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The nervous and immune systems are intimately related in the brain and in the periphery,

where changes to one affect the other and vice-versa. Immune cells are responsible

for sculpting and pruning neuronal synapses, and play key roles in neuro-development

and neurological disease pathology. The immune composition of the brain is tightly

regulated from the periphery through the blood-brain barrier (BBB), whose maintenance

is driven to a significant extent by extracellular matrix (ECM) components. After a brain

insult, the BBB can become disrupted and the composition of the ECM can change.

These changes, and the resulting immune infiltration, can have detrimental effects on

neurophysiology and are the hallmarks of several diseases. In this review, we discuss

some processes that may occur after insult, and potential consequences to brain

neuroimmunology and disease progression. We then highlight future research directions

and opportunities for further tool development to probe the neuro-immune interface.

Keywords: extracellular matrix, blood-brain barrier, neuro-immunology, contusions, stroke, glioblastoma, multiple
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1. BRAIN EXTRACELLULAR MATRIX AND THE BLOOD-BRAIN
BARRIER

The extracellular matrix (ECM) is an integral component contributing to brain function during
health and disease (Baeten and Akassoglou, 2011). The ECM affects neuronal and glial function
through delivery of nutrients, regulation of signaling molecules, and maintenance of overall
stiffness (Baeten and Akassoglou, 2011; Jakeman et al., 2014; Segel et al., 2019; Tabet et al., 2019a).
The ECM is also integral to the blood-brain barrier (BBB), which regulates the transport of
molecules and cells between peripheral blood and the central nervous system (CNS).

The extracellular matrix of the brain is composed of three parts: (1) the neuro-ECM, which is
the conjunctive tissue of the brain and provides an active scaffold for neurons and glia; (2) the
basement membrane (BM), which also constitutes the inner part of the BBB; and (3) the luminal
ECM (synonymously called the glycocalyx), which interfaces with peripheral blood and is also
the intravascular component of the BBB (Figure 1). The BBB includes extracellular components
in the BM and luminal ECM, as well as cellular components such as endothelial cells, pericytes
and astrocytes (Figure 1). In both the white and gray matter, the neuro-ECM is heavily populated
by glycans such as hyaluronic acid (HA) and chondroitin sulfate (CS) (Tabet et al., 2019a,b).
The neuro-ECM undergoes dramatic changes during development but remains relatively stable
throughout life in the absence of disease. To support neuronal electrical activity, the neuro-ECM
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FIGURE 1 | Illustration of the various components comprising the brain extracellular matrix (brain ECM) and the blood-brain barrier (BBB). The brain ECM is the

combination of the ECM in the central nervous system (neuro-ECM), the basement membrane (BM), and the luminal ECM (also called the glycocalyx). The BBB is the

combination of the BM, luminal ECM, and astrocytes, pericytes, and endothelial cells. Figure made with Biorender.

is organized in dense ECM structures known as perineuronal
nets which are enriched in HA/CS glycans, tenacin-R, and
different combinations of lecticans, all secured by the link
proteins Crtl1 and BraI2 (Bekku et al., 2010). Perineuronal nets
enhance synaptic efficacy, restrict aberrant neuronal and synaptic
reorganization, and protect neurons frommetabolic stress (Wang
and Fawcett, 2012; Cabungcal et al., 2013; Jakeman et al., 2014;
Sorg et al., 2016).

The BM, a 40–100 nm thick ECM layer, anatomically separates
endothelial cells from astrocyte endfeet (also known as glia
limitans). It includes pericytes and is a composite of major
ECM proteins: laminins, collagen IV, fibronectin, nidogens, and
heparan sulfate proteoglycans. Laminins polymerize and provide
a net for nidogens and heparan sulfate proteoglycans to bind to.
Collagen IV provides a stable scaffold for the matrix (Sood et al.,
2016; Linka et al., 2021). Last, fibronectin, which incorporates
into the matrix and facilitates its organization, directly affects the
barrier properties and stimulates the proliferation and survival of
endothelial cells (Reed et al., 2019).

The luminal ECM is thicker than the BM by an order
of magnitude, ranging from 0.2 to 5 µm. Unlike the neuro-
ECM and the BM, the luminal ECM is in permanent contact
with blood, is subject to more environmental stressors, and
is directly exposed to peripheral immune cells circulating in
plasma. HA, which can be produced by endothelial cells and
astrocytes, is a key driver of luminal ECM permeability across
the BBB (Henry and Duling, 1999). HA interacts with cells via
receptors such as CD44 and can trigger an inflammatory cascade
(Misra et al., 2015). HA can also mitigate inflammation via
interaction with hyaladherins (Lesley et al., 2004; Reed et al.,
2019). The molecular weight (MW) of HA can dramatically

alter its immunological properties, where low MW is pro-
inflammatory and highMW is anti-inflammatory (Rayahin et al.,
2015). Interestingly, eliminating HA from the BBB increases its
permeability for large molecules (Kutuzov et al., 2018). These
various components of the extracellular space contribute to and
regulate brain immunosurveillance in health, and are implicated
in various disease pathologies that result in the breakdown of
the BBB.

2. IMMUNOSURVEILLANCE AND BRAIN
IMMUNE HOMEOSTASIS

Classical concepts surrounding separation of the brain and the
peripheral immune system are gradually giving way to a more
dynamically regulated interface, with ECM components gating
inter-cellular interactions and where astrocytes, pericytes, and
endothelial cells play an outsized role in BBB maintenance
(Figure 1). Microglia, the resident macrophages of the brain,
play a key role in immunosurveillance and are also important
to BBB integrity. Similar to resident macrophages in the
periphery, microglia are sentinel cells that survey the brain
during homeostasis. They can also be polarized to respond
to CNS insults and support wound healing. Microglia have
received increasing attention for their role in regulation of BBB
integrity and the underlying mechanisms through which they
amplify or suppress circulating factors transported into the brain
parenchyma (Lou et al., 2016; Guo et al., 2020). Extracellular
purines are potent attractants for microglia and for other tissue-
resident myeloid cells (Idzko et al., 2014; Badimon et al., 2020).
Recent in vivo imaging experiments revealed that after damage
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to blood vessels in the brain, microglia traffic to the site of
injury and prevent further vascular leakage by forming a dense
aggregate of microglial processes (Lou et al., 2016). This is one
elegant example of dynamic interactions between microglia and
the BBB which illustrates their role in immunosurveillance and
homeostasis (Zhao et al., 2015; Thurgur and Pinteaux, 2019).

A rapidly growing field of research is exploring brain
immunosurveillance from non-microglial cells, including other
myeloid cells and lymphocytes. The meninges have emerged as
a critical reservoir of innate and adaptive immune cells, and
meningeal lymphatics play critical roles in brain antigen drainage
(Louveau et al., 2015, 2018; Lima et al., 2020; Papadopoulos
et al., 2020; Brioschi et al., 2021). Bone marrow niches in the
skull were shown to provide meninges with a continuous supply
of myeloid cells through bone marrow–dura channels (Cugurra
et al., 2021). Following this study, it was additionally shown
proteins in the CSF provide cues for myelopoiesis and cell-
trafficking to the meninges (Mazzitelli et al., 2022). Lymphatics
in the meninges are also critical for brain immunosurveillance
by T cells (Louveau et al., 2015, 2018). Improving lymphatic
drainage with vascular endothelial growth factor C (VEGF-C)
(Mesquita et al., 2018), for example, can enhance T cell-based
immunotherapy against gliomas (Song et al., 2020). VEGF-C can
also improve monoclonal antibody treatments against amyloid
beta in murine models of Alzheimer’s disease (Mesquita et al.,
2021). Another exciting area of research explores the effects
of innate or adaptive immune cells on neuronal function. The
former secrete soluble cytokines into the ECM, which can directly
bind to receptors on neurons (Salvador et al., 2021).

Still, many questions remain, and the field faces substantial
technological challenges. Identifying the points of entry for
perturbation of inter-cellular communication in disease states
will require novel strategies for spatiotemporal control of
individual cells and the surrounding matrix. Studies in the
cortex have been more accessible than in deeper structures. For
example, intravital imaging approaches have been adapted for
studies of leukocyte rolling and adhesion in penetrating arteries
on the surface of the cortex. While downstream capillaries are
currently less accessible for kinetic imaging, the development
of implantable bioelectronics for stealthy interrogation of
intracerebral processes (Canales et al., 2015; Liang et al., 2018;
Tabet et al., 2021) is a promising strategy to access deeper
structures. Imaging deeper into the brain could reveal newmodes
of interaction between circulating lymphocyte precursors and cell
populations at the BBB and blood-cerebrospinal fluid interfaces,
with downstream consequences for healthy neuronal processes
and disease interventions.

3. CHANGES FOLLOWING CNS INSULT

Dramatic changes to the BBB, ECM, and brain
immunosurveillance can occur after an insult to the CNS.
These insults, such as cortical contusion, stroke, glioblastoma
(GB), and multiple sclerosis (MS) occur over varying timescales
and can have different consequences on microglia, astrocytes,

and lymphocytes (Figure 2). We discuss some features of these
pathologies below.

3.1. Contusions and Stroke
Cortical contusions are traumatic lesions in the brain that
hemorrhage. Following injury, cellular and macromolecular
components in blood can traverse the disrupted BBB and
enter the CNS. This damage triggers an array of signaling
cascades that activate the innate immune system (Jakeman
et al., 2014). Dying cells release genomic DNA and other
damage-associated molecular patterns (DAMPs; Vénéreau et al.,
2015) which serve as biochemical cues (Figure 2A). Microglia
sense these DAMPs and are polarized toward phagocytic, pro-
inflammatory phenotypes which upregulate membrane-bound
CD68 and release signaling molecules such as IL-1, IL-6,
and TNF-α. These activated microglia also upregulate ionized
calcium binding adaptor molecule 1 (Iba1; Ohsawa et al. (2004)),
a protein that participates in microglia phagocytosis. As a
response to brain injury, astrocytes also undergo major changes
and will upregulate glial fibrillary acidic protein (GFAP) as well as
release cytokines and chemokines to attract microglia, circulating
monocytes, and other immune cells from the periphery to
the site of injury. Interestingly, inflammatory peptides such
as bradykinin can cause astrocytes to secrete IL-6 and lead
to further BBB permeabilization early on, suggesting that
temporarily heightened peripheral immune surveillance supports
an inflammatory response before astrocyte-mediated repair of
the BBB (Schwaninger et al., 1999; Karve et al., 2016). Following
cytokine and chemokine release soon after injury, peripheral
immune cells such as neutrophils and circulating monocytes
enter the brain. These circulating monocytes differentiate into
macrophages and can persist for several days to weeks (Jakeman
et al., 2014; Jin and Yamashita, 2016) while exhibiting both
pro-inflammatory and wound-healing phenotypes.

Dramatic changes to the ECM occur following contusions.
Following stimulation by signaling molecules such as IL-6, IFNγ ,
and TGFβ , astrocytes secrete chondroitin sulfate (CS) and CS-
containing proteoglycans (CSPGs). CS levels increase 1–7 days
following injury, and can remain elevated for weeks before
reduction ∼2 months later (Jakeman et al., 2014); they also have
a profound effect on neurons (Siebert et al., 2014). CSPGs inhibit
axonal growth, and upregulation of CS in vivo by astrocytes in
the area of injury results in a reduction of regenerative capacity.
This self-defense mechanism may be an endogenous way to wall
off injury and prevent its propagation, and controlling it is an
area of research for regenerative medicine (Jakeman et al., 2014;
Siebert et al., 2014).

Strokes are the second leading cause of death worldwide
(WHO Global Health Estimates), and preventing them or
limiting their damage has been the focus of extensive research.
Strokes are disruptions of blood flow to the brain, triggered either
by a blood clot causing ischemia in about 80% of cases (Aguilar,
2015), or by hemorrhagic vessel disruptions. This paragraph will
focus on the consequences of ischemic strokes, which share some
immune cascades with contusions.

Ischemia leads to the disruption of the BBB through several
mechanisms (Baeten and Akassoglou, 2011). At the cellular
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level, ischemia causes a disruption of tight junctions between
endothelial cells, with subsequent opening of the endothelial and
astrocytic end feet barriers. Ischemia affects the ECM as well by
causing a degradation of the BM due to proteolysis by matrix
metalloproteases (MMPs). Fibrin and fibrinogen extravasation
from the bloodstream through the disrupted BBB leads to
secondary damage in the brain as well.

As with contusions, this damage in the brain from ischemia
triggers an orchestrated neuro-inflammatory cascade that begins
with an influx of microglia to the site of injury. Soluble factors
released as a consequence of the cell injury in the parenchyma
or from blood extravasation activate microglia (Qin et al., 2019).
These activated microglia can play multiple roles at the BBB
in ischemic stroke. Starting in the initial hours after ischemic
stroke and peaking a week after, microglia produce high levels
of pro-inflammatory cytokines and chemokines, which enhance
the infiltration of T and B leukocytes (Selvaraj and Stowe,
2017; Zhang et al., 2021). In latter stages, microglia exhibit
wound-healing phenotypes and support synpatic remodeling.
They release VEGF, an angiogenic factor, to promote reformation
of vasculature. Microglia also triggers expression of synaptic
proteins and plays a role in neurogenesis, axonal regeneration,
and other neural circuit recovery processes (Yu et al., 2021).

Following the influx of microglia, other cellular players traffic
to the site of injury. In addition to circulating macrophages,
T and B lymphocytes, dendritic cells (DCs), and neutrophils
enter the brain and play a role in the neuro-inflammatory and
healing cascades that follow (Selvaraj and Stowe, 2017). The role
of the adaptive immune system in recovery following ischemia
is still not fully understood. Interestingly, in animal models of
stroke, wild-type mice fare worse than immune-deficient mice,
and IFN-γ and IL-17 have been identified as key players in T cell-
mediated tissue damage (Yilmaz et al., 2006; Shichita et al., 2009;
Gelderblom et al., 2012; Selvaraj and Stowe, 2017 The long-term
effects of adaptive immune cell influx into the brain following
stroke remain an active area of research. Further investigations
into their acute and chronic functions, and interactions with
neurons, could open up new therapeutic strategies that address
this large unmet medical need.

3.2. Glioblastoma
Glioblastomas (GBs) are aggressive grade IV astrocytomas and
are the most common primary intracranial tumors (Bondy
et al., 2008). GBs are universally lethal and have among the
worst clinical outcomes of all cancer types. They develop a
tumor microenvironment with altered cellular and extracellular
composition that is crucial to their progression and therapeutic
resistance, characterized by metabolic, hypoxic, osmotic and
pH changes (Qiu et al., 2021). The neuro-ECM in this tumor
environment supports cancer stem cells and is involved in tumor
progression and chemoresistance (Ros et al., 2018) (Figure 2B).
It provides receptors able to anchor stem cells in the niche
and secretes growth factors that lead to their proliferation, such
as laminin alpha-2 (Lathia et al., 2012), or regulation, such as
integrin alpha-6 (Corsini and Martin-Villalba, 2010).

GBs cause BBB disruption, resulting in cerebral edema and
tumor microenvironment communication with the blood stream

(Wiranowska et al., 1992; Schneider et al., 2004). Disruption is
not merely due to astrocytic dysfunction, but also due to GB
cells secreting ECM-disrupting soluble factors (Schneider et al.,
2004), for instance hypoxia-induced VEGF-A, also responsible
for angiogenic stimulation (Zhao et al., 2018). They lead to a
lower expression of claudin-1, claudin-5, and occludin, resulting
in pathological fenestration in endothelial cells tight junctions,
and increase the secretion of MMPs by endothelial cells, thus
disrupting the ECM (Ishihara et al., 2008; Zhao et al., 2018).

However, the GB-induced BBB disruption, associated with the
concept of a blood-brain tumor barrier, does not enable higher
permeability of therapeutic macromolecules to the tumor. On the
contrary, it creates a local microenvironment favorable for tumor
growth and resistance against a variety of therapeutic modalities
(Ros et al., 2018). The neuro-ECM is partly responsible for the
increased stiffness of glioblastoma tissue and ECM compared
to non-tumoral tissue, which, along the local hyperosmotic
character, interferes with vessel integrity and is a significant
obstacle to macromolecule transport across the BBB and the
recruitment of inflammatory cells.

Brain tumors also have direct immuno-modulatory potential.
Tumors are commonly thought of as “continuous wounds” with
respect to their immunological characteristics and similarities
of tumor-associated immune cells to those cells participating
in wound-healing (Dvorak, 2015). GBs recruit immune cells
by releasing soluble factors such as chemokines and cytokines,
and can polarize them toward pro-tumor phenotypes. For
example, microglia and peripheral monocytes/macrophages
can be recruited and polarized to tumor-associated microglia
(TAMs), and strikingly, these cells make up approximately 40%
of a brain tumor’s volume (Buonfiglioli and Hambardzumyan,
2021). TAMs are critical for tumor growth. They help
reformulate the ECM to become more suitable for cancer cells,
suppress effector immune cell surveillance, and enable brain
tumor resistance to chemo- or radio-therapy (Buonfiglioli and
Hambardzumyan, 2021).

The ability of neurons to contribute to tumor progression
by secreting soluble factors and directly forming synapses
with tumor cells has recently gained significant attention
(Venkatesh et al., 2015, 2017, 2019; Venkataramani et al., 2019;
Zeng et al., 2019; Monje et al., 2020; Pan et al., 2021). Of
particular importance is a subset of glioma cells that resemble
oligodendrocyte precursor cells (OPCs), referred to here as
OPC-like cells (Neftel et al., 2019). When exposed to soluble
forms of the neuronal synaptic protein neuroligin-3 (NLGN3),
OPC-like tumor cells proliferated faster (Venkatesh et al.,
2015) (Figure 2B). An experiment in vitro showed that tumor
proliferation monotonically increased with increasing NLGN3
concentrations. Strinkingly, patient-derived cancer cells were not
able to appreciably grow in vivo in Nlgn3-deficient mice. These
data highlighted that soluble factors derived from neurons can
modulate the growth of tumors, and preventing the cleavage of
this post-synaptic protein is a viable therapeutic approach to
reduce the rate of tumor progression (Venkatesh et al., 2017).

In follow-up studies, it was identified that OPC-like
tumor cells form bona fide synapses with neurons in vivo
(Venkataramani et al., 2019; Venkatesh et al., 2019). Serving
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FIGURE 2 | Illustration highlighting some of the cellular or molecular pathways involved in (A) contusions or stroke, (B) glioblastoma (GB), and (C) multiple sclerosis

(MS), with events that occur under comparable time scales grouped together. (A) BBB permeabilization and the role of microglia are highlighted. (B) Changes in the

brain tumor microenvironment and some neuro-immune consequences. (C) Lymphocyte trafficking into the CNS and subsequent demyelination in MS. Figure made

with Biorender.
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as post-synaptic cells, OPC-like tumor cells had increased
proliferation with higher activity independent of the soluble
NLGN3 mechanism. Ex vivo slice patch-clamp experiments
identified that synaptic communication occurs through AMPA
receptors (AMPARs) and could be inhibited by traditional
AMPAR antagonists such as NBQX or sodium channel blockers
such as tetrodotoxin (TTX). A distinct, prolonged (>1 s)
electrophysiological response was also observed in vivo that was
not blocked by either AMPAR inhibitors or TTX. This was
identified as a potassium current from a gap junction-coupled
network, and this depolarization also promoted tumor growth.
An unanswered question in this paradigm is whether TAMs have
a role in neuron-tumor interactions. Given the role of microglia
in sculpting neuronal synapses in healthy postnatal brains, an
interesting question is whether TAMs support the formation of
neuron-tumor synapses as well.

3.3. Multiple Sclerosis
Multiple sclerosis (MS) is a leading cause of neurological
disability, particularly in young adults (WHO Global Health
Estimates), and is caused by auto-immune destruction of the
myelin sheath around neurons of the CNS. It impedes all types
of cerebral and spinal chord functions, including motricity,
sensitivity, vision and cognition. MS is currently incurable,
though there are approved treatments that slow down disease
progression (Martin et al., 2016).

Demyelination and oligodendrocyte loss are the primary
pathological hallmarks in MS (Figure 2C). Peripheral leukocytes
contribute to this pathology, where coordinated attacks
involving misrecognition of myelin, antigen presentation,
antibody production, and phagocytic or lytic attack of CNS tissue
accelerate disease progression. The underlying mechanisms
underlying leukocyte trafficking to the brain has been an
active area of research. To recapitulate these observations in
pre-clinical mice models, experimental autoimmune encephalitis
(EAE) evoked by an injection of myelin proteins is commonly
used. Both T and B cells are strongly implicated in MS (Chastain
et al., 2011; van Langelaar et al., 2020; Jain and Yong, 2021).
Self-reactive T cells in the choroid plexus support neuroimmune
homeostasis in the CNS, but in MS and EAE, cerebrospinal
fluid T cells skew toward a pathogenic T helper 17 (Th17)
phenotype (Mundt et al., 2019) that are detrimental for brain
function. Inflamed T leukocytes are more prone to rolling
and adhesion along the luminal surface of blood vessels in
the brain (Figure 1; Nourshargh and Alon, 2014). “Stickiness”
among circulating leukocytes is partly mediated by upregulation
of adhesion molecules on the leukocytes themselves, and by
alterations in the cell-surface profile of vascular endothelial
cells (Pinheiro et al., 2016). Strikingly, upregulation of integrins
and cadherins enable Th17 cells to “crawl” for long distances
(hundreds of microns) against the direction of blood flow
in EAE (Engelhardt and Ransohoff, 2012). During crawling,
Th17 cells utilize actin filaments, scaffolding proteins, and
ECM-degrading enzymes to infiltrate the brain at fenestrated
capillaries in the choroid plexus and penetrate tight junctions at
the cerebrovascular interface (Mundt et al., 2019; Samus et al.,
2020).

Once in the brain, Th17 cells support neuroinflammation
that is the hallmark of MS. T cell diapedesis is evoked by
antigen presentation, and in MS/EAE, myelin and myelin-
associated proteins are the predominant antigens recognized
by T cell receptors (Pinheiro et al., 2016; Mundt et al.,
2019). Microglia are the professional antigen-presenting cells
(APCs) in the brain parenchyma, but astrocytes are also
capable of antigen presentation under certain conditions
(Mundt et al., 2019). In the cerebrovasculature, endothelial
cells are also capable of antigen presentation in EAE and
other chronic inflammatory conditions (Pinheiro et al., 2016).
B cells in the dural meninges are also efficient APCs,
and they accumulate and skew toward a pro-inflammatory
phenotype in EAE (Jain and Yong, 2021). The diversity
of cells that can serve as APCs (Chastain et al., 2011)
highlight the complicated signaling cascades that underlie
neuroinflammation in MS, but also serve as opportunities for
therapeutic intervention.

While T cells have historically been the dominant lymphocyte
implicated in MS, the role of B cells has received outsized
attention in recent years. In a landmark 2017 clinical trial,
depletion of CD20+ B cells with the monoclonal antibody
Ocrelizumab was identified to be an effective therapy for MS
(Hauser et al., 2017). More recently, an epidemiological study of
over 10 million active duty U.S. military personnel found strong
evidence that Epstein-Barr virus (EBV) serves as the trigger for
MS (Bjornevik et al., 2022). In a separate study, it was found
that EBV infection triggers B cells to produce antibodies against
the EBV transcription factor EBNA1, and strikingly these clones
undergo further affinity maturation in the brain to produce
auto-antibodies which are also cross-reactive against the CNS
protein GlialCAM (Lanz et al., 2022). These consequential studies
highlight the potentially detrimental role that mimcry of viral
antigens to self-antigens can have in MS and other neuro-
inflammatory diseases, and are exciting new avenues to explore
for therapeutic interventions.

4. OUTLOOK

Traditional concepts on the immuno-separation of the brain
from the periphery are slowly being replaced with a more
rigorous understanding of the dynamic interactions between the
two. The role “borders” such as the BBB play an important role
in the dysfunction between neuron-immune cell interactions. As
the role of peripheral leukocytes, and in particular T and B cells,
in various disease pathologies becomes more evident, new tools
will be needed to study and control the circuitry of the immune
system in the brain. Cellular and molecular transport across the
BBB will play an important role in these therapeutic paradigms.
While we have focused on the effect immune cells can have on
brain tissue, studying the bi-directional communication between
neurons and immune cells will be an important component in
neuro-immune therapies. Investigating the immuno-modulatory
potential of neurons and bringing together immune tools with
bioelectronic medicine is a promising avenue to explore new
treatment modalities against hard-to-treat diseases.
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