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Abstract

Objective

This study aimed to analyze the morphokinetic behaviour between conventional IVF and

ICSI, in cycles with preimplantation genetic testing for aneuploidies (PGT-A).

Materials

A randomized controlled trial (NCT03708991) was conducted in a private fertility center.

Thirty couples with non-male factor infertility were recruited between November 2018 and

April 2019. A total of 568 sibling cumulus oocyte complexes were randomly inseminated

with conventional IVF and ICSI and cultured in an Embryoscope time-lapse system. The

morphokinetic behaviour of IVF/ICSI sibling oocytes was analysed as primary endpoint. As

secondary endpoints, morphokinetic parameters that predict blastocysts that will be biop-

sied, the day of biopsy, gender and euploid outcome was assessed.

Results

When comparing IVF to ICSI, only the time to reach the 2-cell stage (t2) was significantly

delayed for IVF embryos: OR: 1.282 [1.020–1.612], p = 0.033. After standardizing for tPNf

(ct parameters), only Blast(tStartBlastulation-t2) remained significant: OR: 0.803 [0.648–

0.994], p = 0.044. For the analysis of zygotes that will be biopsied on day 5/6 versus zygotes

without biopsy, only early morphokinetic parameters were considered. All parameters were

different in the multivariate model: ct2: OR: 0.840 [0.709–0.996], p = 0.045; ct6: OR: 0.943

[0.890–0.998], p = 0.043; cc2(t3-t2): OR: 1.148 [1.044–1.263], p = 0.004; cc3(t5-t3): OR:

1.177 [1.107–1.251], p<0.0001. When comparing the development between blastocysts

biopsied on day 5 versus day 6, only three morphokinetic parameters were significant: cc2

(t3-t2): OR: 1.394 [1.010–1.926], p = 0.044; ctBlastocyst: OR: 0.613 [0.489–0.768],
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p<0.0001 and ctExpandedBlastocyst: OR: 0.913 [0.868–0.960], p = 0.0004. Multivariate

analysis of gender and ploidy did not reveal differences in morphokinetic behaviour.

Conclusion

Minor morphokinetic differences are observed between IVF and ICSI. Early in the develop-

ment, distinct cleavage patterns are observed between embryos that will be biopsied or not.

Introduction

The use of time-lapse monitoring (TLM) in assisted reproductive technology (ART) was first

reported more than half a century ago [1], though the true widespread implementation in IVF

laboratories only happened a little over a decade ago, providing digital images of embryos at

fixed time intervals, and allowing the assessment of embryos without physical removal from

the incubator. It has contributed a great tool in assisted reproduction, as this technology was

able to reveal the secret life of embryos during their in vitro development. It became evident

that not all embryos follow the exact same pattern in their quest to develop to a blastocyst and

also, there were many aspects of the development that were not yet fully understood, like reab-

sorption of fragments, direct cleavage and reverse cleavage. Logically, the additional informa-

tion on preimplantation embryo development—compared to the static evaluations–has led to

many new questions on how a specific development or which exact timing(s) can be used as

viability markers to predict implantation or pregnancy, or even aneuploidy and gender.

Compared to the early days of ART in which multiple embryos were transferred, even in

young patients, the current guidelines by ASRM and ESHRE highlight the importance of per-

forming single embryo transfers. Consequently, the additional use of morphokinetic patterns

were applied to select a single embryo from a cohort that has the highest implantation poten-

tial, pregnancy, and live birth rates [2, 3]. As reviewed by Cochrane in 2015 [4], there was no

difference in clinical outcomes between time lapse and static evaluations. Moreover, prediction

models for implantation should be developed in-house as they lose their diagnostic value if

externally applied [5]. As implantation also depends on the ploidy status of the transferred

embryo, the use of TLM has been investigated as a non-invasive tool to predict the euploid sta-

tus of blastocysts. The conflicting outcomes were recently bundled in two reviews, indicating

that there are no consistently identified morphokinetic parameters able to predict the euploidy

status of embryos, results that are based on ICSI-generated blastocysts only [6, 7].

Differences in development between conventional IVF and ICSI have been explored in

multiple studies [8–19]. The direct positioning of the sperm into the oocyte’s ooplasm during

ICSI, results in a faster pronuclear formation and first mitotic division, however, these differ-

ences disappear around day 3 of development. Interestingly, the use of conventional IVF has

recently been accepted as an alternative insemination method for couples undergoing preim-

plantation genetic testing for aneuploidies (PGT-A), as the whole genome amplification

(WGA) protocol for trophectoderm biopsies is unable to amplify sperm DNA [19]. However,

the analysis of the morphokinetic behaviour between conventional IVF and ICSI has not yet

been explored in a PGT-A patient population. Furthermore, it is currently unknown if

euploid/aneuploid blastocysts or blastocysts with a different gender develop differently

between both insemination methods. Hence, the current prospective study scrutinised mor-

phokinetic differences between conventional IVF and ICSI in an Arab patient population

requesting PGT-A.
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Material and methods

Approval for this study was obtained from the Ethics Committee of ART Fertility Clinics, Abu

Dhabi, UAE (United Arab Emirates) (Research Ethics Committee REFA024) and was regis-

tered at the ClinicalTrials.gov website (www.clinicaltrials.gov, trial number NCT03708991). A

total of 42 couples signed the informed consent form and 30 of these were randomised follow-

ing oocyte retrieval (OR). This was a secondary analysis of a previously published RCT analys-

ing the differences in euploid outcomes between IVF and ICSI in patients with

normozoospermia [19]. The aim of the initial study was twofold: (i) determine the embryo

development and euploid rate between IVF/ICSI sibling oocytes of which the results were

recently published [19] and (ii) find morphokinetic differences between IVF/ICSI sibling

embryos with subgroup analysis for arrested embryos, day of blastocyst biopsy, euploid/aneu-

ploid blastocysts and male/female blastocysts.

Study design and study questions

This prospective pilot study was performed at ART Fertility Clinic, Abu Dhabi, UAE, between

November 2018 and April 2019. Couples had to fulfil the following inclusion criteria: female

age between 18–40 years, body mass index (BMI)� 30 kg/m2,� 10 COCs after OR, antagonist

protocols, Arab population, PGT-A analysis using NGS, and fresh ejaculates. Only ejaculates

according to the World Health Organization [20] were eligible: < 1x106/ml round cells,

concentration > 15x106/mL, total motility� 40% and progressive motility� 32%; with a pro-

gressive motility� 65% after capacitation. As a preliminary semen analysis was not performed

for all patients (e.g.: patients with secondary infertility), normal morphology by strict Kruger

criteria was not considered. If suboptimal sperm morphology was noted on the day of OR,

patients were excluded from randomisation. Every couple could only be recruited once for the

study. If after the OR, at least 10 COCs were obtained, low microscope magnification was used

to allocate half of these COCs to one dish (group I) and the other half of the COCs to another

dish (group II). Three hours after the OR, upon denudation, an electronically generated rando-

misation list was opened to verify the insemination method for group I and naturally, group II

received the remaining insemination method. A total of 42 couples signed the informed con-

sent form, and 30 of these were randomised following oocyte retrieval (OR): five patients had

<10 COCs retrieved, six patients had insufficient sperm concentration and/or motility and

one patient was recruited for a different study as she experienced an IVF failure (Fig 1).

The primary objective of this secondary analysis was to detect differences in the morphoki-

netic behaviour of IVF/ICSI sibling oocytes. Secondary endpoints aimed to find morphoki-

netic parameters that predict embryo arrest (insufficient quality to biopsy), the day of

blastocyst biopsy, aneuploidy and sex. In order to find embryos that will be biopsied versus

embryos that will arrest, only early time-lapse parameters were considered. As arresting

embryos usually fail to compact or cavitate, only parameters up until the 8-cell stage would be

informative to find differences between both groups.

Ovarian stimulation, insemination and embryo culture

The detailed protocols are described in De Munck et al., 2020 [19]. Briefly, standard Gonado-

tropin Releasing Hormone (GnRH)-antagonist-protocols were applied, using recFSH (recom-

binant Follicle Stimulating Hormone) or HMG (human Menopausal Gonadotropin) as

stimulation medication, with a dose in accordance with ovarian reserve parameters [21]. As

soon as� 3 follicles� 17 mm were present, oocyte maturation was triggered with 5,000–

10,000 IU of hCG, 0.3 mg of GnRH agonist (Triptorelin) or dual trigger (hCG and GnRH-ago-

nist), and OR was scheduled 36 hours later. Oocytes were collected in Quinn’s Advantage
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Fig 1. Flow chart of the enrollment and randomization of patients.

https://doi.org/10.1371/journal.pone.0267241.g001
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Medium with HEPES, (SAGE, Målov, Denmark) supplemented with HSA (Vitrolife, Göte-

borg, Sweden) (HTF-HSA), and washed in Global Total LP medium for fertilization (Cooper-

Surgical) after which they were cultured at 37˚C, 6% CO2 and 5% O2 until denudation.

Insemination of both arms started 40 hours post trigger. ICSI was performed as described pre-

viously [22] and for conventional IVF, 0.3x106/ml motile sperm was added to the fertilization

medium and overnight incubated. After injection, oocytes were immediately cultured in

Global Total medium (CooperSurgical) in the Embryoscope time-lapse incubator (Vitrolife) at

37˚C, 6% CO2 and 5% O2, while IVF oocytes were inserted on day 1 after fertilization check.

Embryos were cultured until blastocyst stage with medium refreshment on day 3 and trophec-

toderm biopsy was performed on day 5–7 of preimplantation development.

Morphokinetic time-lapse parameters

The annotation of the time-lapse parameters was performed according to the guidelines

described by Ciray and colleagues [23], except for tEB (Fig 2). The morphokinetic timings for

all embryos started from tPNf as, unlike the ICSI embryos who were followed from day 0, the

IVF embryos were only followed from day 1 after fertilization check, a time at which both pro-

nuclei were already visible. The following time points were carefully annotated by a single

embryologist and pictures were taken every 20 minutes. tPNf: time of pronuclear (PN) fading

or the first frame where both PN can no longer be visualized. t2: the time at which the first

mitotic division finished and the two blastomeres are completely separated by individual cell

membranes. t3-9: indicates the time to observe 3 to 9 individual blastomeres. tSC: indicates the

first frame in which any sign of compaction is present. tM: marks the end of the compaction

process; the morula may be fully or partially compacted. tSB: is the start of blastulation in

which the cavity formation is initiated. tB: is the full blastocyst and indicates the last frame

before the zona starts to thin. tEB: the fully expanded blastocyst with a thin zona. A correction

was made for all TLM parameters by subtracting the time of pronuclear fading of each individ-

ual oocyte; corrected parameters are expressed as ct2, ct3 etc. Following time intervals were

recorded: cc2 (t3-t2), cc3 (t5-t3), s2 (t4-t3), s3 (t8-t5), Blast (tSB-t2) and Blast 1 (tB-tSB).

Trophectoderm biopsy and NGS analysis

Detailed protocols for TE biopsy and NGS were previously described [19]. Blastocyst biopsy

was performed in 10 μl drops of HTF-HSA, the blastocyst was fixed with the holding and posi-

tioned with a clear view on the inner cell mass (ICM) at 12 o’clock, the zona pellucida was per-

forated by three to five laser pulses of 2.2 ms (OCTAX, Herborn, Germany). Five to ten TE

cells were aspirated in the biopsy pipet followed by a mechanical “flicking” method to cut the

Fig 2. Morphokinetics timings and duration of cell cycles. Annotated time lapse parameters for all IVF and ICSI inseminated oocytes, starting from the time of

pronuclear fading (tPNf), as well as variables related to the duration of specific cell cycles are depicted. t2-9: time to reach a specific cleavage stage, tSC: time of start

compaction, tM: time of morula formation, tSB: time of start blastulation, tB: time to reach the full blastocyst, tEB: time to reach expanded blastocyst.

https://doi.org/10.1371/journal.pone.0267241.g002
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trophectoderm cells inside the biopsy pipette, washed and placed in 0.2 ml PCR tubes contain-

ing 2.5 μL PBS and stored at -20˚C until further processing.

A whole genome amplification (WGA) protocol was performed on all individual samples

(PicoPlex technology by Rubicon Genomics, Inc; Ann Arbor, Michigan, USA). After WGA,

library preparation consisted of the incorporation of individual barcodes for the amplified

DNA of each embryo. After isothermal amplification and enrichment, sequencing was per-

formed in a 316 or 318 chip using the Personal Genome Machine sequencing (Life-Thermo-

fisher, USA). For sequencing analysis and data interpretation Ion Reporter software was

employed. Embryos were diagnosed as euploid or aneuploid. In case of a result indicating mosa-

icism, the embryo was classified as “euploid” if the extent of mosaicism was below 30% and as

“aneuploid” if the extent of mosaicism was above 30%. Chaotic embryos were defined as those

showing a complex pattern of aneuploidies, involving more than six chromosomes. The NGS

platform used herein has been validated in previous studies [24, 25] and is commercially avail-

able. Aside from the genetic outcome of the blastocyst, the sex of the embryo was also revealed.

Statistical analysis

Continuous variables are summarized as mean and standard deviation [range]. Categorical

variables are summarized as frequencies and percentages. GLIMMIX procedure was used for

the univariate and multivariate analyses to consider the random effect (as one patient could

have multiple embryos). Containment method was used to determine the de-nominator

degrees of freedom for tests of fixed effects. The estimation technique used was Residual PL

(pseudo-likelihood). With pseudo-likelihood methods, optimization begins with an initial set

of pseudo-data. The response distribution chosen was Poisson and Beta with link function log

and logit, respectively. The model was retained until the convergence criterion

(GCONV = 1E-8) was satisfied and the estimated G matrix was positive definite. Comparisons

were made using procedure PDIFF (t-test that is equivalent to the F-test) of SAS. Proc GLIM-

MIX was also chosen because of the capacity of handling unbalanced data. The random effect

structure used for this model was Compound Symmetric (CS), also called variance compo-

nents (VC). This covariance structure was chosen because the correlation does not depend on

the value of lag (time distance), in the sense that the correlations between two observations are

equal for all pairs of observations on the same subject. This covariance structure was chosen

even though there is just one single random effect. Proc MIXED was used to analyse continu-

ous variables. The same parameters were applied than for proc GLIMMIX. Interactions were

not considered as nested factors since they were not relevant for the model. Blastocyst quality

was also analysed with Proc GLIMMIX using Poisson response distribution.

P-values, Odds Ratios and Confidence Interval at 95% (OR [95%CI]) are presented in the

summary tables, in association with the descriptive statistics. For the univariate analysis, a

threshold of p-value <0.20 was applied to retain variables to be introduced in the multivariate

model. For the multivariate analysis, a p value of 0.05 (two-sided) was considered statistically

significant. To evaluate the prediction capacity of the multivariate model, a ROC curve was cal-

culated using a logistic procedure. All analyses were performed using SAS studio (SAS1 Stu-

dio). There were no missing values for any of the collected variables that were analysed.

Results

The 568 sibling oocytes from thirty patients were randomized in this study; patients had a

mean age of 30.3 ± 5.2 [22–39] years old, with a BMI of 25.1 ± 3.3 [18.8–29.9] kg/m2 and

AMH levels of 4.2 ± 2.6 [0.85–11.68] ng/ml; further patient characteristics can be found in De

Munck et al., 2020 [19]. A brief summary of the embryo development is presented in Table 1.
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IVF versus ICSI

Comparison of all TLM parameters between IVF and ICSI, for all fertilized zygotes, is pre-

sented in Table 2. Univariate analysis showed a significant delay for IVF embryos up until t7

and a shorter time between t2 and tSB (Blast). Only t2 remained significant in the multivariate

model: OR 1.282 [1.020–1.612], p = 0.033 (Fig 3). After correcting for the time of pronuclear

fading, only ctSB and Blast (tSB-t2) were significantly faster for IVF embryos (Table 3), though

the multivariate analysis only showed a difference for Blast (tSB-t2): OR 0.803 [0.648–0.994],

p = 0.004. If only biopsied blastocysts were considered, only a delayed ct2 was noted for IVF

embryos; OR 1.519 [1.045–2.206], p = 0.028.

Blastocyst development versus embryo arrest

Only parameters up to ct6 were contemplated to verify very early in the development if an

embryo will be biopsied on day 5/6 or if the zygote will not be biopsied (developmental arrest).

Almost all analyzed parameters were significantly different between biopsied blastocysts and

embryos with developmental arrest: ct2, ct3, ct5, ct6, cc2 (t3-t2), cc3 (t5-t3) and s2 (t4-t3)

(Table 4). Five parameters were found to be statistically significant for embryo arrest in the

multivariate model: ct2: OR 0.840 [0.709–0.996]; p = 0.045; ct6: OR 0.943 [0.890–0.998];

p = 0.043; cc2 (t3-t2): OR 1.148 [1.044–1.263]; p = 0.004; cc3 (t5-t3): OR 1.177 [1.107–1.251];

p<0.0001 and s2 (t4-t3): OR 0.886 [0.814–0.964]; p = 0.005 (Figs 3 and 4) with an AUC of

0.802. Two parameters, ct3 and ct5, were not included in the model due to collinearity with

cc2 and cc3, respectively.

Blastocyst development on day 5 versus day 6

TLM parameters between 159 biopsied blastocysts on day 5 and 74 biopsied blastocysts on day

6 were compared. Except for ct2, ct4 and ct5, all remaining TLM parameters were significantly

different between blastocysts biopsied on day 5 or day 6, as well as the ploidy status of the blas-

tocyst (Table 5). After the multivariate analysis, only three parameters remained significantly

Table 1. Summary embryo development and ploidy.

IVF ICSI p value
n (%) mean ± SD n (%) mean ± SD

Number of COCs assigned 283 9.4 ± 4.0 285 9.5 ± 4.1 0.645

Number of mature oocytes 244 (86.2) 8.1 ± 3.7 235 (82.5) 7.8 ± 3.8 0.349

Normal fertilization 183 (64.7) 6.1 ± 3.8 190 (66.7) 6.3 ± 3.5 0.609

Blastocyst biopsy

Day 5 80 (43.7) 2.7 ± 2.7 79 (41.6) 2.6 ± 2.1 0.941

Day 6 38 (20.8) 1.3 ± 0.8 36 (18.9) 1.2 ± 1.2 0.758

Day 7 2 (1.1) 0.07 ± 0.3 1 (0.5) 0.03 ± 0.2 NA

Total 120 (65.6) 4.0 ± 2.8 116 (61.1) 3.9 ± 2.5 0.774

Euploid blastocysts

Day 5 43 (53.8) 1.4 ± 1.7 44 (55.7) 1.5 ± 1.4 0.923

Day 6 16 (42.1) 0.53 ± 0.7 12 (33.3) 0.4 ± 0.6 0.425

Day 7 0 (0.0) 0.0 ± 0.0 0 (0.0) 0.0 ± 0.0 NA

Total 59 (49.2) 2.0 ± 1.8 56 (48.3) 1.9 ± 1.7 0.808

Summary of embryological outcomes as presented originally in De Munck et al., 2020. COC: cumulus oocyte complex, IVF: in vitro fertilization, ICSI: intracytoplasmic

sperm injection, NA: not applicable, n: number, %: percentage, SD: standard deviation.

https://doi.org/10.1371/journal.pone.0267241.t001
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different between day 5 and day 6 biopsied blastocysts: ctB: OR 0.613 [0.489–0.768]; p<0.0001;

ctEB: OR 0.913 [0.868–0.960]; p = 0.0004 and cc2 (t3-t2): OR 1.394 [1.010–1.926]; p = 0.044

(AUC 0.978) (Fig 3).

Table 2. IVF versus ICSI uncorrected values.

Morphokinetic parameters IVF ICSI Univariate p value Multivariate analysis

mean ± SD n mean ± SD n p value OR [95%CI]

tPNf 25.9 ± 10.2 182 23.2 ± 5.9 189 0.005 0.569 1.069 [0.849–1.348]

t2 29.3 ± 10.4 181 25.9 ± 5.1 187 <0.001 0.033 1.282 [1.020–1.612]

t3 38.4 ± 10.0 180 35.4 ± 6.2 187 0.001 0.773 0.986 [0.894–1.086]

t4 40.2 ± 7.2 176 37.7 ± 6.7 182 0.003 0.302 0.952 [0.867–1.045]

t5 50.4 ± 10.7 175 46.9 ± 7.9 177 0.001 0.264 1.035 [0.974–1.100]

t6 53.0 ± 10.2 169 50.9 ± 8.5 174 0.096 0.193 0.946 [0.870–1.028]

t7 56.0 ± 9.7 163 54.1 ± 9.9 170 0.177 0.287 1.034 [0.972–1.100]

t8 60.8 ± 11.9 158 58.8 ± 12.5 165 0.407

t9 70.2 ± 10.3 138 68.1 ± 11.2 149 0.437

tSC 80.6 ± 10.9 152 77.7 ± 12.6 160 0.327

tM 90.3 ± 10.0 147 87.4 ± 11.1 151 0.352

tSB 98.0 ± 9.0 146 97.2 ± 10.7 149 0.496

tB 112.3 ± 10.7 131 109.5 ± 10.8 128 0.437

tEB 121.1 ± 10.2 99 119.4 ± 11.6 105 0.921

Blast1.tB-tSB 15.3 ± 6.8 130 14.9 ± 6.9 126 0.969

Blast.tSB-t2 70.8 ± 8.2 146 72.5 ± 9.7 149 0.004 0.064 0.970 [0.940–1.002]

cc2.t3-t2 9.1 ± 4.8 180 9.7 ± 4.2 187 0.495

cc3.t5-t3 13.0 ± 8.8 175 12.0 ± 5.8 177 0.305

s2.t4-t3 2.7 ± 4.9 176 2.4 ± 3.9 182 0.977

s3.t8-t5 11.7 ± 9.9 158 11.6 ± 10.7 165 0.434

Comparison of time lapse parameters (hours) between sibling oocytes inseminated by IVF and ICSI. SD: standard deviation, n: number, OR: odds ratio, CI: confidence

interval.

https://doi.org/10.1371/journal.pone.0267241.t002

Fig 3. Forest plot. Odds Ratios with 95% wald confidence limits. A: IVF versus ICSI for the uncorrected values, B: blastocysts biopsied on day 5 or day 6

versus no biopsy, C: blastocysts biopsied on day 5 versus day 6.

https://doi.org/10.1371/journal.pone.0267241.g003
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Table 3. IVF versus ICSI standardized for tPNf.

All fertilized zygotes All biopsied blastocysts

Morphokinetic parameters IVF ICSI Univariate p value IVF ICSI Univariate p value

mean ± SD n mean ± SD n mean ± SD n mean ± SD n

Ploidy NA NA 0.50 ± 0.50 118 0.49 ± 0.50 115 0.932

Biopsy day NA NA 5.32 ± 0.47 118 5.31 ± 0.47 115 0.564

Sex NA NA 0.45 ± 0.50 108 0.52 ± 0.50 104 0.630

ct2 3.3 ± 2.5 181 3.1 ± 3.3 187 0.622 2.8 ± 1.3 118 2.5 ± 0.7 115 0.011��

ct3 12.5 ± 5.1 180 12.7 ± 5.4 187 0.915 12.9 ± 3.2 118 13.0 ± 2.5 115 0.762

ct4 15.1 ± 6.3 176 15.1 ± 5.6 182 0.798 17.8 ± 3.8 118 14.5 ± 3.0 115 0.877

ct5 25.3 ± 10.1 175 24.4 ± 7.6 177 0.369 26.5 ± 6.7 118 25.9 ± 5.2 115 0.988

ct6 28.3 ± 9.9 168 28.3 ± 7.7 174 0.737 28.9 ± 6.9 118 28.3 ± 2.8 115 0.934

ct7 31.5 ± 9.5 162 31.5 ± 8.8 170 0.623 32.1 ± 8.0 117 30.7 ± 6.9 115 0.5574

ct8 36.3 ± 11.2 158 36.3 ± 11.0 165 0.515 35.7 ± 10.5 117 34.5 ± 8.6 114 0.894

ct9 46.1 ± 9.5 137 45.9 ± 9.7 148 0.524 46.4 ± 9.1 106 45.4 ± 7.9 104 0.947

ctSC 56.2 ± 10.1 150 55.4 ± 11.9 160 0.548 55.0 ± 8.9 118 53.5 ± 9.1 115 0.721

ctM 66.2 ± 9.4 147 65.3 ± 10.5 151 0.430 64.4 ± 7.9 117 63.4 ± 8.6 114 0.816

ctSB 73.8 ± 8.3 146 75.1 ± 9.8 149 0.009 72.6 ± 7.3 118 72.3 ± 6.9 115 0.498

ctB 88.4 ± 10.3 131 88.0 ± 10.4 128 0.475 87.0 ± 9.3 118 86.2 ± 8.7 115 0.723

ctEB 92.5 ± 25.4 103 93.6 ± 24.7 109 0.698 92.4 ± 22.8 96 95.8 ± 15.5 101 0.226

Blast1 = tB-tSB 15.3 ± 6.8 130 14.9 ± 6.9 126 0.969 14.4 ± 5.1 118 13.9 ± 6.0 115 0.911

Blast = tSB-t2 70.8 ± 8.2 146 72.5 ± 9.7 149 0.004� 69.8 ± 7.4 118 69.8 ± 6.8 115 0.282

cc2 = t3-t2 9.1 ± 4.8 180 9.7 ± 4.2 187 0.495 10.2 ± 3.1 118 10.5 ± 2.7 115 0.258

cc3 = t5-t3 13.0 ± 8.8 175 12.0 ± 5.8 177 0.305 13.6 ± 5.9 118 13.0 ± 3.9 115 0.866

s2 = t4-t3 2.7 ± 4.9 176 2.4 ± 3.9 182 0.977 1.8 ± 3.8 118 1.5 ± 3.0 115 0.918

s3 = t8-t5 11.7 ± 9.9 158 11.6 ± 10.7 165 0.434 9.2 ± 7.8 117 8.6 ± 7.5 114 0.873

Comparison of standardized time lapse parameters (hours) between sibling oocytes inseminated by IVF and ICSI for (i) all fertilized zygotes and (ii) for all blastocysts

biopsied on day 5 and day 6.

� significant difference in multivariate analysis: OR: 0.803 [0.648–0.994]; p = 0.044.

�� significant difference in multivariate analysis: OR: 1.519 [1.045–2.206]; p = 0.028. Ploidy: 0 = aneuploid, 1 = euploid; biopsy day: 5 = day 5, 6 = day 6; sex: 0 = male,

1 = female. NA: Not Applicable, SD: standard deviation, n: number, OR: odds ratio.

https://doi.org/10.1371/journal.pone.0267241.t003

Table 4. Morphokinetic differences between embryo with and without biopsy.

Morphokinetic parameters Biopsy Day 5 or Day 6 No biopsy Univariate p value Multivariate analysis

mean ± SD n mean ± SD n p value OR [95%CI]

Treatment 0.51 ± 0.50 233 0.46 ± 0.50 137 0.211

ct2 2.6 ± 1.1 233 4.2 ± 4.4 132 0.0001 0.045 0.840 [0.709–0.996]

ct3 13.0 ± 2.9 233 12.0 ± 7.8 131 0.101 ƚ
ct4 14.6 ± 3.4 233 15.8 ± 8.6 122 0.341

ct5 26.2 ± 6.0 233 21.7 ± 12.0 116 <0.0001 ƚ
ct6 28.6 ± 6.4 233 27.4 ± 12.2 106 0.036 0.043 0.943 [0.890–0.998]

cc2.t3-t2 10.3 ± 2.9 233 7.8 ± 6.1 129 <0.0001 0.004 1.148 [1.044–1.263]

cc3.t5-t3 13.3 ± 5.0 233 10.6 ± 10.2 115 0.0001 <0.0001 1.177 [1.107–1.251]

s2.t4-t3 1.7 ± 3.4 233 4.0 ± 5.2 121 <0.001 0.005 0.886 [0.814–0.964]

Early morphokinetic parameters (hours) to detect differences between embryos with and without biopsy.

ƚ: Not Estimated due to collinearity with cc2 and cc3, respectively, SD: standard deviation, n: number, OR: odds ratio, CI: confidence interval.

https://doi.org/10.1371/journal.pone.0267241.t004
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Euploid versus aneuploid blastocysts

Blastocysts biopsied on day 5 and day 6 with known ploidy outcomes were considered: 115

were euploid and 118 were aneuploid. Except for the day of biopsy, also multiple TLM

Fig 4. Blastocyst biopsy versus developmental arrest. Visual representation of the average TLM parameters for blastocysts with biopsy on day 5/6 versus embryos

without biopsy (arrest). t(hptPNf): time hours post time of pronuclear fading. Ct2, ct3, ct4, ct5, ct6, cc2 (t3-t2), cc3 (t5-t3) and s2 (t4-t3) are displayed.

https://doi.org/10.1371/journal.pone.0267241.g004

Table 5. Blastocyst biopsy on day 5 versus day 6.

Morphokinetic parameters Day 5 Day 6 Univariate p value Multivariate analysis

mean ± SD n mean ± SD n p value OR [95%CI]

Treatment 0.50 ± 0.50 159 0.51 ± 0.50 74 0.564

Ploidy 0.55 ± 0.50 159 0.38 ± 0.49 74 0.006 0.660 1.366 [0.340–5.491]

Sex 0.48 ± 0.50 146 0.50 ± 0.50 66 0.761

ct2 2.6 ± 1.1 159 2.71 ± 1.1 74 0.486

ct3 13.1 ± 2.3 159 12.6 ± 3.8 74 0.191 ƚ
ct4 14.3 ± 2.7 159 15.3 ± 4.6 74 0.391

ct5 25.7 ± 4.5 159 27.3 ± 8.4 74 0.311

ct6 27.5 ± 4.8 159 31.0 ± 8.3 74 0.003 0.810 0.963 [0.710–1.307]

ct7 29.7 ± 6.1 158 34.9 ± 8.9 74 <0.0001 0.254 0.862 [0.668–1.113]

ct8 32.8 ± 7.7 158 40.0 ± 11.3 73 <0.0001 0.630 0.965 [0.835–1.210]

ct9 44.7 ± 6.7 146 48.6 ± 11.3 64 0.010 0.652 1.036 [0.888–1.210]

ctSC 53.2 ± 8.0 159 56.4 ± 10.5 74 0.028 0.598 1.039 [0.900–1.200]

ctM 62.4 ± 7.5 157 67.1 ± 8.9 74 0.0004 0.820 1.022 [0.846–1.234]

ctSB 69.9 ± 5.7 159 77.9 ± 6.6 74 <0.0001 0.692 1.691 [0.604–4.735]

ctB 82.3 ± 5.5 159 95.7 ± 8.2 74 <0.0001 <0.0001 0.613 [0.489–0.768]

ctEB 88.3 ± 17.4 130 105.6 ± 18.1 67 <0.0001 0.0004 0.913 [0.868–0.960]

Blast1.tB-tSB 12.4 ± 3.6 159 17.9 ± 7.1 74 <0.0001 ƚ
Blast.tSB-t2 67.3 ± 5.8 159 75.2 ± 6.6 74 <0.0001 0.315 0.600 [0.221–1.626]

cc2.t3-t2 10.5 ± 2.2 159 9.9 ± 4.1 74 0.132 0.044 1.394 [1.010–1.926]

cc3.t5-t3 12.6 ± 3.1 159 14.7 ± 7.5 74 0.038 0.672 0.957 [0.781–1.173]

s2.t4-t3 1.2 ± 2.4 159 2.7 ± 4.9 74 0.056 0.383 1.157 [0.833–1.607]

s3.t8-t5 7.1 ± 6.3 158 12.7 ± 8.8 73 <0.0001 ƚ

Comparison of standardized time lapse parameters (hours) between blastocysts biopsied on day 5 or day 6. Treatment: ICSI = 0, IVF = 1; ploidy: 0 = aneuploid,

1 = euploid; sex: 0 = male, 1 = female.

ƚ: Not Estimated due to collinearity, SD: standard deviation, n: number, OR: odds ratio, CI: confidence interval.

https://doi.org/10.1371/journal.pone.0267241.t005
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parameters were different between euploid and aneuploid blastocysts, especially the ones

between ct6 and ctM (Table 6). None of these parameters were significant in the multivariate

model (AUC 0.639).

Male versus female blastocysts

The comparison of 109 male with 103 female blastocysts, revealed a significant difference for

ct5 and cc3 (t5-t3) in the univariate analysis (Table 6). However, no differences were found in

the multivariate model (AUC 0.536).

Discussion

This prospective observational study, including 568 sibling oocytes from 30 patients, explored

developmental kinetics by TLM between conventional IVF and ICSI, with subgroup analysis

for developmental arrested, day of blastocyst biopsy, euploid/aneuploid blastocysts and male/

female blastocysts. Due to delayed pronuclear formation, IVF embryos have a delay in their

first mitotic division, but progress faster to the blastocyst stage. Multiple early TLM parameters

Table 6. Morphokinetics between male and female blastocysts and between euploid and aneuploid blastocysts.

Morphokinetic parameters Ploidy Sex

Euploid Aneuploid Univariate p value Male Female Univariate p value

mean ± SD n mean ± SD n mean ± SD n mean ± SD n

Treatment 0.51 ± 0.50 115 0.50 ± 0.50 118 0.932 0.54 ± 0.50 109 0.48 ± 0.50 103 0.630

Ploidy NA NA NA NA NA 0.55 ± 0.50 109 0.53 ± 0.50 103 0.884

Biopsy day 5.24 ± 0.43 115 5.38 ± 0.49 118 0.006 5.30 ± 0.46 109 5.32 ± 0.47 103 0.761

Sex 0.48 ± 0.50 115 0.49 ± 0.50 97 0.884 NA NA NA NA NA

ct2 2.5 ± 0.7 115 2.7 ± 1.3 118 0.071 2.6 ± 0.9 109 2.5 ± 0.6 103 0.573

ct3 13.1 ± 2.4 115 12.8 ± 3.3 118 0.686 13.0 ± 2.7 109 12.9 ± 2.7 103 0.926

ct4 14.6 ± 3.3 115 14.7 ± 3.6 118 0.502 14.6 ± 3.9 109 14.6 ± 2.4 103 0.880

ct5 26.1 ± 6.0 115 26.3 ± 6.1 118 0.276 25.9 ± 6.0 109 26.6 ± 5.4 103 0.155

ct6 28.2 ± 5.9 115 29.1 ± 6.8 118 0.049 28.4 ± 6.3 109 28.9 ± 6.2 103 0.330

ct7 30.8 ± 7.5 114 31.9 ± 7.6 118 0.009 31.2 ± 7.1 109 31.7 ± 8.0 103 0.308

ct8 33.8 ± 9.5 113 36.3 ± 9.5 118 <0.001 34.7 ± 9.5 108 34.7 ± 9.5 102 0.541

ct9 44.9 ± 8.5 105 46.9 ± 8.5 105 0.015 46.0 ± 8.5 99 45.7 ± 8.5 92 0.868

ctSC 53.6 ± 9.5 115 54.9 ± 8.5 118 0.020 54.4 ± 8.9 109 54.0 ± 9.2 103 0.708

ctM 63.6 ± 9.0 114 64.3 ± 7.5 117 0.039 63.9 ± 8.9 108 63.9 ± 7.8 102 0.560

ctSB 72.1 ± 7.5 115 72.7 ± 6.7 118 0.045 72.4 ± 6.8 109 72.7 ± 7.6 103 0.964

ctB 85.5 ± 8.9 115 87. ± 9.0 118 0.006 86.4 ± 8.8 109 86.9 ± 9.3 103 0.813

ctEB 92.1 ± 18.9 98 96.2 ± 19.8 99 0.096 91.7 ± 23.0 93 95.6 ± 16.0 85 0.296

Blast1.tB-tSB 13.3 ± 4.9 115 15.0 ± 6.0 118 0.056 14.0 ± 5.0 109 14.2 ± 6.0 103 0.678

Blast.tSB-t2 69.7 ± 7.5 115 70.0 ± 6.7 118 0.088 69.8 ± 6.8 109 70.2 ± 7.6 103 0.978

cc2.t3-t2 10.6 ± 2.5 115 10.1 ± 3.2 118 0.321 10.4 ± 2.7 109 10.4 ± 2.9 103 0.805

cc3.t5-t3 13.0 ± 4.8 115 13.5 ± 5.2 118 0.109 12.9 ± 4.8 109 13.7 ± 4.5 103 0.079

s2.t4-t3 1.5 ± 3.3 115 1.8 ± 3.6 118 0.328 1.6 ± 3.3 109 1.7 ± 3.0 103 0.942

s3.t8-t5 7.8 ± 7.1 113 10.0 ± 8.0 118 0.002 8.9 ± 7.6 108 8.2 ± 7.6 102 0.755

Comparison of standardized time lapse parameters (hours) between (i) euploid and aneuploid blastocysts biopsied on day 5 and day 6 and (ii) male and female

blastocysts. Treatment: 0 = ICSI, 1 = IVF; ploidy: 0 = aneuploid, 1 = euploid; biopsy day: 5 = day 5, 6 = day 6; sex: 0 = male, 1 = female. None of the parameters remained

significant in the multivariate model. NA: Not Applicable. SD: standard deviation, n: number.

https://doi.org/10.1371/journal.pone.0267241.t006
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are able to predict if a blastocyst will be biopsied or not, as well as the day of biopsy (day 5 or

day 6). No TLM parameter was able to predict ploidy or gender.

In couples with non-male factor infertility, it has been proven that there is no benefit of

ICSI over conventional IVF [26–28]. Consequently, the comparison of embryo development

between both insemination methods is not new. In cases of normozoospermia (WHO), rapid

progressive morphologically normal sperm is selected during ICSI, while the zona will provide

a selective barrier for abnormal sperm during IVF. This translates into equal or improved blas-

tocyst development with conventional IVF when static evaluations are used [8, 10–12, 16–18].

The analysis of embryos at short time intervals [9] or in TLM incubators [13–15], has shown a

consequent delay in pronuclear formation and first mitotic division (t2), which is in accor-

dance with the results of the current study. The quick pronuclear formation is ascribed to the

direct positioning of the sperm in the ooplasm during ICSI, leading to a faster activation of the

oocyte. Strikingly, after standardizing for the time of pronuclear fading, non-concurrent

results were reported. In an oocyte donation model, all differences between IVF and ICSI dis-

appeared [14]. However, the study of Bodri and colleagues [15] showed a faster blastocyst

development in IVF inseminated oocytes, which is in line with our results: the time between

the first mitotic division and the time to start blastulation is significantly shorter for IVF

embryos. Despite the delayed blastocyst formation after ICSI, no difference was observed in

the total number of biopsied blastocysts on day 5, 6 or 7 between IVF and ICSI, highlighting

the marginal time differences between both insemination methods.

The knowledge on the future development of an early cleavage embryo can guide embryol-

ogists and physicians in patient-specific treatment decisions. Most available data has focused

on the prediction of top or good quality blastocysts on day 5, and multiple different absolute

cleavage timings and time intervals have been linked to day 5 blastocyst formation and quality:

(i) duration of first cytokinesis [29, 30], (ii) duration at 3-cell stage (s2 = t4-t3) [30], (iii) cleav-

age time to 7 and 8-cell stage and the relative interval from 4–8 and 5–8 cells [31], (iv) s2

(t4-t3) and cc2 (t3-t2) in combination with day 3 morphology [32], (v) cleavage synchronicity

from 2 to 8 cells (CS2 = ((t3-t2)+(t5-t4)/(t8-t2)) (AUC 0.786) [33], (vi) tEB as strongest predic-

tor (AUC 0.727) or s3 (t8-t5) as best predictor before compaction [34] and (vii) tM and s3

(t8-t5) (AUC 0.849) [35]. A combination of multiple of the abovementioned parameters,

together with newly identified parameters, were also shown to be different between blastocysts

biopsied on day 5 and day 6 versus arrested embryos in the current study: ct2, ct6, cc2 (t3-t2),

cc3 (t5-t3) and s2 (t4-t3) (AUC 0.802), with no influence of the insemination method. It has

been highlighted that parameters up until the 8-cell stage should be considered to predict blas-

tocyst formation, as short shifts in early cleavage timings (<t5) end up with longer lags from 5

to 8 cells [33]. The current study explicitly chose parameters up until the 6-cell stage, to enable

a prediction in the first two days of development, as not all embryos are capable of reaching

the 8-cell stage. Conspicuously, each IVF lab can identify TLM parameters that predict the

development to the blastocyst stage, but it is evident that thus far, no universally accepted algo-

rithm is available [36].

The importance of the day of blastocyst development has extensively been studied in rela-

tion to ploidy outcomes and implantation potential. Embryos that start to blastulate on day 5

have higher euploid rates compared to embryos that start to blastulate on day 6 [37], though

similar euploid rates have also been described between day 5 and day 6 blastocysts [38]. In

fresh embryo transfer cycles, the stimulation induced endometrial advancement causes a supe-

riority of day 5 blastocysts compared to day 6 in terms of pregnancy and implantation poten-

tial [39]. Though a recent meta-analysis indicated the benefit of day 5 blastocysts in both fresh

and frozen embryo transfer cycles [40], the available low quality of clinical evidence still ques-

tions the superiority of day 5 blastocysts [41]. More specifically, in case of euploid frozen
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embryo transfer cycles, day 5 and day 6 blastocysts have shown a similar pregnancy potential

[38]. Most studies that use TLM parameters to predict blastocyst development, analyze top or

good quality development on day 5 [29–35], and only very limited data is available on blasto-

cyst development between day 5 and day 6 [38]. In the latter study, only early TLM parameters

(tPNf to t8) were analyzed and all of them were significantly different between day 5 and day 6

blastocysts [38]. These observations are different from the ones described in the current study

in which not only early TLM parameters were evaluated, but all parameters up to tEB were

considered. Additionally, none of the early parameters -as described by Kimelman and col-

leagues [38] were retained in the multivariate model of the current study. Interestingly, euploid

status of the blastocyst was significantly different between day 5 and day 6 blastocysts in the

univariate model, though this variable disappeared in the multivariate model.

Aneuploidies have been ascribed to anomalies in biological events leading to unequal chro-

mosome distribution or incomplete DNA replication. Defective cell cycle checkpoints may be

associated to shorter cycles, while activated DNA repair mechanisms may be related to pro-

longed cell cycles [6]. While many early morphokinetic parameters have been linked to aneu-

ploidy, self-correction mechanisms have been described in which partial compaction and

partial blastulation rescue the final embryo from aneuploid cells [42]. The association between

time lapse microscopy and euploid status of cleavage stage embryos or blastocysts has consid-

erably been explored [6, 7]. Biopsied cleavage stage embryos have shown a positive association

with euploidy [43–47], in which a recurring significant TLM parameter was t5-t2>20.0 h [44],

>21.5 h [46] or>21.01 h [43], and cc3 (t5-t3) >10.0 h or between 11.7–18.2 h, though all with

a rather low AUC (0.63). For blastocyst biopsy, t7 and t8 have been described as early indepen-

dent cleavage predictors of aneuploidy [38], while mostly blastocyst TLM parameters were sig-

nificantly associated with euploid outcomes; tEB<122.2 h [48], and tSB<96.2 h and tB<122.9

h [49]. On the other hand, many other studies were unable to associate specific TLM parame-

ters with ploidy [50–54], which is in line with the results described in the current study. Even

though many significant differences were observed between euploid and aneuploid blastocysts,

none of them remained significant in the multivariate model. Not unimportantly and as dem-

onstrated previously, the insemination type (IVF or ICSI) had no effect on ploidy outcomes

[19, 55, 56].

When it comes to the prediction of gender based on static parameters, many studies have

been performed with non-concurring results. Mammalian male embryos have shown both

faster and slower development than female embryos [57–63]. The use of TLM parameters has

less substantially been used in the prediction of gender. Bronet and colleagues were able to

build a hierarchical model based on s2 (t4-t3)<2 h and tM between 80.8–98.3 h, that increased

the likelihood -though not significant- of selecting female embryos after cleavage stage biopsy

on day 3 [64]. Another study explored TLM parameters and gender in untested blastocysts

based on the gender upon live birth and concluded that female embryos are strongly associated

with late expanded blastocyst TLM parameters [65]. However, as untested blastocysts were not

only transferred in HRT cycles but also in natural cycles, it cannot be guaranteed that all live

births were obtained from the respective transferred blastocyst or were obtained from sponta-

neous pregnancies. The results of the current study showed that the insemination type did not

affect gender, nor was any TLM parameters able to predict gender.

Different types of TLM incubators are available on the market, each with their own specifi-

cations and limitations [6, 66, 67]. As they allow pictures to be captured on regular time inter-

vals, these embryos are not exposed to temperature and pH perturbations as is the case with

static evaluation, known to harm the embryos and their development [68]. The risks and bene-

fits of this uninterrupted culture system have recently been summarized, warranting the need

for impeccable laboratory conditions to support this type of culture system [69].
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In conclusion, the results of this small prospective study showed that IVF embryos show a

delay in their first mitotic division and move faster to the blastocyst stage. Early in the develop-

ment and irrespective of the insemination method, a prediction can be made if an embryo will

arrest or if it will be biopsied, as well as the day at which the blastocyst will be biopsied. Ploidy

status and gender cannot be predicted by TLM parameters and are not affected by the insemi-

nation method. Morphokinetics do matter, however, prediction models based on individual

time points are hard to standardize between different laboratories and need huge sample sizes

to generate reliable results. Until today, the use of TLM will aid in reducing the time to preg-

nancy, by selecting the embryo/blastocyst with the highest potential, especially if a cohort of

embryos is available to choose from.
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