

dXðrðtÞ; tÞ
dt

þ divðvÞX ¼ Dr2XðrðtÞ; tÞ þ FX:

Let rni , Xn
i denote numerical approximations of i-th grid point and Xðrni ; tÞ, respectively,

when t = nτ, where τ is the time stepsize. The discretization is derived by the explicit Euler

finite difference scheme, i.e.,

Xnþ1
i � Xn

i

t
þ

vr
rni
þ vni

� �

Xn
i ¼ D Xrr þ

Xr

rni

� �

þ FX;

where Xr ¼
h2
� 1

Xn
iþ1
� h2

1
Xn
i� 1
� ðh2

1
� h2
� 1
ÞXn

i
h1ðh2

� 1
� h1h� 1Þ

, Xrr ¼ 2
h� 1Xn

iþ1
� h1Xn

i� 1
þðh1 � h� 1ÞXn

i
h1ðh1h� 1� h2

� 1
Þ

, and h� 1 ¼ rni� 1
� rni ,

h1 ¼ rniþ1
� rni . Then the mesh is moving by rnþ1

i ¼ rni þ vni t, where vni is solved by the velocity

equation. In order to make the Euler method stable, we take t �
minfh1 ;h� 1g

2D .

Parameter estimation

Half-saturation. In an expression Y X
KXþX

which represents an activation of a species Y by

a species X, the parameter KX is called the “half-saturation” of X. We assume that the average

density/concentration of each species, X, tends to steady state X0, and that the quotient X0/(KX

+ X0) is not too close to 0 or to 1, and take

X0

KX þ X0
¼

1

2
; or KX ¼ X0: ð26Þ

The values X0 will be estimated from clinical/experimental data, and then the KX are deter-

mined by (26).

Diffusion coefficients. Young [55] established the following formula for the diffusion

coefficient, Dp, of any protein p:

Dp ¼
A

M1=3
p
; ð27Þ
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where Mp is the molecular weight of p and A is a constant. In particular

Dp ¼
M1=3

V

M1=3
p

DV ; ð28Þ

where MV and DV are respectively the molecular weight and diffusion coefficient of VEGF:

MV = 24kDa [56] and DV = 8.64 × 10−2 cm−2d−1 [57]. The following table lists the molecular

weight of the proteins in our model, taken from [56], and their corresponding diffusion coeffi-

cients computed from the formula (28): The molecular weights of nivalumab (A) and inflixi-

mab (B) are 143.6 kDa and 144.2 kDa, respectively. Hence, by formula (28), we get DA =

4.76 × 10−2 cm2d−1 and DB = 4.75 × 10−2 cm2d−1.

Diffusion coefficients of cells. For simplicity, we assume that all cell types have the same

diffusion coefficient, and as in [57], we take

DX ¼ 8:64� 10� 7 cm2d� 1
;

Death/Degradation rates. From [58] we take dT = 0.18/d, and from [49] we take dD = 0.1/

d and dC = 0.17/d. The half-life of I12 in peripheral blood is 352 minutes and in chord blood

614 minutes [51]. We accordingly take the half-life of I12 in tissue to be 5 hours, so that

dI12
¼ 1:38=d. The half-life of TNF-α is 4.6 minutes [52]; hence, dTa ¼ 216=d.

Inhibition of T by Q1, Q2. From the notation K 0TQ1
¼ s1KTQ, we deduce, as in [59], that

KTQ1
¼ 1:36� 10� 18g=cm3. We assume a similar inhibition parameter for the checkpoint TM,

taking KTQ2
¼ 1:365� 10� 18g=cm3.

Production parameters. In order to estimate production parameters, we use the “steady-

state” of each equation, that is, we equate the right-hand side of each equation to zero, replace

each species X in this equation by X0 and each KX by X0.

Eq (2). In steady state, we have

lDC
D̂0

2
¼ dDD

0;

The number of dendritic cells in advanced melanoma can increase to 400 cells/mm3 [60].

Taking it to be 200 cells/mm3 and assuming that the mass of one DC is 5 × 10−10 g, we get D0 =

4 × 10−4. Since dD = 0.1/day [49], we obtain

lDCD̂0 ¼ 2dDKD ¼ 8� 10� 5:

Eq (3). we assume that in steady state,

1

1þ PL=KTQ1

1

1þ TMG=KTQ2

¼
1

1:8

X I12 Tα
Molecular Weight(kDa) 37.2 25.6

DX (10−2 cm2d−1) 7.17 8.46
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Hence, in steady state of Eq (3),

lTI12
T̂ 0 �

1

2
�

1

1:8
� dTT

0 ¼ 0:

The number of CD8+ T cells in melanoma is in the range of 7 − 10 × 105 cells/cm3 [61]. Tak-

ing the mass of one cells to be 5 × 10−10, we estimate the density of CD8+ T cells at 5 × 10−4 g/

cm3. Since T includes Th1 cells, we take KT = T0 = 10−3 g/cm3. Since dT = 0.18/day [58], we get

lTI12
T̂ 0 ¼ 6:48� 10� 4 g/cm3/day.

Eq (4). We take, in steady state, C = 0.4 g/cm3 [49] and CM = 0.8 g/cm3, η = 328 0.8 g/cm3/g

� day−1 [50], dC = 0.17/day [58]. Hence, in steady state,

lC �
1

2
� ZKT � dC ¼ 0;

so that λC = 0.996/day. Since, however, the tumor volume is increasing on account of the

abnormal proliferation of cancer cells, we increase this value by a factor, taking λC =

1.2×0.996 = 1.295/day. This value will be used in mouse models, as in Figs 2 and 3. But for

humans (Figs 4 and 5) it is assumed that the tumor cells proliferation is slower, taking λC =

0.885/day.

Eq (5). From the steady state equation we get

lI12D
KD � dI12

KI12
¼ 0:

Since KD = 4 × 10−4 g/cm3, KI12
¼ 8� 10� 10g=cm3 [50, 53], and dI12

¼ 1:38=day [51], we

get λI12 D = 2.76 × 10−6/day.

Eq (6). From the steady state equation in the control case we get

ATa
þ lTaT

KT � dTaKTa
¼ 0:

We take ATa
¼ 1:12� 10� 9 g/cm3day. Since KTa

¼ 3� 10� 11g=cm3 [54] and dTa ¼
216=day [52], we get λTα T = 1.08 × 10−6/day.

Remaining parameters. We take ρP = 2.49 × 10−7 [50]. Then, in steady state with T = KT =

10−3 g/cm3 and P = 2.49 × 10−10 g/cm3. We take ρL = 3.25 × 10−7 g/cm3 [50] and assume that

the expression of PD-L1 in cancer cells is less than it is on T cells, taking εC = 0.1 in Eq (8). We

also take αL = 1 which means that TNF-α increases the expression of PD-L1 by 50%, in steady

state.

We assume that TIM-3 is expressed on T cells at a lower level than PD-1, that is, ρM< ρP,

and take

rM ¼ 1:5� 10� 7:

We also take (in Eq (11)) αT = 1 and αMA = 2. We similarly assume that Gal-9 is expressed

in cancer cells at a lower level than PD-L1 (in Eq (8)), that is, ρG< ρL εC, and take ρG =

2 × 10−8.

The half-life od nivolumab is 10-20 days. Taking it to be 15 days, we get

dA ¼
ln2

15
¼ 0:046 day� 1

:
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The half-life of infliximab is 7-12 days. Taking half-life of 10 days, we get

dB ¼
ln2

10
¼ 0:069 day� 1

:

We assume that 10% of A is used in blocking PD-L1 while the remaining 90% degrades nat-

urally or decreased by washout, that is

mPAPA=10% ¼ dAA=90%:

Recalling that, in steady state, with P = 2.49 × 10−10, g/cm3, we get

mPA ¼
0:046

9� 2:49� 10� 10
¼ 1:03� 107 cm3=g � day:

Under a similar assumption on the depletion of B, in steady state

mTaB
¼

dB
9KTa

¼
0:069

9� 3� 10� 11
¼ 2:56� 108 cm3=g � day:

Sensitivity analysis

We performed sensitivity analysis on the production parameters in Eqs (2)–(6), the depletion

rates mBTa
and μPA in Eqs (6) and (9), and η in Eq (4). Following the method in [62], we per-

formed Latin hypercube sampling and generated 1000 samples to calculate the partial rank

correlation (PRCC) and the p-values with respect to the radius of the tumor at day 30. The

results are shown in Fig 6 (The p-value was <0.01). Note that as Tα increases, cancer increases.

Hence ATa
, λTα T are positively correlated and μTα B is negatively correlated. On the other

hand, as T increases, cancer decreases. Hence λDC, lTI12
, λI12 D and μPA (in Fig 6) are negatively

correlated. Finally the killing rate η of C by T is negatively correlated while the growth rate λC
of C is highly positively correlated.
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