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Background: The cognitive decline induced by Alzheimer’s disease (AD) is closely related to changes 
in hippocampal structure captured by magnetic resonance imaging (MRI). To accurately analyze the 
morphological changes of the hippocampus induced by AD, it is necessary to establish a one-to-one surface 
correspondence to compare the morphological measurements across different hippocampal surfaces. 
However, most existing landmark-based registration methods cannot satisfy both landmark matching and 
diffeomorphism under large deformations. To address these challenges, we propose a landmark-based 
spherical registration method via quasi-conformal mapping to establish a one-to-one correspondence 
between different hippocampal surfaces.
Methods: In our approach, we use the eigen-graph of the hippocampal surface to extract the intrinsic and 
unified landmarks of all the hippocampal surfaces and then realize the parameterization process from the 
hippocampal surface to a unit sphere according to the barycentric coordinate theory and the triangular mesh 
optimization algorithm. Finally, through the local stereographic projection, the alignment of the landmarks 
is achieved based on the quasi-conformal mapping on a two-dimensional (2D) plane under the constraints of 
Beltrami coefficients which can effectively control the topology distortion.
Results: We verified the proposed registration method on real hippocampus data from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database and created AD and normal control (NC) groups. Our 
registration algorithm achieved an area distortion index (ADI) of 0.4362e−4±0.7800e−5 in the AD group and 
0.5671e−4±0.602e−5 in the NC group, and it achieved an angle distortion index (Eangle) of 0.6407±0.0258 
in the AD group and 0.6271±0.0194 in the NC group. The accuracy of support vector machine (SVM) 
classification for the AD vs. NC groups based on the morphological features extracted from the registered 
hippocampal surfaces reached 94.2%.
Conclusions: This landmark-based spherical quasi-conformal mapping for hippocampal surface 
registration algorithm can maintain precise alignment of the landmarks and bijectivity in the presence of 
large deformation.

Keywords: Alzheimer’s disease (AD); magnetic resonance imaging (MRI); hippocampal surfaces; landmark 

extraction; quasi-conformal mapping; Beltrami coefficients

Submitted Sep 10, 2023. Accepted for publication Apr 17, 2024. Published online May 24, 2024.

doi: 10.21037/qims-23-1297

View this article at: https://dx.doi.org/10.21037/qims-23-1297

4014

https://crossmark.crossref.org/dialog/?doi=10.21037/qims-23-1297


Li et al. Spherical quasi-conformal mapping for surface registration3998

© Quantitative Imaging in Medicine and Surgery. All rights reserved.   Quant Imaging Med Surg 2024;14(6):3997-4014 | https://dx.doi.org/10.21037/qims-23-1297

Introduction

Alzheimer’s disease (AD) (1) is a common neurodegenerative 
disease which seriously endangers the health of older 
adults. Dementia, a major medical and social problem 
that diminishes individuals’ ability to function in daily life, 
afflicts more than 25 million people worldwide (2). To delay 
the progression of AD at its early stage, it is necessary to 
establish a biomarker which can accurately quantify the 
effect of AD. Research into structural magnetic resonance 
imaging (sMRI) (3) has identified potential noninvasive 
neurodegeneration biomarkers of AD through this  
modality (4). Among these, hippocampal atrophy measures 
from sMRI are widely used, as hippocampal morphometry 
changes are apparent in the early stages of memory 
decline and may anticipate progression to mild cognitive 
impairment (MCI) and AD (5,6). However, due to the 
differences in patient age, patient gender, and the software 
used to extract hippocampal surfaces, it is necessary to 
register the hippocampal surface differences between 
individuals (7) to evaluate the effects of AD. By extracting 
the landmarks that reflect the essential morphological 
properties of the hippocampus and by establishing a 
spherical quasi-conformal mapping mechanism, a one-
to-one morphology correspondence between different 
hippocampal surfaces can be established, and the effects of 
AD can then be assessed at the group level.

Surface registration refers to aligning and matching 
surface models from two or more different data sources with 
landmarks to maintain consistency in the same coordinate 
system, thus providing a foundation for subsequent data 
analysis, visualization, and simulation. Bijective registration 
can identify meaningful one-to-one correspondences 
between di f ferent  surfaces .  The landmark-based 
hippocampal surface registration algorithm involves aligning 
essential anatomical features (landmarks) from different 
individuals. These anatomical features are usually landmarks 
that can be manually marked by experts or automatically 
marked by certain algorithms. For instance, Wong et al. (8)  
proposed a model to automatically extract two intrinsic 
landmark curves according to the hippocampal surface 
morphology based on the Laplace-Beltrami (LB) operator 
on Riemannian manifolds. However, the calculation cost 
of this model was high because it involved the gradient 
descents of two energy functions, which typically require 
thousands or more iterations to converge numerically. In 
addition, due to the lack of consideration of large variations 
between individuals, the extracted eigen-graphs between 

individuals lacked correspondences. Later, Chan et al. (9) 
applied the calibration of the eigen-graphs to improve the 
accuracy of the eigen-graph correspondences. However, this 
method excessively pursued the smoothness of the landmark 
curves and neglected the intrinsic morphological features 
of hippocampal surfaces. Moreover, the determination of 
landmarks in the head and the tail of hippocampal surface 
has not been solved. Therefore, greater attention should 
be paid to the computational efficiency and essential 
morphological feature correspondences for extracting the 
landmarks on the hippocampal surfaces.

After the landmarks on hippocampal surfaces are 
extracted, the common procedure is to select a high-quality 
registration method that can perform diffeomorphism and 
landmark matching on the parametric domain. Shen et al. (10)  
proposed a surface registration method that involves 
rotating the main axes of the first-order ellipsoid (FOE) 
obtained from each hippocampal surface to coincide with 
the two designated coordinate axes. However, this method 
only focuses on the overall orientation registration of the 
hippocampus and ignores the alignment of local anatomical 
feature. Zou et al. (11) proposed a landmark-based 
registration method that could achieve alignment between 
anatomical features by minimizing the thin plate bending 
energy. This method, however, leads to the loss of bijectivity 
because it is difficult to strictly guarantee conformal 
mapping under the premise of a complete matching of 
landmarks. Recently, various registration methods have 
begun to incorporate quasi-conformal mapping rather 
than conformal mapping. Lam and Lui (12) proposed 
a quasi-conformal registration method that used the 
landmark information to obtain diffeomorphic registration 
between two natural 2D images. This method is a viable 
landmark-based registration method for dealing with large 
deformation in the 2D parametric plane, but it has not 
been applied to the registration of three-dimensional (3D) 
hippocampal surfaces.

In this study, we aimed to extract the intrinsic landmarks 
through spectrum analysis and to establish an eigen-graph 
correspondence via the calibration method. We then 
further resolved to use the local stereographic projection 
and quasi-conformal mapping method to complete the 
accurate alignment of landmarks while minimizing the 
local geometric distortion. This paper provides three major 
contributions to this field:

(I)	 A method to extract the stable and essential 
landmarks of hippocampal surface based on the 
spectrum analysis, which may serve as platform for 
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further landmark matching;
(II)	 A method based on local forward and inverse 

stereographic projection that can achieve 3D surface 
registration by means of 2D quasi-conformal mapping;

(III)	A method that leverages the mechanism of quasi-
conformal mapping to accurately align landmarks 
while maintaining the bijectivity of mapping 
under a condition of large deformation through 
minimizing the compound energy function.

Methods

This study was conducted in accordance with the 
Declaration of Helsinki (as revised in 2013), and the data 
used in preparation of this article were obtained from the 
Alzheimer’s Disease Neuroimaging Initiative (ADNI) 
database (adni.loni.usc.edu) (13). ADNI is a publicly 
available dataset that researchers from around the world 
can share, and it is the product of the joint efforts of many 
researchers from a wide range of academic institutions and 
private companies (for the latest information, please refer to 
www.adniinfo.org).

Image acquisition and data preprocessing

The experimental data in our study were downloaded from 
the ADNI site. Its research participants were recruited from 
over 50 locations in the United States and Canada. For each 
participant, the T1-weighted magnetic resonance imaging 
(MRI) scan was obtained using a sagittal 3D magnetization-
prepared rapid gradient echo (MPRAGE) sequence with 
the following parameters: repetition time (TR) =2,400 ms, 
inversion time (TI) =1,000 ms, image matrix =256×256, 
and slice thickness =1 mm. Based on T1-weighted MRI 
scanning, the hippocampal substructure was segmented 
using FMRIB’s Integrated Registration and Segmentation 
Tool (FIRST) (14), and the hippocampal surface was 
automatically reconstructed (15). In order to overcome the 
noise caused by image scanning and partial volume effects, 
progressive mesh (16) and loop subdivision (17) were 
applied to smooth the reconstructed hippocampal surface. 
Through the above process, we could obtain the triangular 
meshes {Vi, Fi} of the hippocampal surfaces, where i 
represents the i-th hippocampus.

Landmark extraction

We used principal component analysis (PCA) (18) to 

generate the extreme poles of the hippocampal surface. 
Assuming that ( ), ,V X Y Z  is a coordinate matrix of a 

hippocampal surface H, where n is the number of vertices 
of H, we could first obtain the first principal component 
A of ( ), ,V X Y Z  according to eigenvalue decomposition, 
where A is the eigenvector corresponding to the maximum 
eigenvalue. We projected the original surface coordinates of 
H into the coordinate system determined by A and selected 
the two vertices with the farthest Euclidean distance as the 
two extreme vertices, which could be used as the North 
pole N and the South pole S, respectively, in the spherical 
parameter domain.

We then used the LB operator (19) to generate the 
eigen-graph of the hippocampal surface. According to the 
theory of differential geometry (20), the LB operator is 
defined as div gradf f∆ =  on a Riemannian manifold H, 

where :f H →  . On compact manifolds, the LB operator’s 
first nontrivial eigenfunction satisfy the following:

, 0f fλ λ−∆ = > 	 [1]

The solutions of Eq. [1] represent the spatial part with an 
infinite number of eigenvalues λ and eigenfunction f pairs. 
Each fi represents the vibration mode at a specific frequency 
λj where j represents the j-th frequency. Subsequently, 
the first eigenfunction f1 according to the first nontrivial 
eigenvalue is defined as the eigen-graph of H (9). Because f1 
and λ1 are dependent only on the Riemannian structure of 
the manifold, f1 contains the intrinsic geometric information 
of H. It is worth noting that the value of f1 monotonously 
increases from one tip to the other (8). The hippocampal 
surface can then be conceived of as a series of eigen-loops 
along the longitudinal direction which are constructed by 
the vertices with the similar value of f1.

However, due to individual morphological differences 
of the obtained hippocampal surfaces, the correspondences 
between the individuals’ eigen-graphs might not be 
established. Therefore, it was necessary to calibrate 
the eigen-graphs of all the individuals according to 
the template surface. With the assumption that H1 is a 

hippocampal surface, 
1Hf  is its eigen-graph, HT is the 

template hippocampal surface, and 
THf  is its eigen-graph, 

the calibration details of the eigen-graph of a participants 
according to the template’s eigen-graph could be obtained 

as follows. First, we normalized 1Hf  and 
THf  to 

1Hf


 and 

THf


 on [0,1], respectively. The cumulative distribution 
functions of the two normalized eigen-graphs could then be 

http://www.adniinfo.org
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calculated based on the following equation:
	

[2]( ) ( )*
10

, ,
x

i i Tf x f t dt i H H= =∫
 

Owing to the monotonicity of ( )*
if x


, for all x1 ∈ [0,1], 

there exists x2 ∈ [0,1] such that ( ) ( )
1

* *
1 2TH Hf x f x=

 

. Based 

on the histogram matching theory (21), we could define 
the histogram matching function [ ] [ ]

1
: 0,1 0,1

TH HF →  by 

( )
1 1 2TH HF x x=  for all x2 ∈ [0,1] such that ( ) ( )

1

* *
1 2TH Hf x f x=

 

 

and for all x1 ∈ [0,1]. Finally, the calibrated eigen-graph of 

H1 could be obtained as 
1 1 1

T

T

H
H H H Hf f F=
 

 . Here 
1Hf


 and 
THf


 

are the two normalized eigen-graphs of a participant and 
the template. 

After the calibration procedure was determined, the 
eigen-graph correspondence between the individual and the 
template was greatly improved, providing a solid foundation 
for subsequent landmark matching. The results of eigen-
graph calibration are shown in Figure 1. Figure 1A shows the 
uncalibrated individual eigen-graph (blue) and the template 
eigen-graph (red), while Figure 1B shows the calibrated 
individual eigen-graph (cyan) and the template eigen-graph 
(red). In Figure 1, the trend of the calibrated individual 
eigen-graph appears highly similar to that of the template, 
which is more conducive to subsequent registration.

Next, we aimed to locate two intrinsic feature curves 
which lay on the opposite sides of the most curved regions 
of H1. We defined the intrinsic feature curves 1 2  ,γ γ  as 
follows: 

{ } ( ) ( )
1

1 2 1 20
, arg max t t dtγ γ γ γ= −∫

	
[3]

In discrete cases, we uniformly divided the calibrated 

eigen-graph [ ]
1

0, 1TH
Hf ∈


 into m partitions, and then took the 

minimal interval ε on both sides of each segmentation value 
except for the two endpoints 0 and 1, which were considered 
to be the intersection points of two feature curves at both 
tips of the hippocampal surface. Each annular band with 
the width of 2ε was defined as an eigen-loop. Among each 

eigen-loop, the 
1

TH
Hf


 values on the corresponding triangular 
mesh vertices were approximately equal, and each eigen-
loop intersected the two feature curves at two vertices, with 
the distance between these vertices being the farthest. We 
considered the two vertices to be a single landmark pair 
of each eigen-loop. First, we connected all the landmarks 
on each side of the hippocampal surface according to the 
Dijkstra algorithm (22) to obtain the two landmark curves 

{ }1 2,γ γ .

For exceptional cases, due to the large morphological 
noise interference on some hippocampal surfaces, some 
obtained landmark curves could not be stably located in the 
contralateral curvature area of the hippocampal surfaces, 
as shown in the representation of 3D space in Figure 2A. 
Therefore, the correction procedure for the landmark 
curves needed to be implemented. We corrected the 
landmark curves based on the angle constraints between 
the standard vector and the vector from each landmark pair. 
First, we selected the first eigen-loop LO1 as the standard 
eigen-loop, and the standard vector s1 pointed from v1 to 
w1 in LO1, where v1 and w1 are the two landmarks of LO1, 
respectively. To calibrate the landmarks on each eigen-loop, 
we used the vectors determined by the landmarks on the 

Figure 1 The calibration of the eigen-graph. The horizontal axis represents the value of the eigen-graph, and the vertical axis represents the 
corresponding number of vertices. (A,B) The red histogram is the eigen-graph of template HT; (A) the blue histogram is the eigen-graph of 
individual H1, and (B) the cyan histogram is the calibrated eigen-graph of H1. 
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Figure 2 Correction of the landmark pair on a RH in 3D space. (A) Two landmark curves that needed to be corrected. They were obviously 
rotated and crossed on the hippocampal surface. (B) The process of vector angle correction, where β1 = β2 and α = arc cos (s1, si). (C) The new 
vector from vnew to wnew which were parallel to the standard vector s1 after angle correction. (D) The corrected landmark curves. RH, right 
hippocampal surface; 3D, three-dimensional.

eigen-loop. Calculating the other vectors { } 2

m
i is

=  constructed 
from each computed landmark pairs, with each vector 
pointing from γ1 to γ2, we finally determined whether each 
computed landmark pair needed to be adjusted according to 
Eq. [4]: 

( ) 1
1

1

cos , i
i

i

s s
s s

s s
⋅

=
⋅

	
[4]

If ( )1arccos , is s ζ> , the landmark pair in LOi needs to be 
adjusted according to the procedure depicted in Figure 2A.  
We first calculated the geometric center vertices mi 
according to the vertices in LOi. Starting from the 
geometric center point mi, a straight line was created 
along the direction of vector s1 that intersected the eigen-

loop at two new vertices { },new newv w  which were regarded 
as the adjusted landmark pair of LOi. This procedure is 
presented in Figure 2B,2C. Figure 2D shows the result 
of the corrected landmark curves. Using this correction 
procedure, we traversed the entire hippocampal surface 
and acquired the new landmark pairs. This preserved the 
landmarks determined by the original geometric features of 
the hippocampus and corrected a few irregular landmarks 
(the size of ζ  was adjustable). Finally, we connected the 
optimized landmark pairs as the N and S points in the order 
of 1 2 new new newmN v v v S→ → →…→ →  and the two extreme 
stably located in the contralateral curvature area of the 
hippocampal surfaces.

Equal-area spherical parameterization

With the obtained landmarks, we selected the spherical 
parameterization method based on the barycentric 
coordinate theory (23) and the triangular mesh optimization 

method (24) to achieve equal-area mapping which could 
facilitate a surface comparison on the common spherical 
parameter space. The details of spherical parameterization 
are as follows.

For the triangular mesh of the hippocampal surface 
H1, we first constructed the initial weight matrix n nD ×∈  
as follows. Neig(vi) was defined as the neighbor list of the 
vertices 1iv γ∉  , with each element dij in D being the distance 
between vi and vj such that dij = ||vi - vj||2. The weights of 
the nonadjacent vertices were set to 0. We then normalized 
dij→dij

* within each 1-ring to satisfy 
( )

*

Neig
1

i

ij
j v

d
∈

=∑ . To lock 

the azimuth angles of all the vertices belonging to 1γ  to 0, 
where 1γ  is the curve on the curved side of the hippocampal 
surface, we set all the weight elements in the row where 
these vertices were located at 0. Finally, we obtained the 
final weight matrix as D’ = D* + I, where I is an identity 
matrix with the same size as D*, with D* being the set of 

*
ijd .

We then used the barycentric coordinate theory in 
the Cartesian coordinate system to achieve the initial 
spherical mapping for the hippocampal surface on a unit 
sphere. The principal idea of this method is that the center 
vertex of the 1-ring neighborhood is collinear with the 
convex combination vertex of the 1-ring neighborhood 
and the center of the sphere (as shown in Figure 3). Thus, 
the following equations were used for the vertices with 
unknown positions on the sphere:

				    [5]
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Figure 3 Geometric interpretation of Eq. [5]. The vector between the vertex vo and the weighted average vc of its neighbors (v1, v2, v3, v4, v5, v6)  
is collinear with the vector between the vertex vc and the sphere’s center Ro.

where n is the number of the vertices in H1, i is the i-th, 
t=2 is the number of the fixed vertices (N and S), and αi is a 
coefficient which extends or compresses the center vertex to 
the convex combination center (see Figure 3).

By solving the linear equation system in Eq. [5], we obtained 
the coordinates of all vertices in the Cartesian coordinate 
system. Subsequently, through the transformation from the 
Cartesian coordinates to spherical coordinates, we could obtain 
the initial spherical parameterized result as follows:

2 2 2

2 2 2
arccos

arctan

r x y z
z

x y z
y
x

θ

ϕ




= + +
 =

+ +


  =     	

[6]

where r =1.
After obtaining the initial spherical parameterization 

Ψ , we further optimized Ψ  using the triangular mesh 
optimization algorithm to acquire an equal-area mapping 
Ψ →Ψ  on a unit sphere. Due to the sparsity of the 
triangular mesh near the N and S poles caused by the 
initial spherical mapping, it was necessary to optimize 
the triangular mesh to reduce the area distortion of the 
mesh unit before and after the mapping. The procedure of 
the optimization algorithm for the triangular meshes on 
spherical surfaces was as follows. First, we calculated the 
distance gk = ||vi − vj||2 between the adjacent vertices vi 

and vj belonging to 1γ  in the order from the S point to the 

N point and accumulated them in sequence to obtain the 

accumulated distance 
1

n
c
k k

k
G g

=

= ∑ , where n is the number 

of the landmarks on 1γ . Specifically, we obtained g1 =0 for 

the S point. Second, we normalized c
kG  to obtain [ ]' : 0, 1c

kG  

and used ( )'1 c
k klat Gπ= −  to calculate the new latitudes 

of each landmark on 1γ  while keeping the longitude of 
each landmark unchanged. We then modified the original 
latitudes of the vertices on the 1-ring of the N point to the 
new latitudes as follows:

( ) '
1 1

c
n nnew

i
Ni

lat G
lat

g
π π − −− −

=

	
[7]

where gNi is the distance between the N point and each 
vertex vi on the 1-ring of the N point.

Similarly, we modified the original latitudes of the vertices 
on the 1-ring of the S point to the new latitudes as follows:

( ) '
2 2

c
new
j

Sj

lat G
lat

g
π π− −

=

	

[8]

where gSj is the distance between the S point and each vertex 
vj on the 1-ring of the S point. After we obtained the new 
positions of all the landmarks and the vertices on the 1-ring 
of the N and S points as the known condition, we used the 
displacement function (25) to move the remaining vertices 
to the new positions and thus achieve the goal of optimizing 
the triangular mesh on the unit sphere. Finally, the spherical 
parameterized result Ψ  became more uniform, and there 
was less area distortion between the adjusted triangular 
mesh of the spherical surface and the triangular mesh of the 
original hippocampal surface.

Landmark-based spherical registration

We used local stereographic projection and the quasi-
conformal mapping principle (26) to obtain accurate 
landmark-based registration with bijectivity and smoothness 

vo: Center vertex of 1-ring

vc: Convex combination center vertex

Ro: Spherical center vertex

v1 v1

v6

v5
v4

v3

v2v2
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by minimizing the energy function, including landmark 
mismatch energy term and Beltrami coefficient terms (27).  
Quasi-conformal mapping :f → 

 could map an 

infinitesimal circle to an infinitesimal ellipse. The eccentricity 

( )
( )

1
1

zaK
b z

µ
µ

+
= =

−
 was bounded, where a is the major axis of 

the ellipse, and b is the minor axis of the ellipse. f satisfies 
the following Beltrami equation:

( )
( )

( )z z
z

f f

z z
µ

∂ ∂
=

∂ ∂ 	
[9]

where μ is the Beltrami coefficient which can effectively 

control the bijectivity of the registration. With { } 1

n
i i

V
=  

and { } 1

n
i i

W
=

 assumed to be the landmarks of H1 and HT, 

respectively. Our goal was to find a mapping f: H1→HT 
satisfying f (Vi) = Wi (i =1, 2, …, n) while minimizing 
the topology distortion. We first projected the spherical 
parameterized result described in section of “Equal-area 
spherical parameterization” onto a 2D plane based on the 
local stereographic projection and then minimized the 
compound energy, including the landmark mismatch energy 
and topology distortion term, via quasi-conformal mapping.

We first used North pole stereographic projection FN to 
project the local spherical parameterized result ( )

1HΨ z ρ<  

and ( )
THΨ z ρ<  to the 2D plane, respectively, where ρ 

controls the local size of the projection. We minimized a 
compound energy to obtain the optimized quasi-conformal 
mapping f as follows:

( ) ( ){ }
1 11

2 2

:
arg min

T
H Hf H H

f f fµ α µ
→

= ∇ +∫ ∫ 	
[10]

subject to f (FN (Vi)) = FN (Wi) (i =1, 2, …, n) and ( ) 1fµ < ,  

where α is a weight parameter which can adjust the weight 
between the two energy terms. The first term of Eq. [10] 
ensured the smoothness of the mapping f, while the second 
term controlled the conformal distortion of the mapping 
f. Subsequently, we took ν: μ (f) as the variable of the 
optimization of f. We could use penalty splitting method (28) 
to solve the above optimization problem:

( ) ( )
1 1 1

22 2, =
H H H

E v f v v v fα σ µ∇ + + −∫ ∫ ∫


	 [11]

subject to the constraints that f (FN (Vi)) = FN (Wi) (i = 1, 2, …, n)  
and 1v

∞
< , where σ is a penalty parameter. For a large 

enough σ, ν was close to μ(f), and Eq. [11] approximated 
the solution of Eq. [10]. At the n-th iteration, we used the 

energy descent method (29) to obtain the optimal Beltrami 

coefficient νn+1 by minimizing ( ), nE v f


 while fixing fn. 
Then, the νn+1 was fixed, and we used the linear Beltrami 
solver (LBS) (30) to obtain the landmark-matching quasi-
conformal mapping fn+1 whose Beltrami coefficient μ(fn+1) 
was similar to νn+1. By continuing to iterate this process 

until 1n nv v ξ+ ∞
− <  where ξ is a small real number, we 

could obtain fn such that it satisfied the requirement of 
maintaining bijectivity before and after mapping while 
aligning the landmarks. Finally, we used the inverse North 
pole stereographic projection to obtain the local registration 
result Φ1 in the local spherical parameterization domain.

Following the above procedure, we used the South Pole 
stereographic projection FS to project the local spherical 

parameterized result ( )1 z ρΦ > −  and ( )
TH z ρΨ > −  to the 

2D plane, respectively. Eq. [11] and LBS were applied to 
register another part of the spherical parameterization 
domain. After spherical landmark alignment, we used 
spherical interpolation (31) to reconstruct the hippocampus 
with 2,562 vertices, and thus all registered hippocampal 
surfaces had the same number of vertices and one-to-one 
correspondence to the morphological characteristics. The 
whole procedure is summarized in Algorithm 1.

Results

In this section, we described experimental results and 
compare our method with other registration algorithms.

Landmark extraction

In the generation of the eigen-loops, we set m as 50 and ε as 0.02 
after many experiments. As shown in Figure 4, we used a color 
bar to display the eigen-graph changes in the left hippocampal 
surface (LH) and the right hippocampal surface (RH).

During the correction procedure for the landmark 
curves, we set ζ as 20°. To better display the extracted 
landmark results, we connected the extracted landmarks 
into the landmark curves, as shown in Figure 5. Each group 
was divided into upper and lower parts. The upper were the 
original surfaces, and the lower were hippocampal surfaces 
with the extracted landmark curves. For each individual 
hippocampal surfaces, the RH and the LH were displayed 
in the left and right columns, respectively. The extracted 
landmark curve 1γ  was marked in red, and the extracted 
landmark curve 2γ  was marked in blue. The number of 
eigen-loops for each group of individuals was 50. There 
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were 102 landmarks including N and S. The two landmark 
curves could well establish the correspondence of the 
significant geometric features between the hippocampal 
surfaces of the different participants.

Spherical parameterization results

In this section, we demonstrated the results of spherical 
parameterization and its optimization, as shown in Figure 6.  
The coordinates of the adjacent points of the North and South 

poles appear marked in red in Figure 6A,6D. Figure 6E,6H  
show the coordinates (marked in red) after triangular 
mesh optimization. Figure 6B,6C show the initial spherical 
parameterization results, and Figure 6F,6G show the results 
after spherical optimization. It is obvious that the landmarks 

on landmark curve 1γ  were located to the spherical coordinate 
with φ = 0, and the optimized spherical triangular mesh 

after spherical optimization was more uniform. This might 
also be explained by the fact that each triangle area on the 
object surface could be treated equally by assigning the same 
amount of spherical parameterization space (32) through the 
equal-area spherical mapping method. Thus, we achieved 
equal-area spherical mapping which could facilitate the 
surface comparison on the common parameter space by 
mapping the closed hippocampal surface onto a unit sphere 
as per barycentric coordinate theory and triangular mesh 
optimization.

To measure the area distortion induced by the spherical 
parameterization, we defined the area distortion index (ADI) 
as follows:

2 4
'

1

1
2 4

n

i i
i

ADI F F
n

−

=

= −
− ∑ 	

[12]

Algorithm 1 Landmark-based spherical registration via quasi-conformal mapping

Input: a genus-0 closed hippocampal surface H1 and a template hippocampal surface HT

Output: registered hippocampal surface 1H

Calculate landmarks { } 1

n
i iW

=
 and { } 1

n
i iV

=
 of HT and H1; Calculate spherical parameterization 

THΨ  and 
1HΨ  Initial ν0 =0

Use FN to project local spherical parameterized result ( )
TH z ρΨ <  and ( )

1H z ρΨ <  to the 2D plane

Repeat:

Use energy descent method to obtain the νn+1 by minimizing ( ), nE v f


 while fixing fn

Use LBS to obtain fn+1 while fixing the νn+1

until 1n nv v ξ− ∞
− <

Obtain compound function ( ) ( )1 1 1

1
1 N H N H HF LBS F−Φ = Ψ Ψ Ψ  

  

Use FS to project local spherical parameterized result ( )
TH z ρΨ > −  and ( )1 z ρΦ > −  to the 2D plane

Repeat:

Use energy descent method to obtain the νn+1 by minimizing ( ), nE v f


 while fixing fn

Use LBS to obtain fn+1 while fixing the νn+1

until 1n nv v ξ− ∞
− <

Obtain the final spherical parameterization ( ) ( )1
2 1 1 1S SF LBS F−Φ = Φ Φ Φ  

Use spherical interpolation to acquire registered hippocampal surface 1H

LBS, linear Beltrami solver.

Figure 4 Eigen-loops display. The value of the eigen-graph 
increased from the tail to the head of the LH (A) and RH (B). LH, 
left hippocampal surface; RH, right hippocampal surface.
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Figure 5 The extracted landmark curves on the hippocampal surfaces of the different groups in the 3D space. There were 50 eigen-loops 
in each hippocampus. (A-C) The upper parts of the original hippocampal surfaces of the NC, MCI, and AD groups, respectively, while the 
lower parts are the extracted landmark curves of the NC, MCI, and AD groups, respectively. 3D, three-dimensional; NC, normal cognition; 
MCI, mild cognitive impairment; AD, Alzheimer’s disease.

A

B

C

where n is the number of vertices in the hippocampal 
spherical parameterization, Fi is the area of the i-th 
triangle before spherical parameterization, and Fi

’ is the 
corresponding area of Fi after spherical parameterization. 
The smaller the ADI was, the smaller the area of distortion. 
We also calculated the angle distortion between the 
hippocampal and spherical parameterization as follows:

( ) ( )( )2 * 180angleE Angle Angle H π= Φ − 	
[13]

where 2Φ  is the spherical parameterization, ( )2Angle Φ  is the 

angle of 2Φ , and ( )Angle H  is the angle of hippocampus H.

We compared our spherical parameterization method 
with two other spherical parameterization methods 
through examining 145 with Aβ+ patients with AD and 
249 Aβ– normal controls (NCs) (see Table 1). A positive 

Aβ reading was considered dementia induced by AD. 
The comparison results are shown in Table 2. Conformal 
spherical mapping (CSM) (33) is a proposed of method of 
iteratively eliminating folding using weighted Laplacian–
Beltrami feature projection and improving the time 
efficiency of the algorithm of a genus-0 closed surface. 
The large-scale surface modeling (LSM) (34) is based on 
the Fourier transform and represents the 3D surface as a 
linear combination of a set of complex functions, thereby 
improving the accuracy of spherical parameterization. As 
shown in Table 2, our method had the smallest ADI for these 
individuals, which indicates that our spherical mapping 
method could better maintain equal-area mapping. Table 2 
shows that our algorithm was not optimal in Eangle (rad), as 
it was based on quasi-conformal mapping which allowed for 
angular distortion.
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Figure 6 Spherical parameterization and optimization results. (A) A detailed view of the North pole of the initial spherical parameterization. 
(B,C) The results of the initial spherical parameterization. (D) A detailed view of the South pole of the initial spherical parameterization. (E) 
A detailed view of the North pole of triangular mesh optimization. (F,G) The results of triangular mesh optimization. (H) A detailed view of 
the South pole of triangular mesh optimization.
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D H

FC G

Triangular mesh 
optimization

Table 2 Comparison of ADI and Eangle for different parameterization algorithms 

Algorithm
ADI (mean ± variance) Eangle (mean ± variance)

AD NC AD NC

CSM 1.237*±0.2137* 1.010*±0.1705* 0.0360±0.0041 0.0290±0.0030

LSM 0.8570*±0.0852* 0.8327*±0.0616* 0.7846±0.0218 0.7831±0.0218

Our method 0.4362*±0.0780* 0.5671*±0.0602* 0.6407±0.0258 0.6271±0.0194

*, e−4. ADI, area distortion index; Eangle, angle distortion index; AD, Alzheimer’s disease; NC, normal control; CSM, conformal spherical 
mapping; LSM, large-scale surface modeling.

Table 1 Demographic information of Aβ+ patients with AD and Aβ– NCs 

Demographic information Aβ+ AD (n=145) Aβ– NC (n=249) Inferential statistics P

Gender (M/F) 69/76 139/110 χ2=0.70 0.40

Age (years), mean ± variance 74.22±7.98 73.52±6.50 F=0.06 0.80

MMSE, mean ± variance 22.31±3.52 28.58±1.71 F=329.46 5.07e-5

The experimental data are from the Alzheimer’s Disease Neuroimaging Initiative database. AD, Alzheimer’s disease; NC, normal control; M, 
male; F, female; MMSE, Mini-Mental State Examination.
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Landmark-based spherical registration

During the landmark alignment process, we set α to 0.1, 
the penalty parameter σ was set to 10, and ξ was set to 
0.01. In the local stereographic projection, we set ρ to 0.30. 
To clearly observe the registration process, we selected 
10 landmark pairs for landmark alignment. The entire 
procedure of the landmark-based spherical registration is 
shown in Figure 7. In this figure, RH is used as an example 
to show the whole landmark-based spherical registration 
process. The red pentagrams inside Figure 7B-7H are the 
landmarks of HT, and the blue dots are the landmarks of H1 
to be registered. After the landmark alignment, the blue 
dots moved to the red pentagram position. The registration 
process of the LH was the same as that of RH, except with 
the RH template being replaced by the LH template.

To compare the performance of our method with other 
registration methods, we defined the landmark matching 
errors as follows:

( )2 2
1

1 k

land i i
i

E V W
k =

= Φ −∑
	

[14]

where 2Φ  is the landmark-based spherical registration 
function described in Algorithm 1, k is the number of 
landmarks on the hippocampal surface, Vi is the landmark 
of the individual hippocampal surface on parametric sphere, 
and Wi is the landmark of the template hippocampal 
surface. The smaller Eland was, the better the landmark 
alignment was.

The original deformation degree of landmarks between 
the individual hippocampal surface and the template 
hippocampal surface were defined as follows:

	 [15]
2

1

1 k

s i i
i

D V W
k =

= −∑

We compared our method with other registration 
algorithms in terms of the Eland and the topology 
preservation performance during the registration process 
with mean |μ| and overlaps, where |μ| is the calculated 
result between the registered spherical surface and the 
original hippocampal surface. The results are summarized 
in Table 3, where Ds is 1.0069±0.3150 in the AD group and 
0.8822±0.1792 in the NC group. The spherical harmonics 
by first-order ellipsoid (SPHARM-FOE) method (10) is not 
a traditional landmark-based registration algorithm, and its 
registers the individual surfaces by adjusting the long and 
short axis of the FOE corresponding to the hippocampal 
surface into a specified position. Although this method does 

not involve the process of landmark alignment, we could 
use the extracted landmarks using our method to investigate 
the performance of this method in landmark alignment.

The large-deformation diffeomorphic metric mapping 
(LDDMM) (35) optimizes the energy function on the 
manifold to achieve optimal matching between two images 
during deformation. We combined it with the thin-plate 
spline (TPS) algorithm (36) in registration to obtain a 
landmark guided LDDMM algorithm. The spherical 
TPS (STPS) method (11) is a landmark-based registration 
algorithm that achieves landmark alignment by minimizing 
the thin-plate bending energy. As seem in Table 2, the 
landmark matching error of our method in the AD and 
NC groups was smaller than that of other algorithms, and 
the mean |μ| conformed to the characteristics of quasi-
conformal mapping in large deformation, indicating that 
our method had a more accurate correspondence with 
the landmarks in the presence of large deformation. The 
overlaps of the algorithms were 0, indicating that the 
registration algorithm could ensure bijectivity. These 
findings indicated that our method could better maintain 
hippocampal surface alignment and conformality compared 
to the other registration algorithms.

To visually evaluate the match between the participants 
and the template hippocampus, we used the checkerboard 
pattern to validate the registration algorithm, the results 
of which are shown in Figure 8. Figure 8 shows that after 
alignment of the landmarks, the spherical mesh had 
no overlap with the triangular mesh but did have angle 
distortion which was due to the quasi-conformal mapping 
that allowed for a small amount of angle distortion, 
indicating that our algorithm could maintain bijectivity.

AD-induced regions of interest (ROIs) of the hippocampus

To verify whether our surface registration algorithm could 
establish a one-to-one morphological correspondence 
between the individuals, we extracted the ROIs of the 
hippocampus to see whether the hippocampal CA1 
subregion matched based on our registration method.

First, we uniformly divided [ ]
1

0, 1TH
Hf ∈


 into n partitions 

with a sufficiently small width and then defined the 
geometric center line of the hippocampus as the center 
vertices of each partition connected in sequence. Among 
each partition, the thickness of each vertex on hippocampal 
surface was defined as the distance between each vertex 
and the center point (37). The feature extraction results are 
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Figure 7 Illustration of the landmark-based RH spherical registration. (A) Landmark extraction. (B) Spherical parameterization. (C) North 
pole stereographic projection. (D) Landmark alignment. (E) Inverse North pole stereographic projection. (F) South pole stereographic 
projection. (G) Repeat of landmark alignment. (H) Inverse South pole stereographic projection. (K) Hippocampal surface reconstruction. 
The red stars are the landmarks of HT, and the blue dots are the landmarks of H1. RH, right hippocampal surface.
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shown in Figure 9.
Second, we generated the ROIs (38) from the Aβ+ AD 

and Aβ− NC groups based on statistical group difference 
analysis, which included 145 Aβ+ patients with AD and 249 
Aβ− NCs (see Table 1). Moreover, considering the influence 
of three factors of age, gender, and group, we used the linear 
model in the SurfStat software package (http://www.math.
mcgill.ca/keith/surfstat) to obtain the intrinsic thickness 
features of each vertex. We used the chi-square test and 
one-way analysis of variance (ANOVA) (39) to compare the 
demographic and clinical data. It could be seen that the age 
and gender factors of the two groups were matched, and 
there was a significant difference in the Mini-Mental State 
Examination (MMSE) between the two groups. 

Next, the ROIs of the LH and the RH could be 

generated from the vertices with the group thickness 
difference with a P value <0.0001 based on the permutation 
t-test with 5,000 random permutations. The results are 
shown in Figure 10, in which the ROIs (red regions) 
indicate that the vertices of the region had statistical 
differences (P<0.0001) according to a 5,000-permutation 
t-test uncorrected for multiple comparisons. The results 
also show that each extracted ROI of the LH was larger 
than that of the RH based on the three registration 
methods, which indicated that the LH was more sensitive 
to AD than was the RH. These findings are consistent with 
the previous studies (40,41). We also drew a heatmap of 
the P values of each vertex in the template hippocampus, as 
shown in Figure 11: the red areas (Figure 11A,11B) are the 
ROIs of the LH and RH, respectively, and the heatmaps 

Table 3 Comparison of the various registration algorithms

Algorithm
Eland (mean ± variance) Mean |μ| (mean ± variance) Overlap

AD NC AD NC AD NC

SPHARM-FOE 0.0115±0.7582 0.0089±0.0072 0.6096±0.0270 0.6192±0.0234 0 0

STPS 0 0 0.6998±0.0231 0.6960±0.0583 0 0

LDDMM 0.0730±0.0158 0.0704±0.0131 0.6322±0.02469 0.6407±0.0366 0 0

Our method 0 0 0.6194±0.0361 0.6329±0.0234 0 0

Eland, landmark matching error; AD, Alzheimer’s disease; NC, normal control; SPHARM-FOE, spherical harmonic by first-order ellipsoid; 
STPS, spherical thin-plate splines; LDDMM, large-deformation diffeomorphic metric mapping.

Figure 8 Checkerboard pattern texture with landmark alignment. SPHARM-FOE, spherical harmonic by first-order ellipsoid; LDDMM, 
large deformation diffeomorphic metric mapping; STPS, spherical thin-plate splines.
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Figure 9 Geometric centerline and thickness measures of the LH and RH. (A) The geometric centerline of the LH. (B) The geometric 
centerline of the RH. (C) Color coding on each vertex of the LH. (D) Color coding on each vertex of the RH. The unit of the thickness is 
expressed in millimeters. LH, left hippocampal surface; RH, right hippocampal surface.

Figure 10 The extracted ROIs of our method, SPHARM-FOE, STPS, and LDDMM. (A,E) The ROIs extracted with our method. (B,F) 
The ROIs extracted with SPHARM-FOE. (C,G) The ROIs extracted with STPS. (D,H) The ROIs extracted with LDDMM. (A-D) The 
LH. (E-H) The RH. The ROIs (red regions) indicated that the vertices of the region had statistical differences (P value <0.0001) after a 
5,000-permutation t-test. ROI, region of interest; SPHARM-FOE, spherical harmonic by first-order ellipsoid; STPS, spherical thin-plate 
splines; LDDMM, large deformation diffeomorphic metric mapping; LH, left hippocampal surface; RH, right hippocampal surface.
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(Figure 11C,11D) correspond to the P value of the LH and 
RH, respectively; the red area represents vertices with P 
values less than 0.0001, the orange area represents vertices 
with P values less than 0.001, the yellow area represents 
the vertices with P values less than 0.01, and the blue areas 
represent the remaining vertices with other P values.

Additionally, we found that only the ROIs based on our 

registration method matched the CA1 subregion of the 
hippocampus that was considered as the essential part for the 
majority of hippocampus-dependent memories (42). This 
also verified that our registration method might accurately 
establish a one-to-one morphological correspondence 
between the individuals. The variables described in this 
section are available in the Appendix 1.
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Discussion

From the framework of our registration algorithm, it 
could be seen that the extraction of essential landmarks 
on the hippocampal surface directly affected the accuracy 

of registration. In this section, we examine the impact 
of the two steps of landmark extraction—i.e., eigen-
graph calibration and eigen-graph segmentation—on the 
subsequent registration results.

Effects of eigen-graph calibration

In section of “Landmark extraction”, we describe the 
calibration of the eigen-graph of individuals according to the 
eigen-graph of the template based on histogram matching 
theory. To verify whether eigen-graph calibration is beneficial 
for improving registration accuracy, we compared the 
classification results of the thickness features obtained after 
registration with and without the eigen-graph calibration 
step. We used support vector machine (SVM) (43) to 
perform binary classification on the thickness measurements 
of 100 patients with AD and 230 NCs, as shown in Table 4. 
The parameter settings for SVM were as follows: fivefold 
cross validation, a rough Gaussian kernel function, and a 
box constraint level of 1. The classification results were 
in Table 5, which shows that the classification results with 
the eigen-graph calibration step had better a classification 
performance than did those without the eigen-graph 
calibration step.

In addition, we used the uniform manifold approximation 
and projection (UMAP) (44) algorithm to visualize the 
categories of AD and NC participants in a 2D embedding. 
Figure 12A,12B show the embedding results without and 
with the calibration, respectively. Through visual inspection, 
we could observe that the spacing between different 
categories increased significantly when the eigen-graph 
calibration step was used. This indicates that the eigen-
graph calibration can help to improve registration accuracy, 
thereby enhancing the effectiveness of morphology 
comparison between individuals.

Effect of eigen-graph segmentation

In section of “Landmark extraction”, we describe the 
extraction of the landmark pairs in each eigen-loop with the 
width of 2ε. A small width ε might result in fewer vertices 
being included in the eigen-loop. Thus, the extracted 
landmark pair might not be including the two farthest points 
in the Euclidean distance. However, a large width ε might 
result in each eigen-loop containing more vertices. Thus, 
the extracted landmark pair did not have similar eigenvector 
value. To compare the impact of width ε on registration 
results, we used SVM to classify those with AD and NCs 

Figure 11 The P value heatmap of ROIs. (A) The red areas are 
the LH ROIs. (B) The red areas are the RH ROIs. (C) The P 
value heatmap of the LH. (D) The P value heatmap of the RH. 
ROI, region of interest; LH, left hippocampal surface; RH, right 
hippocampal surface.
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Table 4 Demographic information of the AD and NC groups 

Demographic information AD NC

Sample size 100 230

Gender (M/F) 42/58 117/113

Age (years), mean ± variance 73.34±5.68 72.32±4.46

MMSE, mean ± variance 22.35±3.52 28.31±2.01

The experimental data are from the Alzheimer’s Disease 
Neuroimaging Initiative database. AD, Alzheimer’s disease; NC, 
normal control; M, male; F, female; MMSE, Mini-Mental State 
Examination.

Table 5 The SVM classification results of the thickness features 
obtained after registration with and without the calibration step 

Methods ACC TP FN FP TN

Eigen-graph calibration 0.948 90 10 7 223

Non-eigen-graph calibration 0.912 87 13 16 214

The experimental data are from the Alzheimer’s Disease 
Neuroimaging Initiative database. SVM, support vector machine; 
ACC, accuracy of SVM; TP, true positive; FN, false negative; FP, 
false positive; TN, true negative.
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based on the different eigen-graph segmentations with 
different ε values. The classification results are shown in 
Table 6. According to the SVM classification results, a large 
or small width ε can affect the accuracy of our landmark-
based surface registration. In this study, we selected a width 
ε equal to 0.02 based on practical experience.

Limitations

Our surface registration method can ensure the bijectivity 
and the smoothness in registration in the presence of 
large deformations and achieve the precise alignment of 
the landmarks. Nevertheless, our method still has a few 
limitations to consider. First, our registration algorithm 
is only based on the landmarks and does not incorporate 
other surface morphology measures, such as the mean 
curvature and Gaussian curvature. If we combine these 
surface morphological measures with the landmarks, we can 
theoretically effectively improve the accuracy of the surface 

registration. Second, the data for extracting ROI were 
insufficient, as we only used a sample of 145 Aβ+ patients 
with AD and 249 Aβ− NC individuals, which is not sufficient 
to fully characterize the general pattern of morphological 
changes induced by AD symptoms. Nevertheless, our current 
research results indicate that our registration method is more 
sensitive to detecting hippocampal morphological changes 
compared to other registration algorithms.

Conclusions

In this paper, a landmark-based spherical quasi-conformal 
mapping for hippocampal surface registration algorithm 
was proposed which could maintain precise alignment of 
the landmarks and the bijectivity in the presence of large 
deformation. The experiment results indicated that our 
registration algorithm can effectively achieve an accurate one-
to-one mapping between the different hippocampal surfaces 
under large deformations. In the future, we plan to incorporate 
other surface morphology measures into our method and 
improve the accuracy and effectiveness of surface registration.
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Table 6 The SVM classification results of the thickness features 
obtained after registration with different ε values 

Eigen-loop width (ε) ACC TP FN FP TN

0.04 0.927 90 10 14 216

0.02 0.948 90 10 7 223

0.01 0.909 83 17 16 214

The experimental data are from the Alzheimer’s Disease 
Neuroimaging Initiative database. SVM, support vector machine; 
ACC, accuracy of SVM; TP, true positive; FN, false negative; FP, 
false positive; TN, true negative.

Figure 12 The 2D UMAP embedding (A) without eigen-graph calibration and (B) with eigen-graph calibration. The blue dots represent 
the patients with AD, and the red triangles represent the NCs. UMAP, uniform manifold approximation and projection; AD, Alzheimer 
disease; NC, normal control; 2D, two-dimensional.
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