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Abstract

Until now, existing methods for identifying lncRNA related miRNA sponge modules mainly

rely on lncRNA related miRNA sponge interaction networks, which may not provide a full pic-

ture of miRNA sponging activities in biological conditions. Hence there is a strong need of

new computational methods to identify lncRNA related miRNA sponge modules. In this

work, we propose a framework, LMSM, to identify LncRNA related MiRNA Sponge Modules

from heterogeneous data. To understand the miRNA sponging activities in biological condi-

tions, LMSM uses gene expression data to evaluate the influence of the shared miRNAs on

the clustered sponge lncRNAs and mRNAs. We have applied LMSM to the human breast

cancer (BRCA) dataset from The Cancer Genome Atlas (TCGA). As a result, we have

found that the majority of LMSM modules are significantly implicated in BRCA and most of

them are BRCA subtype-specific. Most of the mediating miRNAs act as crosslinks across

different LMSM modules, and all of LMSM modules are statistically significant. Multi-label

classification analysis shows that the performance of LMSM modules is significantly higher

than baseline’s performance, indicating the biological meanings of LMSM modules in classi-

fying BRCA subtypes. The consistent results suggest that LMSM is robust in identifying

lncRNA related miRNA sponge modules. Moreover, LMSM can be used to predict miRNA

targets. Finally, LMSM outperforms a graph clustering-based strategy in identifying BRCA-

related modules. Altogether, our study shows that LMSM is a promising method to investi-

gate modular regulatory mechanism of sponge lncRNAs from heterogeneous data.

Author summary

Previous studies have revealed that long non-coding RNAs (lncRNAs), as microRNA

(miRNA) sponges or competing endogenous RNAs (ceRNAs), can regulate the expression
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levels of messenger RNAs (mRNAs) by decreasing the amount of miRNAs interacting

with mRNAs. In this work, we hypothesize that the “tug-of-war” between RNA transcripts

for attracting miRNAs is across groups or modules. Based on the hypothesis, we propose a

framework called LMSM, to identify LncRNA related MiRNA Sponge Modules. Based on

the two miRNA sponge modular competition principles, significant sharing of miRNAs

and high canonical correlation between the sponge lncRNAs and mRNAs, LMSM is also

capable of predicting miRNA targets. LMSM not only extends the ceRNA hypothesis, but

also provides a novel way to investigate the biological functions and modular mechanism

of lncRNAs in breast cancer.

Introduction

Long non-coding RNAs (lncRNAs) are RNA transcripts with more than 200 nucleotides (nts)

in length [1]. More and more evidence has shown that lncRNAs play important functional

roles in many biological processes, including human cancers [2–4]. As a major class of non-

coding RNAs (ncRNAs), lncRNAs have attracted increasing interest from researchers in their

exploration of non-coding knowledge from the ‘junk’.

Among the wide range of biological functions of lncRNAs, their role as competing endoge-

nous RNAs (ceRNAs) or miRNA sponges is in the limelight. As a family of small ncRNAs

(~18nts in length), miRNAs are important post-transcriptional regulators of gene expression

[5,6]. According to the ceRNA hypothesis [7], lncRNAs contain abundant miRNA response

elements (MREs) for competitively sequestering target mRNAs from miRNAs’ control. This

regulation mechanism of lncRNAs when acting as miRNA sponges is highly implicated in var-

ious human diseases [8], including breast cancer [9]. For example, lncRNAH19, an imprinted

gene is associated with breast cancer cell clonogenicity, migration and mammosphere-forming

ability. By sponging miRNA let-7,H19 forms aH19/let-7/LIN28 reciprocal negative regulatory

circuit to play a critical role in the breast cancer stem cell maintenance [10].

To systematically investigate the functions of lncRNAs as miRNA sponges in human can-

cer, a series of computational methods have been developed to infer lncRNA related miRNA

sponge interaction networks. The methods can be divided into three categories according to

the statistical or computational techniques employed: pair-wise correlation based approach,

partial association based approach, and mathematical modelling approach [11].

It is commonly known that to implement a specific biological function, genes tend to clus-

ter or connect in the form of modules or communities. Consequently, based on the identified

lncRNA related miRNA sponge interaction networks, several methods [12–17] using graph

clustering algorithms were developed to identify lncRNA related miRNA sponge modules. For

the identification of sponge lncRNA-mRNA pairs, most of existing methods only consider

pair-wise correlation of them. Since the lncRNA related miRNA sponge interaction networks

are created by simply putting together sponge lncRNA-mRNA pairs, when the expression lev-

els of each sponge lncRNA-mRNA pair are highly correlated, the collective correlation

between the set of sponge lncRNAs and the set of mRNAs in the same identified module is not

necessarily high. As we know, the pair-wise positive correlation between the expression levels

of a lncRNA and a mRNA pair is commonly used to identify the sponge interactions between

them. For the identification of lncRNA related miRNA sponge modules, it is also necessary to

investigate whether the clustered sponge lncRNAs and mRNAs in a module have high collec-

tive positive correlation or not. Moreover, these methods do not consider the influence of the

shared miRNAs on the expression of the clustered sponge lncRNAs and mRNAs. It is known

PLOS COMPUTATIONAL BIOLOGY Identifying lncRNA related miRNA sponge modules

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007851 April 23, 2020 2 / 22

Funding: JZ was supported by the National Natural

Science Foundation of China (Grant Number:

61702069, 61963001), the Applied Basic Research

Foundation of Science and Technology of Yunnan

Province (Grant Number: 2017FB099). LL and JL

were supported by the Australian Research Council

Discovery Grant (Grant Number: DP170101306).

TX was supported by the National Natural Science

Foundation of China (Grant Number: 61902372).

WZ was supported by the Education Science

Research Foundation of Yunnan Province (Grant

Number: 2018JS416). NR was supported by the

National Natural Science Foundation of China

(Grant Number: 61872405, 61720106004). TDL

was supported by NHMRC Grant (Grant Number:

1123042). The funders had no role in study design,

data collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pcbi.1007851


that the “tug-of-war” between sponge lncRNAs and mRNAs is mediated by miRNAs. There-

fore, it is extremely important to consider the influence of the shared miRNAs in identifying

lncRNA related miRNA sponge modules.

Recently, to study lncRNA, miRNA and mRNA-associated regulatory modules, Deng et al.
[18] and Xiao et al. [19] have proposed two types of joint matrix factorization methods to iden-

tify mRNA-miRNA-lncRNA co-modules by integrating gene expression data and putative

miRNA-target interactions. However, it is still not clear how the shared miRNAs influence the

expression level of the sponge lncRNAs and mRNAs in a module.

To address the above issues, we firstly hypothesize that sponge lncRNAs form a group to

competitively release a group of target mRNAs from the control of the miRNAs shared by the

lncRNAs and mRNAs (details see Section Materials and methods). We name this hypothesis

themiRNA sponge modular competition hypothesis in this paper. Then based on the hypothesis,

we propose a novel framework to identify LncRNA related MiRNA Sponge Modules (LMSM).

The framework firstly uses the WeiGhted Correlation Network Analysis (WGCNA) [20]

method to generate lncRNA-mRNA co-expression modules. Next, by incorporating matched

miRNA expression and putative miRNA-target interactions, LMSM applies three constraints

(see Section Materials and methods) to obtain lncRNA related miRNA sponge modules (also

called LMSM modules in this paper). One of the constraints, high canonical correlation, is

used to assess whether the group of sponge lncRNAs and the group of mRNAs in the same

module have a high collective positive correlation or not. The other constraint, adequate sensi-

tivity canonical correlation conditioning on a group of miRNAs, is used to evaluate the influ-

ence of the shared miRNAs on the clustered sponge lncRNAs and mRNAs.

To evaluate the LMSM approach, we apply it to matched miRNA, lncRNA and mRNA

expression data, and clinical information of breast cancer (BRCA) dataset from The Cancer

Genome Atlas (TCGA). The modular analysis results demonstrate that LMSM can help to

uncover modular regulatory mechanism of sponge lncRNAs in BRCA. LMSM is released

under the GPL-3.0 License, and is freely available through GitHub repository (https://github.

com/zhangjunpeng411/LMSM).

Materials and methods

A hypothesis on miRNA sponge modular competition

The ceRNA hypothesis [7] indicates that a pool of RNA transcripts (known as ceRNAs) regu-

late each other’s transcripts by competing for the shared miRNAs through MREs. Based on

this unifying hypothesis, a large-scale gene regulatory network including coding and non-cod-

ing RNAs across the transcriptome can be formed, and it plays critical roles in human physio-

logical and pathological processes. However, by using MREs as letters of language, the

hypothesis only depicts the crosstalk between individual RNA transcript (e.g. coding RNAs,

lncRNAs, circRNAs or pseudogenes) and mRNA at the pair-wise interaction level and the

crosstalk between RNA transcripts and mRNAs at the module level is still an open question.

There has been evidence showing that for the same transcriptional regulatory program, bio-

logical process or signaling pathway, genes tend to form modules or communities to coordi-

nate biological functions [21]. These modules correspond to functional units in complex

biological systems, and they play important role in gene regulation. Based on these findings, in

this paper, we hypothesize that regarding miRNA sponging, the crosstalk between different

RNA transcripts is in the form of modular competition. We call the hypothesis themiRNA
sponge modular competition hypothesis.

As shown in Fig 1, based on our hypothesis, instead of having pair-wise competitions,

miRNA sponges form groups to compete at module level for common miRNAs. Here, a
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miRNA sponge module consists of a competing group (other coding RNA group, pseudogene

group, circRNA group or lncRNA group) and a mRNA group. Here, other coding RNAs also

include mRNAs. From the perspective of modularity, the hypothesis at module level extends

the ceRNA hypothesis and provides a new channel to look into the functions and regulatory

mechanism of miRNA sponges or ceRNAs. Since the available resources of lncRNAs are more

abundant than those of other non-coding RNAs (e.g. circRNAs and pseudogenes), in this

paper, we focus on the competition between lncRNAs and mRNAs to validate and demon-

strate the proposed miRNA sponge modular competition hypothesis. Our goal is to discover

lncRNA related sponge modules, or LMSM modules. Here each LMSM module contains a

group of lncRNAs which compete collectively with a group of mRNAs for sponging the same

set of miRNAs.

The LMSM framework

Overview of LMSM. As shown in Fig 2, the proposed LMSM framework comprises two

stages. In stage 1, the WGCNA method [20] is used for finding lncRNA-mRNA co-expression

modules from matched lncRNA and mRNA expression data. Then in stage 2, LMSM identifies

Fig 1. An illustration of the miRNA sponge modular competition hypothesis. The four types of miRNA sponges (other coding

RNAs, lncRNAs, circRNAs or pseudogenes), miRNAs and their target mRNAs are shown. Each miRNA sponge module consists

of a group of the same type of miRNA sponges, e.g. a group of lncRNAs and a group of target mRNAs. In the same module, the

group of miRNA sponges competes with the group of target mRNAs for binding with a set of miRNAs. If the miRNA sponges win

the competition, the group of target mRNAs will be released from repression and they will be translated into proteins. If the

miRNA sponges lose the competition, the group of target mRNAs will be post-transcriptionally repressed and degraded.

https://doi.org/10.1371/journal.pcbi.1007851.g001
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LMSM modules from the lncRNA-mRNA co-expression modules using three criteria. That is,

a co-expression module is considered as a LMSM module if the group of lncRNAs and the

Fig 2. Workflow of LMSM. Firstly, we use the WGCNA method to infer lncRNA-mRNA co-expression modules from the

matched lncRNA and mRNA expression. Then by using miRNA expression data and putative miRNA-target interactions, we infer

lncRNA related miRNA sponge modules (LMSM) by applying three criteria: significant sharing of miRNAs by the group of

lncRNAs and the group of target mRNAs in the same co-expression module, high canonical correlation between the lncRNA

group and the target mRNA group, and adequate sensitivity canonical correlation between the lncRNA group and the target

mRNA group conditioning on shared miRNAs. Each LMSM module must contain at least two sponge lncRNAs and two target

mRNAs.

https://doi.org/10.1371/journal.pcbi.1007851.g002
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group of mRNAs in the co-expression module: (1) have significant sharing of miRNAs, (2)

have high canonical correlation between their expression levels, and (3) have adequate sensi-

tivity canonical correlation conditioning on their shared miRNAs. LMSM checks the criteria

one by one, and once a co-expression module does not meet a criterion, it is discarded and will

not be checked for the next criterion. In the following, we will describe the two stages in detail.

Identifying lncRNA-mRNA co-expression modules. For identifying lncRNA-mRNA

co-expression modules, we use the WGCNA method. WGCNA is a popular method for identi-

fying co-expressed genes across samples and it can be used to identify clusters of highly co-

expressed lncRNAs and mRNAs. In our task, we use the matched lncRNA and mRNA expres-

sion data as input to theWGCNA R package [20] to identify lncRNA-mRNA co-expression

modules. We use the scale-free topology criterion for soft thresholding. The coefficient of

determination R2 (the range is from 0 to 1) is used to quantify the goodness of scale-free topol-

ogy, and larger R2 values mean better scale-free topology. Normally, the R2 value larger than

0.8 in power law curve fit is ranked as good-level in the WGCNA method. Therefore, the

desired minimum scale free topology fitting index R2 is set as 0.8 in this work.

Inferring lncRNA related miRNA sponge modules. To identify lncRNA related miRNA

sponge modules from the co-expression modules obtained in stage 1, we propose three criteria

(detailed below) by following the key tenet of ourmiRNA sponge modular competition hypothe-
sis. That is, a group of lncRNAs (acting as miRNA sponges) competes with a group of mRNAs

with respect to a set of miRNAs shared by the two groups.

The first criterion requires that the group of lncRNAs and the group of mRNAs in a

miRNA sponge module have a significant sharing of a set of miRNAs. LMSM uses a hypergeo-

metric test to assess the significance of the sharing of miRNAs between the group of lncRNAs

and the group of mRNAs in a co-expression module, based on putative miRNA-target interac-

tions. The p-value for the test is computed as:

p � value ¼ 1 �
XL1 � 1

i1¼0

M1

i1

 !
N1 � M1

K1 � i1

 !

N1

K1

 ! 1

In the equation, N1 is the number of all miRNAs in the dataset,M1 and K1 denote the total

numbers of miRNAs interacting with the group of lncRNAs and the group of mRNAs in the

co-expression module respectively, and L1 (e.g. 3) is the number of miRNAs shared by the

group of lncRNAs and the group of mRNAs in the co-expression module.

The second criterion is to assure that the sponge modular competition between the group

of lncRNAs and the group of mRNAs in a miRNA sponge module is strong enough. In existing

work, to identify lncRNA related mRNA sponge interactions, a principle followed is that the

expression level of a lncRNA and the expression level of a mRNA need to be strongly and posi-

tively correlated. Following the same principle on strong positive correlation in expression lev-

els while considering our modular competition hypothesis, LMSM requires the collective
correlation between the expression levels of the group of lncRNAs and the group of target

mRNAs in the same module to be strong and positive. To assess the collective correlation, we

perform canonical correlation analysis [22] to obtain the canonical correlation between the

group of lncRNAs and the group of mRNAs in a co-expression module. Let the two column

vectorsX ¼ ðx1; x2; . . .; xmÞ
T
and Y ¼ ðy1; y2; . . .; ynÞ

T
represent the group of lncRNAs and the

group of mRNAs in a co-expression module respectively.SXX, SYYand SXYare the variance or

cross-covariance matrices calculated from the expression data of X and Y. The canonical
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correlation analysis seeks the canonical vectors a (a 2 Rm) and b (b 2 Rn) which maximize the

correlation ofcorrðaTX; bTYÞ. The canonical correlation between the group of lncRNAs and

the group of mRNAs, denoted as CClncR-mR, is then calculated as follows with the found canon-

ical vectors:

CClncR� mR¼ corrðaTX; bTYÞ ¼
aT
P

XYbffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
aT
P

XXa
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bT
P

YYb
p 2

In this work, we use the PMA R package [23] to compute canonical correlation.

Finally, the third criterion adapted from the sensitivity correlation [24] is employed to

assess if the miRNAs shared by the group lncRNAs and the group of mRNAs in a module have

large enough influence on the modular competition between the two groups of RNAs. To

check according to this criterion, we incorporate miRNA expression data, and compute

SCClncR-mR the sensitivity canonical correlation between the group of lncRNAs and the group

of mRNAs in a co-expression module as follows:

SCClncR� mR ¼ CClncR� mR� PCClncR� mR 3

where PCClncR-mR is the partial canonical correlation between the group of lncRNAs and the

group of mRNAs, i.e. the canonical correlation conditioning on the expression of their shared

miRNAs in the co-expression module, or the canonical correlation between the two groups of

RNAs when the influence of the shared miRNAs is eliminated. Therefore, from Eq (3), we see

that SCClncR-mR implies the correlation between the two groups of RNAs under the influence

of their shared miRNAs.

PCClncR-mR in Eq (4) can be calculated as:

PCClncR� mR ¼
CClncR� mR� CCmiR� mRCCmiR� lncRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � CC2

miR� mR

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � CC2

miR� lncR

p 4

where CCmiR-mR (CCmiR-lncR) is the canonical correlation between the set of miRNAs in the co-

expression module and the group of mRNAs (lncRNAs) in the co-expression module.

In this study, empirically, a lncRNA-mRNA co-expressed module with p-value < 0.05 for

the hypergeometric test of miRNA sharing (criterion 1), CClncR-mR> 0.8 for modular competi-

tion strength assessment (criterion 2) and SCClncR-mR> 0.1 for miRNA influence (criterion 3)

is regarded as a lncRNA related miRNA sponge module (a LMSM module).

Evaluating statistical significance of LMSM modules

To evaluate the statistical significance of LMSM modules, we adapt the null model method

proposed in [25]. The null model method hypothesizes that the shared miRNAs do not affect

the correlation between two genes, i.e. the sensitivity correlation (the difference between corre-

lation and partial correlation) between two genes is 0, and has been successfully applied to

evaluate statistical significance of ceRNA interactions. Similar to [25], LMSM is also adapted

from the Sensitivity Correlation (SC) method [24]. Therefore, the null model method can be

applied to evaluate the statistical significance of LMSM modules. In our null model, the null

hypothesis is that the group of the shared miRNAs does not influence the canonical correlation

between the group of lncRNAs and the group of mRNAs, i.e. SCClncR-mR = 0. For each LMSM

module, a group of lncRNAs or a group of mRNAs corresponds to a gene, and a group of the

shared miRNAs corresponds to a miRNA in the null model. For obtaining more precise p-val-

ues, the number of datasets sampled is set to 1E+06 for the null model. Since the sampling pro-

cedure is computationally intensive, we use the pre-computed sets of covariance matrices in

SPONGE R package [25] to build our null model. Based on the constructed null model, we can
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infer adjusted p-values (adjusted by Benjamini and Hochberg method [26]) for each LMSM

module. A LMSM module with adjusted p-value less than 0.05 is regarded as a statistically sig-

nificant module.

Application of LMSM in BRCA

BRCA enrichment analysis. Instead of performing Gene Ontology (GO) and Kyoto

Encyclopedia of Genes and Genomes Pathway (KEGG) enrichment analysis, to investigate

whether an identified LMSM module is functionally associated with BRCA, we focus on con-

ducting BRCA enrichment analysis by using a hypergeometric test. For a LMSM module, the

p-value for the test is calculated as:

p � value ¼ 1 �
XL2 � 1

i2¼0

M2

i2

 !
N2 � M2

K2 � i2

 !

N2

K2

 ! 5

where N2 is the number of genes (lncRNAs and mRNAs) in the dataset,M2 denotes the num-

ber of BRCA genes in the dataset, K2 represents the number of genes in the LMSM module,

and L2 is the number of BRCA genes in the LMSM module. A LMSM module with p-

value < 0.05 is regarded as a BRCA-related module.

Module biomarker identification in BRCA. The module survival analysis can imply

whether the identified LMSM modules are good biomarkers of the metastasis risks of cancer

patients or not, and it can give us the hint whether the LMSM modules may be related to and

potentially affect the metastasis or survival of cancer patients. For each BRCA sample, we fit

the multivariate Cox model (proportional hazards regression model) [27] using the genes

(lncRNAs and mRNAs) in LMSM modules to compute its risk score. All the BRCA samples

are equally divided into the high risk and the low risk groups according to their risk scores.

The Log-rank test is used to evaluate the difference of each LMSM module between the high

and the low risk BRCA groups. Moreover, we also calculate the proportional hazard ratio (HR)

between the high and the low risk BRCA groups. In this work, the survival R package [28] is

utilized, and a LMSM module with Log-rank p-value < 0.05 and HR > 2 is regarded as a mod-

ule biomarker in BRCA.

Identification of BRCA subtype-specific modules. As is known, BRCA is a heteroge-

neous disease with several molecular subtypes, and the choice of chemotherapy for each BRCA

subtype is different. This diversity indicates that the genetic regulation of each BRCA subtype

is specific. To identify BRCA subtype-specific modules, we firstly identify BRCA molecular

subtypes using the PAM50 classifier [29]. By using a 50-gene subtype predictor, the PAM50

classifier classifies a BRCA sample into one of the five “intrinsic” subtypes: Luminal A

(LumA), Luminal B (LumB), HER2-enriched (Her2), Basal-like (Basal) or Normal-like (Nor-

mal). In this work, we use the genefu R package [30] to predict molecular subtypes of each

BRCA sample in the dataset used in our study.

To identify BRCA subtype-specific LMSM modules, we firstly need to estimate the enrich-

ment scores of LMSM modules in BRCA samples. To calculate the enrichment score of each

LMSM module in BRCA samples, the gene set variation analysis (GSVA) method [31] is used.

To calculate the enrichment score, the GSVA method uses the Kolmogorov-Smirnov (KS) like
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random walk statistic as follows:

vjkð‘Þ ¼

X‘

i¼1
jrijj

tIðgðiÞ 2 gkÞ
Xp

i¼1
jrijj

tIðgðiÞ 2 gkÞ
�

X‘

i¼1
IðgðiÞ=2gkÞ

p � jgkj
6

where t(t = 1 by default) is the weight of the tail in the random walk, rij is the normalized

expression-level statistics of the i-th gene in the j-th sample as defined in [31],gk is the k-th

LMSM module,IðgðiÞ 2 gkÞ is the indicator function on whether the i-th gene belongs to the

LMSM modulegk, jgkjis the number of genes in the k-th LMSM module, and p is the number

of genes in the dataset.

To transform the KS like random walk statistic into an enrichment score (ES, also called

GSVA score), we calculate the maximum deviation from zero of the random walk of the j-th

sample with respect to the k-th LMSM module in the following:

ESmax
jk ¼ vjk½arg max

‘¼1;...;p
ðabsðvjkð‘ÞÞÞ� 7

For each LMSM modulegk, the formula generates a distribution of enrichment scores that is

bimodal (see the reference [31] for a more detailed description).

Based on the enrichment scores of LMSM modules in each BRCA sample, we further iden-

tify two types of BRCA subtype-specific LMSM modules, up-regulated modules and down-

regulated modules. For one type of regulation pattern (up or down regulation), a LMSM mod-

ule is regarded to be specific to a BRCA subtype. For an up-regulated BRCA subtype-specific

LMSM module, the enrichment score of the LMSM module in the specific BRCA subtype sam-

ples is significantly larger than the score in the other BRCA subtype samples. For a down-regu-

lated BRCA subtype-specific LMSM module, the enrichment score of the LMSM module in

the specific BRCA subtype samples is significantly smaller than the score in the other BRCA

subtype samples. For example, if a LMSM module gk is up-regulated Basal-like specific, the

enrichment scores of the LMSM module in Basal-like samples should be significantly larger

than those in Luminal A, Luminal B, HER2-enriched and Normal-like samples. In this work,

for each LMSM module, we use Welch’s t-test [32] to calculate the significance p-value for the

difference of the average enrichment scores between any two BRCA subtype samples. Given a

BRCA subtype, a LMSM module is considered as an up-regulated (or down-regulated) module

specific to this BRCA subtype if the module’s average enrichment score in samples of the given

subtype is higher (or smaller) than the average enrichment score in samples of any other sub-

type and the significance p-value of the Welch’s t-test between the samples of this subtype and

any other subtype is less than 0.05.

Performance of LMSM modules in classifying BRCA subtypes. In this section, to check

the biological relevance of the discovered LMSM modules, we conduct module classification

of BRCA subtypes. Here, classifying BRCA subtypes (LumA, LumB, Her2, Basal and Normal)

is a multi-class classification (also known as a special case of multi-label classification). To

understand the classification performance of the feature genes in each LMSM module, we

apply a state-of-the-art multi-label learning strategy called Binary Relevance (BR) [33] imple-

mented in the utiml R package [34] to conduct multi-label classification analysis. For the BR

strategy, we use the Support Vector Machine (SVM) classifier [35] with default parameters

implemented in e1071 R package [36] as the base algorithm to build the multi-label model. We

select two commonly used multi-label classification measures: Subset accuracy andHamming
loss, and conduct 10-fold cross-validation to evaluate the performance of each LMSM module.

In this work, Subset accuracy denotes the percentage of correct predictions andHamming loss
is the fraction of wrong predictions to the total number of predictions. Higher values of Subset
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accuracy and smaller values ofHamming loss indicate better classification performance. In

addition, for the evaluation, we use the baseline method in [37], a commonly used multi-label

classification method as the baseline for comparison. The base algorithm of the baseline

method is also the SVM classifier with default parameters implemented in e1071 R package

[36].

Results

Heterogeneous data sources

We collect matched miRNA, lncRNA and mRNA expression data, and clinical data of BRCA

dataset from The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/). A lncRNA

or mRNA without a corresponding gene symbol in the expression data of BRCA dataset is

removed. To obtain a unique expression value for replicates of miRNAs, lncRNAs or mRNAs,

we compute the average expression value of the replicates. As a result, we obtain the matched

expression data of 674 miRNAs, 12711 lncRNAs and 18344 mRNAs in 500 BRCA samples.

We retrieve putative miRNA-target interactions (including miRNA-lncRNA and miRNA-

mRNA interactions) from several high-confidence miRNA-target interaction databases and

use the combined database search results. Specifically, the putative miRNA-lncRNA interac-

tions are obtained from NPInter v3.0 [38] and the experimental module of DIANA-LncBase

v2.0 [39], and miRNA-mRNA interactions are from miRTarBase v8.0 [40], TarBase v7.0 [41]

and miRWalk v2.0 [42].

The BRCA related mRNAs are from DisGeNET v5.0 [43] and COSMIC v86 [44], and the

BRCA related lncRNAs are from LncRNADisease v2.0 [45], Lnc2Cancer v2.0 [46] and MNDR

v2.0 [47]. The ground truth of lncRNA related miRNA sponge interactions is obtained by inte-

grating the interactions from miRSponge [48], LncCeRBase [49] and LncACTdb v2.0 [50].

Most of the mediating miRNAs act as crosslinks across LMSM modules

Following the steps shown in Fig 2, we have identified 17 LMSM modules (details can be seen

in S1 Data). The average size of the identified modules is 672.53 and the average number of the

shared miRNAs in a module is 232.82. In total, there are 549 unique miRNAs mediating the 17

LMSM modules, and 90.16% (495 out of 549) miRNAs mediate at least two LMSM modules

(details can be seen in S2 Data). This result indicates that most of the mediating miRNAs act as

crosslinks across different LMSM modules.

LMSM modules are all statistically significant

In this section, by computing null-model-based p-values, we evaluate whether the identified

LMSM modules are statistically significant or not. As a result, the adjusted p-values for the

identified 17 LMSM modules (details can be seen in S3 Data) are all statistically significant

(adjusted p-value = 1.00E-06). This result demonstrates that LMSM modules are all statistically

significant.

Most of LMSM modules are implicated in BRCA

To investigate whether the identified LMSM modules are related to BRCA or not, we conduct

BRCA enrichment analysis and identify BRCA module biomarkers using the methods

described in Section Materials and methods. For the BRCA enrichment analysis, we have col-

lected a list of 4819 BRCA genes (734 BRCA lncRNAs and 4085 BRCA mRNAs) associated

with the matched lncRNA and mRNA expression data (details in S4 Data). As shown in

Table 1, 10 out of 17 LMSM modules are functionally enriched in BRCA at a significant level
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(p-value< 0.05). In Table 2, 15 out of 17 LMSM modules are regarded as module biomarkers

in BRCA at a significant level (Log-rank p-value < 0.05 and HR > 2). Particularly, 90% (9 out

of 10, excepting LMSM 14) of the BRCA-related LMSM modules can act as module biomarker

in BRCA. These results show that most of LMSM modules are functionally implicated in

BRCA.

LMSM modules are mostly BRCA subtype-specific

In this section, we firstly divide the 500 BRCA samples into five “intrinsic” subtypes (Luminal

A, Luminal B, HER2-enriched, Basal-like and Normal-like). The numbers of LumA, LumB,

Her2, Basal and Normal samples are 190, 155, 52, 85 and 18, respectively. Then we calculate

the enrichment scores of the identified 17 LMSM modules in the BRCA subtype samples

respectively (details in S5 Data).

As illustrated in Fig 3, out of the 17 LMSM modules, 4 and 6 modules are identified as up-

regulated and down-regulated BRCA subtype-specific LMSM modules, respectively. For the

up-regulated BRCA subtype-specific LMSM modules, the numbers of Basal-specific, LumB-

Table 1. BRCA-related LMSM modules. L2 is the number of BRCA genes in each LMSM module, K2 represents the

number of genes in each LMSM module, the number of BRCA genes in the dataset (M2) is 4819, and the number of

genes in the dataset (N2) is 31055.

Module ID L2 K2 p-value

LMSM 2 327 1338 0

LMSM 3 259 1340 7.34E-05

LMSM 4 78 392 1.14E-02

LMSM 5 89 449 8.07E-03

LMSM 6 88 370 1.97E-05

LMSM 8 275 880 0

LMSM 12 24 110 4.95E-02

LMSM 13 20 76 1.05E-02

LMSM 14 252 1004 8.88E-16

LMSM 16 48 182 1.11E-04

https://doi.org/10.1371/journal.pcbi.1007851.t001

Table 2. Survival analysis of LMSM modules in BRCA. HRlow95 and HRup95 represent the lower and upper of 95% confidence interval of HR, respectively.

Module ID Chi-square p-value HR HRlow95 HRup95

LMSM 1 170.37 0 10.75 5.88 19.65

LMSM 2 107.34 0 6.03 3.12 11.66

LMSM 3 90.62 0 5.43 2.94 10.01

LMSM 4 138.81 0 14.94 8.83 25.27

LMSM 5 148.49 0 8.64 4.63 16.13

LMSM 6 142.64 0 13.40 7.83 22.92

LMSM 7 161.91 0 13.97 8.01 24.36

LMSM 8 103.63 0 5.91 3.07 11.37

LMSM 10 144.86 0 8.63 4.74 15.71

LMSM 11 120.79 0 9.49 5.55 16.23

LMSM 12 49.31 2.19E-12 5.46 3.38 8.80

LMSM 13 60.08 9.10E-15 5.72 3.48 9.41

LMSM 15 83.26 0 12.00 7.46 19.32

LMSM 16 110.94 0 11.25 6.79 18.66

LMSM 17 106.96 0 9.14 5.42 15.41

https://doi.org/10.1371/journal.pcbi.1007851.t002
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specific and Normal-specific modules are 1, 1 and 2, respectively. The numbers of Basal-spe-

cific, LumB-specific and Normal-specific modules are 3, 1 and 2 respectively among the

down-regulated BRCA subtype-specific LMSM modules. In particular, only 1 module (LMSM

2) can act as both up-regulated and down-regulated BRCA subtype-specific LMSM module. In

total, the unique number of BRCA subtype-specific LMSM modules is 9, indicating that most

of LMSM modules are BRCA subtype-specific.

The performance of LMSM modules is significantly higher than baseline’s

performance in classifying BRCA subtypes

For the identified 17 LMSM modules, the average Subset accuracy and Hamming loss in classi-

fying BRCA subtypes is 0.7547 and 0.0892, respectively (details can be seen in S6 Data), The

Subset accuracy and Hamming loss of the baseline are 0.3800 and 0.2480, respectively. By using

Welch’s t-test method, the Subset accuracy achieved using the 17 LMSM modules is signifi-

cantly larger (better) than the Subset accuracy of the baseline (p-value < 2.20E-16), and the

Hamming loss of the 17 LMSM modules is significantly smaller (better) than theHamming loss
of the baseline (p-value < 2.20E-16). The better performance than the baseline method indi-

cates that LMSM modules are biological meaningful in classifying BRCA subtypes.

Several lncRNA-related miRNA sponge interactions are experimentally

confirmed

For the ground truth used in the validation, we have collected 581 experimentally validated

lncRNA-related miRNA sponge interactions associated with the matched lncRNA and mRNA

Fig 3. Heatmap of the enrichment scores of BRCA subtype-specific LMSM modules in five BRCA subtype samples. (A)

Up-regulated BRCA subtype-specific LMSM modules. (B) Down-regulated BRCA subtype-specific LMSM modules.

https://doi.org/10.1371/journal.pcbi.1007851.g003
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expression data (details in S4 Data). After we merge the sponge lncRNA-mRNA pairs in the

identified 17 LMSM modules, we have predicted 1471664 unique lncRNA-related miRNA

sponge interactions (details at https://github.com/zhangjunpeng411/LMSM). For each LMSM

module, the number of shared miRNAs, lncRNAs, mRNAs, predicted lncRNA-related

miRNA sponge interactions can be seen in S7 Data.

As shown in Table 3, there are 4 LMSM modules (LMSM 2, LMSM 3, LMSM 5 and LMSM

8) containing 14 experimentally validated lncRNA-related miRNA sponge interactions in

total. It is noted that all the lncRNAs and mRNAs in these confirmed lncRNA-related miRNA

sponge interactions are BRCA-related genes, indicating they may have potentially involved in

BRCA.

LMSM is capable of predicting miRNA targets

LMSM use high-confidence miRNA-target interactions as seeds to predict miRNA-target

interactions. A miRNA-mRNA or miRNA-lncRNA pair in a LMSM module has the potential

to be a miRNA-target pair for the following reasons. Firstly, at sequence level, the sponge

lncRNAs and mRNAs in each LMSM module have a significant sharing of miRNAs. Secondly,

at expression level, the sponge lncRNAs and mRNAs in each LMSM module are highly corre-

lated. As a result, the sponge lncRNAs and mRNAs of each LMSM module have a high chance

to be target genes of the shared miRNAs. Thus, based on the identified LMSM modules, we

have predicted 2820524 unique miRNA-target interactions (including 2023304 miRNA-

lncRNA and 797220 miRNA-mRNA interactions) (details at https://github.com/

zhangjunpeng411/LMSM). For each LMSM module, the numbers of predicted miRNA-

lncRNA interactions and miRNA-mRNA interactions can be seen in S7 Data.

In addition, we investigate the intersection of the miRNA-target interactions predicted by

LMSM with the other well-cited miRNA-target prediction methods. In terms of miRNA-

mRNA interactions, we select TargetScan v7.2 [51], DIANA-microT-CDS v5.0 [52], starBase

v3.0 [53] and miRWalk v3.0 [54] for investigation. We choose starBase v3.0 [53] and DIA-

NA-LncBase v2.0 [39] for investigation in terms of miRNA-lncRNA interactions. As shown in

the UpSet plot [55] of Fig 4A, the number of miRNA-mRNA interactions identified by all the

five methods is only 21842. However, the percentage of overlap between LMSM and each of

the other four methods achieves ~63.74% (1289620 out of 2023304). As shown in Fig 4B, the

number of miRNA-lncRNA interactions identified by all the three methods is only 1160. Since

the miRNA-lncRNA interactions are still limited, most of the miRNA-lncRNA interactions

(~93.90%, 748609 out of 797220) are individually predicted by LMSM.

Comparison with graph clustering-based strategy

Graph clustering-based strategy [12–17] is an alternative approach to identifying lncRNA

related miRNA sponge modules. As there is no graph clustering-based strategy specifically

designed for finding lncRNA related miRNA sponge modules, so we create a baseline Graph

Table 3. Validated lncRNA-related miRNA sponge interactions.

Module

ID

Validated lncRNA-related miRNA sponge interactions

LMSM 2 H19: HMGA2, H19:IGF2, H19:ITGB1, H19: TGFB1, H19: VIM, H19:RUNX1, H19:CDH13, H19:KLF4,

H19:TGFBI, H19:VDR
LMSM 3 LINC00152: MCL1
LMSM 5 NEAT1: EMP2
LMSM 8 LINC00324: BTG2, DLEU2: CCNE1

https://doi.org/10.1371/journal.pcbi.1007851.t003
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Clustering-based method (called GC in this paper) which uses well-known network construc-

tion and graph clustering methods as described in the following. The GC method includes two

steps: i) identifying lncRNA related miRNA sponge interaction network, and ii) identifying

lncRNA related miRNA sponge modules from the identified network. In step 1, we adapt the

Fig 4. Overlaps and differences between predicted miRNA-target interactions by LMSM and other methods. (A) Predicted

miRNA-mRNA interactions between LMSM and TargetScan, DIANA_microT_CDS, starBase, miRWalk. (B) Predicted miRNA-

lncRNA interactions between LMSM and starBase, DIANA_LncBase. Each column corresponds to an exclusive intersection that

includes the elements of the sets denoted by the dark or red circles, but not of the others. The overlap size between different

methods denotes exclusive overlaps, i.e. the overlap set not in a subset of any other overlap set.

https://doi.org/10.1371/journal.pcbi.1007851.g004
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well-cited Sensitivity Correlation (SC) method [24] implemented in themiRspongeR R package

[56] to infer lncRNA related miRNA sponge interaction network. A lncRNA-mRNA pair is

considered as an interacting pair in the network if they have significant sharing of the miR-

NAs, significant correlation and adequate sensitivity correlation. We require that the pairs

must share at least 3 miRNAs and their sensitivity correlation (the difference between correla-

tion and partial correlation) must be larger than 0.1. The statistically significance of the

miRNA sharing and positive correlations are tested using hypergeometric test and Welch’s t-
test respectively, with a significant level at 0.05. In step 2, we use the well-cited Markov cluster

(MCL) algorithm [57] to infer lncRNA related miRNA sponge modules. Here, each obtained

cluster corresponds to a module. Each module should contain at least 2 sponge lncRNAs and 2

target mRNAs. In total, by using the GC method, we have obtained 108 lncRNA related

miRNA sponge modules.

We compare LMSM and GC in terms of the percentage of BRCA-related modules, the per-

centage of module biomarkers in BRCA, the classification performance (mean Subset accuracy
and meanHamming loss) in classifying BRCA subtypes, and the number of validated lncRNA-

related miRNA sponge interactions. As shown in Table 4, the comparison result indicates that

LMSM always performs better than the GC method. The detailed results of the GC method

can be seen in S8 Data.

LMSM is robust

To demonstrate the robustness of the LMSM workflow, we use the sparse group factor analysis

(SGFA) method [58], instead of the WGCNA method to identify lncRNA-mRNA co-expres-

sion modules. The SGFA method is extended from the group factor analysis (GFA) method

[59–61], and it can reliably infer biclusters (modules) from multiple data sources, and provide

predictive and interpretable structure existing in any subset of the data sources. Given B biclus-

ters to be identified, the SGFA method assigns each column (lncRNA or mRNA) or row (sam-

ple) a grade of membership (association) belonging to these biclusters. The range of the values

of the associations is [–1, 1]. We use the absolute value of association (AVA) to evaluate the

strength of lncRNAs and mRNAs belonging to a bicluster, and the cutoff of AVA is also set to

0.8. Specifically, we use the GFA R package [58] to identify lncRNA-mRNA co-expression

modules. The parameter settings for inferring lncRNA-related miRNA sponge modules are

the same.

By using the SGFA method, we have identified 51 LMSM modules (details can be seen in

S1 Data). The average size of these LMSM modules is 277.63 and the average number of the

shared miRNAs is 135.65. There are 490 unique miRNAs mediating the 51 LMSM modules,

and 84.90% (416 out of 490) miRNAs mediate at least two LMSM modules (details can be seen

in S2 Data). As the result obtained using the WGCNA method, the result with the SGFA

method also implies that the mediating miRNAs mostly act as crosslinks across different

LMSM modules. In addition, by using a null-model-based p-value computation method, the

identified 51 LMSM modules are also all statistically significant with adjusted p-value� 5.00E-

06 (details can be seen in S3 Data).

Table 4. Comparison results between LMSM and GC.

Method %BRCA-related modules %Module biomarkers Mean Subset accuracy Mean Hamming loss #Validated interactions

LMSM 58.82% 88.24% 0.7547 0.0892 14

GC 32.41% 66.67% 0.6586 0.1319 2

https://doi.org/10.1371/journal.pcbi.1007851.t004
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As shown in Table A of S1 File, 3 out of the 51 LMSM modules are functionally enriched in

BRCA at a significant level (p-value< 0.05). Moreover, 49 out of the 51 LMSM modules are

regarded as module biomarkers in BRCA (see in Table B of S1 File). The results indicate that

most of LMSM modules are related to BRCA.

We also compute the enrichment scores of the identified 51 LMSM modules in the BRCA

subtype samples (details in S5 Data). As illustrated in Fig A of S1 File, out of the 51 LMSM

modules, 33 and 24 modules are regarded as up-regulated and down-regulated BRCA sub-

type-specific LMSM modules, respectively. For the up-regulated BRCA subtype-specific

LMSM modules, the numbers of Basal-specific, Her2-specific, LumB-specific and Normal-spe-

cific modules are 27, 2, 2 and 2, respectively. The numbers of Basal-specific, Her2-specific,

LumA-specific, LumB-specific and Normal-specific modules are 2, 3, 15, 3 and 1 respectively

for the down-regulated BRCA subtype-specific LMSM modules. Particularly, 16 modules can

act as both up-regulated and down-regulated BRCA subtype-specific LMSM module. Overall,

the unique number of BRCA subtype-specific LMSM modules is 41. This result also indicates

that the identified LMSM modules are mostly BRCA subtype-specific.

The average value of Subset accuracy and Hamming loss of the identified 51 LMSM modules

in classifying BRCA subtypes is 0.6921 and 0.1135, respectively (details can be seen in S6

Data). In classifying BRCA subtypes, the baseline value of Subset accuracy andHamming loss is

0.3800 and 0.2480, respectively. By using Welch’s t-test method, the value of Subset accuracy
for 51 LMSM modules is significantly larger (better) than the baseline value of Subset accuracy
(p-value< 2.20E-16), and the value ofHamming loss for 51 LMSM modules is significantly

smaller (better) than the baseline value ofHamming loss (p-value < 2.20E-16). The better per-

formance than the baseline method also indicates that LMSM modules are biological meaning-

ful in classifying BRCA subtypes.

Moreover, we have predicted 605456 unique lncRNA-related miRNA sponge interactions

in the identified 51 LMSM modules (details at https://github.com/zhangjunpeng411/LMSM).

The number of the shared miRNAs, lncRNAs, mRNAs, predicted lncRNA-related miRNA

sponge interactions of each LMSM module can be seen in S7 Data. Since the experimentally

validated lncRNA-related miRNA sponge interactions are still limited, only 4 LMSM modules

containing 4 lncRNA-related miRNA sponge interactions (see Table C of S1 File) are experi-

mentally validated. All lncRNAs and mRNAs in the confirmed lncRNA-related miRNA

sponge interactions are also BRCA-related genes.

LMSM also has identified a large number of potential miRNA-target interactions (1646449

in total, including 435345 miRNA-mRNA and 1211104 miRNA-lncRNA interactions, details

at https://github.com/zhangjunpeng411/LMSM). The number of predicted miRNA-lncRNA

interactions, predicted miRNA-mRNA interactions, putative miRNA-lncRNA interactions

and putative miRNA-mRNA interactions can be seen in S7 Data. As illustrated in Fig B of S1

File, the number of the miRNA-mRNA interactions identified by all the five methods is 4897

and the number of the miRNA-lncRNA interactions identified by all the three methods is

1149. Most of the identified miRNA-mRNA interactions by LMSM (~58.55%, 254910 out of

435345) are also predicted by one of the other four methods. In terms of the predicted

miRNA-lncRNA interactions, ~94.23% (1141232 out of 1211104) miRNA-lncRNA interac-

tions are also individually predicted by LMSM.

Finally, in terms of the percentage of BRCA-related modules, the percentage of module bio-

markers in BRCA, the classification performance (mean Subset accuracy and mean Hamming
loss) in classifying BRCA subtypes, and the number of validated lncRNA-related miRNA

sponge interactions, LMSM also generally performs better than the GC method (see Table D

of S1 File).
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Altogether, the above results are consistent with those obtained using the WGCNA method,

indicating that our LMSM workflow is robust for studying lncRNA-related miRNA sponge

modules.

Discussion

The crosstalk between different RNA transcripts in a miRNA-dependent manner forms a

complex miRNA sponge interaction network and depicts a novel layer of gene expression reg-

ulation. Until now, several types of RNA transcripts, e.g. lncRNAs, pseudogenes, circRNAs

and mRNAs, have been confirmed to act as miRNA sponges. Since lncRNAs are a large class

of ncRNAs and function in many aspects of cell biology, including human cancers, we focus

on identifying lncRNA related miRNA sponge modules in this work.

By integrating multiple data sources, previous studies mainly investigate the identification

of lncRNA related miRNA sponge interaction network. Based on the identified lncRNA

related miRNA sponge interaction network, they use graph clustering algorithms to further

infer lncRNA related miRNA sponge modules. Different from existing computational methods

on lncRNA related miRNA sponge modules, in this work, we propose a novel method named

LMSM to directly identify lncRNA related miRNA sponge modules from heterogeneous data.

It is noted that the LMSM method depends on our presented hypothesis of miRNA sponge

modular competition. In the hypothesis, miRNA sponges tend to form a group to compete

with a group of target mRNAs for binding with miRNAs.

We have applied the LMSM method to the BRCA dataset from TCGA. For the putative

miRNA-target interactions, we integrate high-confidence miRNA-target interactions from

several databases. The analysis results demonstrate that our LMSM method is useful in identi-

fying lncRNA related miRNA sponge modules, and it can help with understanding regulatory

mechanism of lncRNAs.

LMSM is a flexible method to investigate miRNA sponge modules in human cancer. Firstly,

any biclustering or clustering algorithm (e.g. the joint non-negative matrix factorization meth-

ods presented by Deng et al. [18] and Xiao et al. [19]) can be plugged in stage 1 of LMSM to

identify lncRNA-mRNA co-expression modules. The only condition for using these algo-

rithms is that they can be used to identify biclusters or clusters from high-dimensional expres-

sion data. Secondly, LMSM is a parametric model, and the parameter settings of LMSM can be

replaced according to the practical requirements of researchers. For example, the threshold of

the three metrics in stage 2 for identifying lncRNA related miRNA sponge modules can be

looser or stricter. Thirdly, LMSM can also be extended to study other ncRNA (e.g. circRNA

and pseudogene) related miRNA sponge modules. For instance, if we change the matched

lncRNA expression data and the miRNA-lncRNA interactions to matched circRNA expression

data and the miRNA-circRNA interactions respectively, the pipeline of LMSM is to identify

circRNA related miRNA sponge modules.

It is noted that each LMSM module contains many sponge lncRNAs and mRNAs, so it is

hard to experimentally validate such a module by follow-up wet-lab experiments. This is a

common issue of existing computational methods, including LMSM. We suggest that biolo-

gists can select some sponge lncRNAs and mRNAs of interest in each LMSM module, and

then validate the modular competition between the selected sponge lncRNAs and target

mRNAs. We believe that LMSM is still useful in shortlisting high-confidence sponge lncRNAs

and mRNAs for experimental validation. For example, previous study [62] has shown that

lncRNAMIR22HG is functionally complementary to lncRNAH19. In the identified LMSM

module no. 2 (LMSM 2), lncRNAH19 is experimentally validated to compete with 10 target

mRNAs (HMGA2, IGF2, ITGB1, TGFB1, VIM, RUNX1, CDH13, KLF4, TGFBI and VDR).
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Thus, biologists can select 2 lncRNAs (H19 andMIR22HG) and 10 target mRNAs (HMGA2,

IGF2, ITGB1, TGFB1, VIM, RUNX1, CDH13, KLF4, TGFBI and VDR) in LMSM 2 to validate

the modular competition between them.

Taken together, based on the hypothesis of miRNA sponge modular competition, we pro-

pose a new approach to identifying lncRNA related miRNA sponge modules by integrating

expression data and miRNA-target binding information. Our method not only extends the

ceRNA hypothesis, but also provides a novel way to investigate the biological functions and

modular mechanism of lncRNAs in BRCA. We believe that our method can be also applied to

other human cancer datasets assists in human cancer research.
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59. Klami A, Virtanen S, Leppäaho E, Kaski S. Group factor analysis. IEEE Trans Neural Netw Learn Syst

2015; 26(9):2136–2147. https://doi.org/10.1109/TNNLS.2014.2376974 PMID: 25532193

60. Suvitaival T, Parkkinen JA, Virtanen S, Kaski S. Cross-organism toxicogenomics with group factor anal-

ysis. Syst Biomed 2014; 2(4):71–80. https://doi.org/10.4161/sysb.29291

61. Virtanen S, Klami A, Khan S, Kaski S. Bayesian group factor analysis. In: Lawrence,N. and Girolami,M.

(eds), Proc. of the 15th International Conference on Artificial Intelligence and Statistics,

2012; pp. 1269–1277.

62. Wang P, Ning S, Zhang Y, Li R, Ye J, Zhao Z, et al. Identification of lncRNA-associated competing trip-

lets reveals global patterns and prognostic markers for cancer. Nucleic Acids Res 2015; 43(7):3478–

89. https://doi.org/10.1093/nar/gkv233 PMID: 25800746

PLOS COMPUTATIONAL BIOLOGY Identifying lncRNA related miRNA sponge modules

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007851 April 23, 2020 22 / 22

https://doi.org/10.1186/s12859-019-2861-y
http://www.ncbi.nlm.nih.gov/pubmed/31077152
https://doi.org/10.1093/nar/30.7.1575
http://www.ncbi.nlm.nih.gov/pubmed/11917018
https://doi.org/10.1093/bioinformatics/btw207
http://www.ncbi.nlm.nih.gov/pubmed/27153643
https://doi.org/10.1109/TNNLS.2014.2376974
http://www.ncbi.nlm.nih.gov/pubmed/25532193
https://doi.org/10.4161/sysb.29291
https://doi.org/10.1093/nar/gkv233
http://www.ncbi.nlm.nih.gov/pubmed/25800746
https://doi.org/10.1371/journal.pcbi.1007851

