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Reprogramming to pluripotency involves drastic restructuring of both metabolism and the epigenome. However, induced
pluripotent stem cells (iPSC) retain transcriptional memory, epigenetic memory, and metabolic memory from their somatic
cells of origin and acquire aberrant characteristics distinct from either other pluripotent cells or parental cells, reflecting
incomplete reprogramming. As a critical link between the microenvironment and regulation of the epigenome, nutrient
availability likely plays a significant role in the retention of somatic cell memory by iPSC. Significantly, relative nutrient
availability impacts iPSC reprogramming efficiency, epigenetic regulation and cell fate, and differentially alters their ability
to respond to physiological stimuli. The significance of metabolites during the reprogramming process is central to further
elucidating how iPSC retain somatic cell characteristics and optimising culture conditions to generate iPSC with
physiological phenotypes to ensure their reliable use in basic research and clinical applications. This review serves to
integrate studies on iPSC reprogramming, memory retention and metabolism, and identifies areas in which current
knowledge is limited.

1. Introduction

The exogenous expression of the transcription factors OCT4,
SOX2, KLF4, and c-MYC in both mouse and human somatic
cells has enabled the derivation of cells with embryonic stem
cell (ESC) -like properties, termed induced pluripotent stem
cells (iPSC) [1, 2]. While these reprogrammed cells are capa-
ble of self-renewal, demonstrate in vitro differentiation
potential equivalent to that of ESC and, in mice, are able to
contribute to viable chimeras [3], several studies have raised
concerns that iPSC retain somatic cell memory and acquire
characteristics that may bias cell fate or impair cell function
post-differentiation. As iPSC have the capacity to differenti-
ate into cells of each of the three primary germ layers: endo-
derm, mesoderm, and ectoderm [4], they possess immense
potential for clinical applications in disease modelling, drug
discovery, and regenerative medicine. It is therefore of great
importance for iPSC to be able to appropriately respond to
their environment and acquire an ESC-like physiology to
ensure that they can be safely and reliably used in the clinic

and recapitulate the physiology of disease models in drug dis-
covery and basic research.

Culture conditions and nutrient availability not only
affect reprogramming itself but have a long-term impact on
the resultant physiology of iPSC. This review therefore dis-
cusses recent advances in our understanding of factors that
influence the efficiency of the reprogramming process, meta-
bolic restructuring, and retention of somatic cell memory, as
well as how it is essential to further elucidate how somatic cell
memory is retained for the subsequent optimisation of the
reprogramming process to generate iPSC with a physiologi-
cal ESC-like phenotype and ensure long-term cellular health.

2. Reprogramming Necessitates
Transcriptional, Epigenetic, and
Metabolic Restructuring

In contrast to most somatic cells, which primarily utilise oxi-
dative phosphorylation (OxPhos) for energy production [5],
iPSC instead rely primarily on glycolysis [6–8]. This curious
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metabolic phenotype resembles that of ESC [9] and recapitu-
lates that of the inner cell mass (ICM) of the blastocyst, which
is almost exclusively glycolytic [10, 11]. This metabolism is
characterised by a high glucose to lactate flux even in the
presence of adequate oxygen, a phenomenon known as aero-
bic glycolysis, first characterised by Warburg [12, 13]. While
glycolysis is not as efficient as OxPhos in terms of the number
of adenosine triphosphate (ATP) molecules produced per
mol of glucose consumed, glycolysis can produce an equiva-
lent amount of ATP in the same duration of time given a high
glucose to lactate flux [14]. Glycolysis consequently plays a
key role in the production of biosynthetic precursors, such
as phospholipids and glycoproteins [15, 16], necessary to
support proliferation and regulate cell function, and likely
ensures protection of the genome from oxidative stress
caused by excessive production of reactive oxygen species
(ROS) [17].

Reprogramming to pluripotency involves a transition
from a primarily oxidative to a primarily glycolytic metabolic
phenotype [6, 9, 18], and this metabolic restructuring takes
place in the initial phase of the reprogramming process. Oxy-
gen consumption and ATP production, as well as gene
expression levels of pathways such as glycolysis, the pentose
phosphate pathway (PPP) and the tricarboxylic acid (TCA)
cycle, are remodelled during reprogramming to levels similar
to those found in ESC [9, 19, 20]. Following the restructuring
of metabolism, the promoters of pluripotent genes undergo
DNA demethylation, while those of somatic genes are meth-
ylated [21]. This results in the upregulation of endogenous
NANOG, OCT4, and SOX2, activating the transcription fac-
tor network responsible for the establishment and mainte-
nance of pluripotency [22]. The chromatin structure [23]
and the epigenetic landscape [24] are remodelled to resemble
those of ESC, to enable ongoing transcription of genes that
underpin pluripotency. In addition, telomerase is upregu-
lated [25], with a concomitant lengthening of telomeres to
ESC-like lengths [26], providing improved genomic stability
and protection against DNA damage. Significantly, as meta-
bolic changes precede the upregulation of pluripotency
markers [6], this illustrates that metabolic restructuring is a
prerequisite for the successful establishment and mainte-
nance of pluripotency, and that perturbations in this restruc-
turing may have downstream effects on the subsequent stages
of the reprogramming process, including remodelling of the
epigenome and the successful establishment of a pluripotent
state. Equally, altering relative metabolite availabilities dur-
ing reprogramming, by modulating metabolism, will plausi-
bly impact both metabolic and epigenetic remodelling and
hence the acquisition of pluripotency. While the effects of
some specific metabolites on improving or reducing repro-
gramming efficiency have been assessed, understanding
how reprogramming under such conditions affects the
restructuring of metabolism and the physiology and meta-
bolic phenotype of resultant iPSC is limited.

3. Metabolism as a Driver of Reprogramming

A role formetabolism in regulating the acquisition of pluripo-
tencyhas beendemonstrated by studies investigating the effect

of promoting glycolysis during the reprogramming process on
reprogramming efficiency. Culturing adult human fibroblasts
under physiological (5%) oxygen or supplementing culture
medium during reprogramming with D-fructose-6-phos-
phate (F6P), a glycolytic stimulator and intermediate, signifi-
cantly increases the number of derived iPSC colonies [7, 27].
As both physiological oxygen and F6P promote lactate pro-
duction [10, 28, 29], they plausibly improve reprogramming
efficiency by supporting and facilitating the transition to a
primarily glycolytic metabolism. Similarly, upregulation of
HIF1α, a transcription factor that upregulates glycolytic genes
[30–33] and is stabilised by physiological oxygen [34, 35]
and lactate [10], has been shown to significantly improve
reprogramming efficiency [18]. In contrast, 2-deoxy-D-glu-
cose (2-DG), a glycolytic inhibitor, reduces glucose to lac-
tate flux, significantly reducing reprogramming efficiency
[7, 36]. Combined, these studies highlight that the transi-
tion to a glycolytic metabolism is essential for reprogram-
ming to take place.

In further support of the importance of glycolysis to
reprogramming, different somatic cell types demonstrate
different efficiencies of reprogramming to pluripotency, as
well as different routes to pluripotency [37], and this has been
attributed to the metabolic phenotype of the initial somatic
cells. Somatic cell types that are metabolically more glycolytic
and less oxidative, such as keratinocytes, reprogram to plur-
ipotency with significantly greater efficiencies and more
quickly than cell types that are less glycolytic and more
oxidative, such as fibroblasts [7, 38]. In addition, progenitor
and somatic stem cells, such as skeletal muscle stem cells
[39] and hematopoietic stem cells [40], which exhibit a more
glycolytic metabolism [41, 42], can be reprogrammed to
pluripotency with a far greater efficiency than their termi-
nally differentiated counterparts.

Reprogramming efficiency is also improved by modu-
lating metabolism through transcription factor regulation.
Takahashi and Yamanaka’s original reprogramming method,
employing retroviral-based expression of key transcription
factors, resulted in relatively inefficient reprogramming,
with only 0.02% of mouse somatic cells successfully
acquiring a pluripotent ESC-like phenotype [1] and a sim-
ilar reprogramming efficiency was observed for human
fibroblasts [2]. The transcription factor c-MYC, one of
the four factors used in the initial derivation of iPSC [1],
is not essential for reprogramming, though its absence
results in reprogramming that is slower and less efficient
relative to when c-MYC is present [43]. c-MYC facilitates
the upregulation of glycolytic genes [44], maintains a high
glucose to lactate flux [45], promotes telomere elongation
[46], and plays a critical role in regulating histone acetyla-
tion during reprogramming [47]. As such, it is likely that
the impact of c-MYC on reprogramming is through its
roles in regulating both metabolism and the epigenetic
landscape, thereby promoting metabolic restructuring early
in the reprogramming process. Similarly, LIN28a, which
modulates both glycolysis and OxPhos by influencing
mRNA translation [48], has been shown to improve
reprogramming [49]. Hence, such data further illustrate a
central role for metabolism in reprogramming, specifically
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how modulation of metabolic pathways can impact the
efficiency of iPSC derivation.

In addition to improving reprogramming efficiency with
transcription factor-based methods, small molecules can
also be used in place of transcription factors to reprogram
somatic cells to pluripotency. These resultant cells are
termed chemically induced pluripotent stem cells (ciPSC)
and display similar morphological and physiological charac-
teristics, differentiation potential, and global gene expression
profiles, with traditional iPSC and ESC [50–52]. In a similar
manner to the use of physiological oxygen and c-MYC,
PS48, a small-molecule PDK1 activator, increases glycolytic
gene expression with a corresponding increase in lactate
production [36]. Significantly, PS48 can functionally replace
SOX2, KLF4, and c-MYC in reprogramming keratinocytes
when used alongside other small molecules such as sodium
butyrate, a short-chain fatty acid, and A-83-01, a transform-
ing growth factor beta (TGFβ) receptor inhibitor [36].
Upregulating glycolytic activity therefore not only improves
reprogramming efficiency but can directly drive reprogram-
ming itself, further supporting the central role of glycolysis
in establishing pluripotency. However, beyond carbohy-
drate utilisation, the metabolic phenotypes of ciPSC and
transcription factor-derived iPSC have not been compared
and the downstream effects of chemical reprogramming
on the physiology and differentiation potential of ciPSC
have not been assessed.

Manipulating other culture conditions can likewise sig-
nificantly impact reprogramming efficiency. In addition to
the promotion of glycolytic metabolism, supplementing
culture media during reprogramming with sodium buty-
rate facilitates the opening of chromatin and the activation
of pluripotency genes and significantly improves the effi-
ciency of reprogramming human fibroblasts to pluripo-
tency [53]. The supplementation of sodium butyrate may
reduce the retention of somatic cell epigenetic memory
through DNA demethylation and the erasure of parental
cell-specific epigenetic marks. Similarly, ascorbic acid (vita-
min C) reduces histone H3 lysine 9 (H3K9) and H3K36
methylation, therefore promoting gene activation, through
the regulation of histone demethylases JHDM1A and
JHD1B [54], and improves the speed and efficiency of
reprogramming somatic cells to pluripotency [54–56].
Vitamin C also reduces repressive DNA methylation by
modulating the activity of ten-eleven translocation (TET)
demethylases [57], converting 5-methylcytosine (5mC) to
5-hydroxymethylcytosine (5hmC). These results further
highlight the importance of epigenetic remodelling in the
reprogramming process, although to date, no studies have
investigated how any of these methods may impact the
metabolism and physiology of resultant iPSC. Further, as
the reprogramming process involves a wide-scale resetting
of histone and DNA methylation patterns [58], it is plausible
that the epigenetic profiles of terminally differentiated cells
serve as a barrier to reprogramming. Given that the epige-
netic landscape is regulated by metabolite availability, as
discussed below, the greater reprogramming efficiency
observed in somatic stem cells may plausibly be a result of
their metabolism. However, how the metabolic phenotypes

of somatic stem cells relate to their efficiency in generating
iPSC remains unexplored and developing interventions to
alter the metabolic phenotype prior to reprogramming may
therefore be of value.

Equally, culture conditions can drive reversion to differ-
ent pluripotent states, accompanied by different metabolic
states. Two distinct but stable pluripotent states, naïve and
primed, have been reported, representing an early, more plu-
ripotent developmental stage with higher developmental
potential [59–61] and a later stage of development associated
with differentiation bias [62], respectively. These differences
are reflected by distinct epigenetic profiles, whereby naïve
ESC are globally hypomethylated [63] and exhibit reduced
histone methylation [64]. Both mouse and human naïve cells
also differ from their primed counterparts in having a com-
paratively higher oxidative metabolism, inferred from a
greater level of oxygen consumption and upregulation of
enzymes involved in OxPhos [33, 64–68]. Indeed, the reduc-
tion in histone methylation is related to the oxidative
metabolic phenotype of naïve mouse ESC, accompanied
by decreased HIF pathway activity [64], illustrating the
metabolic regulation of naïve and primed states, as well
as the transitions between them. Further, Zhou and col-
leagues reported that the transition to a primarily glycolytic
metabolism drives the conversion of both naïve mouse ESC
to a primed state and that this transition is driven by HIF1α
activity [33]. However, in addition to induction of naïvety
through the provision of GSK3B and ERK inhibitors (2i),
medium composition also differed, which may itself contrib-
ute to the metabolic shift. A number of human naïve states
have been described, but no consensus exists on the factors
required to establish naïvety in the human, and a spectrum
of naïve characteristics is displayed [65]. Different protocols
and media formulations for converting human pluripotent
stem cells (PSC) to naïve cells may result in a diversity of
metabolic states, each having different downstream effects
on gene expression, the epigenetic landscape, and the regula-
tion of pluripotency. However, metabolic characterisation of
naïvety is limited to oxidative capacity and gene expression
[38, 64–68]. Greater understanding of naïve metabolism,
particularly in regard to carbohydrate and amino acid utilisa-
tion, may be pertinent for enhancing their derivation and
maintenance, as optimising media, beyond the supplemen-
tation of inhibitors and growth factors, may be necessary
to improve not only the conversion of primed to naïve
iPSC but also the direct derivation of naïve iPSC from
somatic cells.

Altered metabolism can have significant functional con-
sequences on physiology, as highlighted by the current
understanding of developmental origins of health and disease
(DOHaD) [69, 70], whereby seemingly small changes in
nutrient availability in utero can significantly impact subse-
quent adult health. Beyond the role of metabolism generating
ATP, metabolic intermediates serve as cofactors for modifiers
of the epigenetic landscape [17, 41, 71, 72]. Consequently,
relative nutrient availability links the external microenviron-
ment to regulation of the epigenome. Metabolites, including
glucose-derived acetyl-CoA [73, 74], nicotinamide adenine
dinucleotide (NAD+) [75], S-adenosyl methionine (SAM)
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[76, 77], L-proline [55, 78, 79], alpha-ketoglutarate (αKG)
[80], and fatty acids [81], have been shown to modulate the
epigenome, pluripotency, and cell fate [17, 71]. For example,
αKG, derived from glucose and glutamine catabolism, mod-
ulates histone demethylation and TET-dependent DNA
demethylation, regulating the expression of genes associated
with pluripotency [80]. The intimate relationship between
metabolism and epigenetics, termed metaboloepigenetics
[71, 82, 83], highlights the importance of appropriately regu-
lating metabolism and that perturbations in iPSC metabolite
availability will have downstream effects on gene expression
and cellular function and bias cell fate. Such effects will plau-
sibly persist post-differentiation, thereby impacting applica-
tions of iPSC in regenerative medicine, disease modelling,
and drug discovery.

4. Somatic Cell Memory and
Incomplete Reprogramming

While iPSC display many hallmarks of pluripotency and
similarities with ESC, iPSC from various somatic cell types
retain transcriptional memory [84, 85], epigenetic memory
[66, 86], and metabolic memory [87, 88] of their parental
somatic cells and acquire genetic and epigenetic aberrations,
including mtDNAmutations, distinct from either ESC or the
parental somatic cells of origin [89, 90]. The retention of
epigenetic memory, as well as transcriptional memory of
somatic gene expression, illustrates that histone and DNA
methylation profiles are not fully reset following reprogram-
ming and, as this memory can bias the fate of iPSC towards
their parental cell type [86], has downstream effects on iPSC
gene expression and physiology. Demethylated regions
(DMRs) in iPSC are retained from their somatic cell type
of origin and can distinguish iPSC derived from different
cell types, as well as iPSC from ESC [86]. Epigenetic mem-
ory has been shown to be progressively lost as iPSC
undergo a greater number of passages [66]; however, it is
not known whether somatic cell epigenetic marks are actu-
ally erased in iPSC post-reprogramming or whether there
exists a selective pressure against iPSC that have retained
epigenetic memory. This potential selection may in itself
not result in iPSC with an ESC-like phenotype or epige-
netic landscape, as the acquisition of aberrant epigenetic
marks may provide a selective advantage over the reten-
tion of epigenetic memory.

The morphology of iPSC mitochondria resembles that of
both ESC and somatic cells [9, 91, 92], highlighting that
mitochondria are not fully restructured to an ESC-like state
during reprogramming and that somatic mitochondrial
physiology is likely partially retained in iPSC. Significantly,
iPSC reprogrammed under physiological oxygen possess
mitochondria that are less active and consume less oxygen,
thereby more closely resembling the mitochondria of ESC
[88]. Physiological oxygen, by modulating metabolism dur-
ing reprogramming, therefore not only improves reprogram-
ming efficiency but also promotes the acquisition of an ESC-
like mitochondrial phenotype, reducing the retention of
somatic cell metabolic memory. Furthermore, as the reten-
tion of somatic cell memory involves both epigenetic marks

and metabolic pathway activity, this memory is plausibly
related to the relative availabilities of metabolic intermediates
that modulate the activity of epigenetic modifiers. Conse-
quently, insufficient restructuring of metabolism can com-
promise the subsequent remodelling of the epigenetic
landscape as a result of metaboloepigenetic regulation. While
metabolism as a driver of reprogramming is well established,
the precise role of metabolism in affecting epigenetic remod-
elling and the retention of epigenetic memory is unknown.

In addition to the retention of mitochondrial character-
istics, iPSC have been shown to acquire and accumulate
mitochondrial DNA (mtDNA) mutations [90], with the
frequency of these defects increasing with somatic cell age
[93]. These mutations have the potential to impair mito-
chondrial function and metabolism [94], which could also
result in long-term changes to the epigenome through
changes in the availability of acetyl-CoA and αKG. Though
the downstream effects of mtDNA mutations on mitochon-
drial physiology and activity in iPSC are not fully under-
stood, accumulation of these mutations in somatic cells can
contribute to mitochondrial dysfunction, telomere shorten-
ing, senescence, and disease [95, 96], even at low frequencies
[97]. Further, mtDNA mutations will be retained post-differ-
entiation, compromising not only their safety in clinical
applications but also their ability to recapitulate disease
states, due to the confounding effects of cellular senescence
and compromised metabolic function. Understanding the
acquisition of mtDNA mutations by iPSC, their relationship
with metabolic restructuring and how the accumulation of
these mutations can be mitigated is essential to ensure that
cell replacement strategies do not result in further functional
deficits for the patient.

Panopoulos and colleagues [7] have also reported that
levels of particular metabolites, such as polyunsaturated
fatty acids (PUFAs), are significantly lower in human iPSC
than in ESC, while other metabolites, including the methyl
donor and cofactor for histone methyltransferases (HMT)
SAM, were higher in iPSC. In addition, amino acid and
lipid profiles, as well as metabolites involved in polyamine
biosynthesis, differ between mouse iPSC and ESC [98].
These data reinforce the idea that while iPSC acquire a
primarily glycolytic metabolism, they are not metabolically
equivalent to ESC. This is pertinent given that PUFAs
modulate oxidative metabolism by undergoing beta-
oxidation to form acetyl-CoA, and elevated SAM levels
result in increased histone methylation, highlighting that
metabolic differences with ESC (Figure 1) will have long-
term effects on both the metabolism and epigenome of
iPSC and plausibly their differentiated derivatives [99].
PUFAs can be oxidised to produce eicosanoids, which
can act as ligands to activate the nuclear receptor peroxi-
some proliferator-activated receptor gamma (PPARγ)
[100, 101]. The activation of PPARγ has a wide variety
of functions, such as mitigating oxidative stress caused
by overproduction of ROS, which can have significant
effects on reducing DNA and organelle damage and
recruiting PPARγ coactivator 1-alpha (PGC-1α), a master
regulator of mitochondrial biogenesis and metabolism
[102]. Given that high levels of PUFAs are characteristic
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of ESC, the comparatively lower levels observed in iPSC
likely reflect an aspect of metabolism that is insufficiently
restructured during reprogramming. However, whether
the levels of PUFAs and SAM in iPSC relate to those of
their somatic cells of origin or if iPSC derived from differ-
ent somatic cell types possess different levels of these
metabolites remains unexplored. Plausibly, lower levels of
PUFAs during early stages of reprogramming may impair
mitochondrial remodelling due to insufficient activation
of PPARγ and PGC-1α, contributing to the retention of
metabolic memory. As such, supplementing culture condi-
tions before and during reprogramming with PUFAs or
eicosanoids may likely improve metabolic restructuring,
reprogramming efficiency, and the physiology of resultant
iPSC. Further, eicosanoids modulate both immune func-
tion and inflammation [103]. The likely lower levels of
eicosanoids in iPSC may impact tolerance and responses

to iPSC-derived cells following transplantation for uses in
regenerative medicine.

Recently, it was demonstrated that iPSC derived from
periodontal ligament (PDL) fibroblasts and neonatal human
dermal fibroblasts (NHDF) were unable to regulate carbohy-
drate metabolism in response to physiological oxygen culture
[87], a response that is characteristic of both human ESC
(hESC) [28, 29, 104] and preimplantation embryos [105]
and reflected a retention of somatic cell memory [87]. The
inability of iPSC to respond appropriately to changing envi-
ronments is concerning, as it will plausibly compromise their
utility for clinical applications and may in part contribute to
poor engraftment rates [106], although this is yet to be estab-
lished. Further, reprogramming NHDF under physiological
oxygen results in iPSC with greater transcriptional stability,
longer telomeres, and fewer metabolic aberrations than those
reprogrammed under atmospheric (20%) oxygen, although
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Figure 1: Metabolic differences between embryonic stem cells (ESC) (a) and induced pluripotent stem cells (iPSC) (b). Glycolytic rate,
glucose consumption, and lactate production are altered in iPSC by both the retention of somatic cell metabolic memory and the
acquisition of aberrant metabolic characteristics [87, 88]. Significantly, due to the retention of metabolic memory or the acquisition of
metabolic aberrations, the capacity for iPSC to modulate glycolysis in response to changes in oxygen (O2) is impaired. In contrast, this
oxygen response, whereby glucose to lactate flux is significantly increased under physiological (5%) oxygen conditions relative to that
under atmospheric (20%) oxygen, is well characterised in both ESC [28, 29] and the blastocyst [105]. Levels of polyunsaturated fatty acids
(PUFAs), including arachidonic acid, linoleic acid, docosapentaenoic acid, and adrenic acid, are lower in iPSC than in ESC [7]. PUFAs
regulate oxidative metabolism by undergoing beta-oxidation to produce acetyl-CoA and can be converted to eicosanoids, which can
mitigate oxidative stress, caused by reactive oxygen species (ROS) as a result of oxidative phosphorylation (OxPhos), through the
activation of peroxisome proliferator-activated receptor gamma (PPARγ) [100, 101]. Eicosanoids also plausibly regulate mitochondrial
biogenesis and function though the action of PPARγ recruiting PPARγ coactivator 1-α (PGC-1α) [102]. Levels of the methyl donor and
cofactor S-adenosyl methionine (SAM) are higher in iPSC than in ESC [7], resulting in a greater methylation (me) of histones in iPSC
through the action of histone methyltransferases (HMT). SAM is produced from methionine (Met) and, when demethylated, results in S-
adenosyl-L-homocysteine (SAH) which is hydrolysed to homocysteine (HCY) and converted into methionine. Mitochondria in iPSC
morphologically resemble both those of ESC and somatic cells [9]. Mitochondrial activity in iPSC is affected by the culture conditions
under which they are reprogrammed, whereby iPSC derived under physiological oxygen possess mitochondria that are less active and
more ESC-like when compared to those of iPSC derived under atmospheric oxygen [88]. It has also been shown that iPSC acquire and
accumulate mitochondrial DNA (mtDNA) mutations [90], with the frequency of these mutations increasing with parental somatic cell age
[93]; however, the degree to which these mutations impact mitochondrial metabolism and activity in iPSC is unknown. However, in
somatic cells, mtDNA mutations can contribute not only to mitochondrial dysfunction [95] but also to cellular senescence and telomere
shortening [96]. Thick arrows indicate increased flux/activity. Red arrows indicate pathways affected by the retention of somatic cell
memory or acquisition of metabolic aberrations in iPSC.
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irrespective of oxygen, iPSC retained metabolic memory
from their somatic cells of origin [88], suggesting that the
relative availabilities of other metabolites need to be altered.

Significantly, it is apparent from these studies that
even cells from neonatal donors result in perturbed iPSC
physiology. Parental cell age is negatively correlated with
reprogramming efficiency [107], conceivably reflecting not
only a more closed chromatin configuration but also changes
in cell metabolism which accompany aging [108]. These
changes, which include a reduction in ATP production
[109] and the availability of metabolic intermediates such
as NAD+ [110, 111], have downstream effects on the epige-
netic landscape of senescent cells. Significantly, iPSC derived
from aged tissue have been found to be unable to suppress
OxPhos, impacting their acquisition of a bona fide ESC-like
metabolic phenotype. This lack of OxPhos suppression also
had downstream effects on the epigenetic landscape of resul-
tant iPSC by depleting citrate and thereby reducing histone
acetylation [112]. Plausibly, irrespective of donor cell age,
the culture conditions used to expand cells prior to repro-
gramming, as well as during, have a measurable effect on cell
metabolism that results in the retention of epigenetic marks.
Taken together, these data illustrate that the type and status
of somatic cells have a significant impact on reprogramming,
not only in regard to efficiency but also on the metabolic and
epigenetic remodelling that takes place during the repro-
gramming process.

While different somatic cell types are known to display
different reprogramming efficiencies, whether somatic cell
types displaying distinct metabolomic profiles consequently
establish different levels of metabolic restructuring has not
been comprehensively assessed. Transcriptional, epigenetic,
and metabolic differences between iPSC and ESC suggest that
the reprogramming process is incomplete and that repro-
gramming itself leads to the acquisition of physiological
defects in resultant iPSC. The potential ramifications of
incomplete metabolic reprogramming on iPSC physiology
have not been well explored. Equally, it remains to be eluci-
dated whether somatic metabolic memory and the acquisi-
tion of aberrant metabolic profiles impact the transitions
between pluripotent cell states. As epigenetic aberrations in
iPSC have been shown to be retained through differentiation
[99], suboptimal reprogramming conditions will plausibly
have significant downstream consequences on the clinical
applications of iPSC.

5. Conclusion

There are growing concerns over genetic, epigenetic and,
more recently, metabolic stability in iPSC, which have the
potential to compromise the reliability of iPSC for use in basic
research or the safety and efficacy of their use in clinical appli-
cations. In particular, the retention of somatic cell metabolic
memory and epigenetic memory will likely have downstream
effects on iPSC physiology through metaboloepigenetic
regulation of gene expression and cellular function. Metabo-
lism has a profound effect on somatic cell reprogramming.
Nutrient availability and metabolic pathway activity impact
the efficiency and speed of reprogramming to pluripotency

and, more recently, have been recognised to alter the physiol-
ogy of resultant iPSC, as well as their capacity to regulate
homeostasis in response to changes in their environment
and plausibly facilitate reprogramming through regulation
of the epigenome. This will have downstream consequences
for all iPSC and their derivatives due to the heritable nature
of epigenetic modifications. Reprogramming is not a single
transition, but a dynamic multistage process; therefore, there
may be state-specific requirements as both the metabolism
and epigenome of somatic cells are restructured and a
single-medium formulation may not be sufficient to promote
optimal reprogramming. Consequently, multiple different
aspects of iPSC physiology can be impacted by culture condi-
tions during reprogramming. Hence, deriving iPSC under
suboptimal conditions will plausibly have long-term reper-
cussions on their integrity and physiology and compromise
how they adapt and respond to their in vivo environment
when employed in clinical applications. However, the physi-
ology and functionality of cells differentiated from iPSC
reprogrammed under different conditions have yet to be
investigated, whereby the majority of studies that investigate
iPSC differentiation do not extend beyond basic molecular
characterisation. Different culture conditions or modulators
of metabolism may be necessary during the reprogramming
process and during iPSC maintenance to optimise the physi-
ology, metabolism, and differentiation potential of iPSC and
to ensure that differentiated cells are free from aberrations
and respond appropriately to environmental stimuli.

To date, the significance of how culture conditions
during reprogramming impact the physiology of resultant
iPSC has not only been largely unexplored but ignored and
underestimated. Observed perturbations in iPSC metabo-
lism, epigenetics, and physiology likely underpin significantly
compromised signalling pathways in multiple aspects of
cell function, which will consequently impact their use in
research, regenerative medicine, disease modelling, and drug
discovery. Further investigation of how different culture
conditions alter the metabolic and epigenetic remodelling
that takes place during the reprogramming process, and
how different metabolite availabilities may interact with the
distinct metabolic and epigenetic status of various somatic
cell types, is needed to develop reliable methods of generating
iPSC with a bona fide ESC-like phenotype with no retention
of somatic cell memory or acquisition of de novo aberrations.
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