
Introduction
Crohn's disease (CD) belongs to the group of chronic inflamma-
tory bowel diseases [1]. Cardinal lesions are mucosal ulcera-
tions ranging from small aphthous ulcerations to large ulcers

and fissures. Typically, CD has a segmental distribution, and
the entire gastrointestinal tract may be involved, although the
disease is most often located in the terminal ileum and right co-
lon (ileocecal CD) [2].
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ABSTRACT

Background and study aims Small bowel ulcerations are

efficiently detected with deep learning techniques,

whereas the ability to diagnose Crohnʼs disease (CD) in the

colon with it is unknown. This study examined the ability of

a deep learning framework to detect CD lesions with pan-

enteric capsule endoscopy (CE) and classify lesions of dif-

ferent severity.

Patients and methods CEs from patients with suspected

or known CD were included in the analysis. Two experi-

enced gastroenterologists classified anonymized images

into normal mucosa, non-ulcerated inflammation, aph-

thous ulceration, ulcer, or fissure/extensive ulceration. An

automated framework incorporating multiple ResNet-50

architectures was trained. To improve its robustness and

ability to characterize lesions, image processing methods

focused on texture enhancement were employed.

Results A total of 7744 images from 38 patients with CD

were collected (small bowel 4972, colon 2772) of which

2748 contained at least one ulceration (small bowel 1857,

colon 891). With a patient-dependent split of images for

training, validation, and testing, ulcerations were diag-

nosed with a sensitivity, specificity, and diagnostic accuracy

of 95.7% (CI 93.4–97.4), 99.8% (CI 99.2–100), and 98.4%

(CI 97.6–99.0), respectively. The diagnostic accuracy was

98.5% (CI 97.5–99.2) for the small bowel and 98.1% (CI

96.3–99.2) for the colon. Ulcerations of different severities

were classified with substantial agreement (κ=0.72).
Conclusions Our proposed framework is in excellent

agreement with the clinical standard, and diagnostic ac-

curacies are equally high for the small bowel and colon.

Deep learning approaches have a great potential to help

clinicians detect, localize, and determine the severity of CD

with pan-enteric CE.
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In recent years, technological advances have improved mod-
alities for diagnosing and monitoring CD. Capsule endoscopy
(CE) is non-invasive, patient-friendly, and highly sensitive for
the earliest lesions of CD [3, 4]. In patients with suspected CD
and a normal ileocolonoscopy, the European Society of Gastro-
intestinal Endoscopy (ESGE) and the European Crohnʼs and Co-
litis Organization (ECCO) recommends CE as first line modality
for investigating the small bowel in patients without obstruc-
tive symptoms [5, 6]. Colon CE was introduced in 2006, and
pan-enteric CE is now available allowing a direct and detailed
evaluation of the entire gastrointestinal mucosa. However, the
role of pan-enteric CE in patients with suspected or known CD
remains to be established.

The camera pill captures more than 50,000 images of the
gastrointestinal tract, and a significant limitation with CE is the
time-consuming manual video analysis. In previous series,
reading times above 40 to 50 minutes were reported for small
bowel CE [3], and pan-enteric CE takes more than 60 minutes to
interpret for CD. Hence, lesions may be missed due to readerʼs
fatigue or distraction. Better ways to optimize the work of the
GI specialist without affecting the diagnostic accuracy of CE
would be helpful in clinical practice.

Utilizing artificial intelligence (AI) – especially deep learning
techniques–has received great attention in recent years. Multi-
ple clinical settings have been studied including the ability to
analyze endoscopy images and aid clinical decision-making [7–
9]. A recent meta-analysis showed a high sensitivity and speci-
ficity of deep learning techniques for ulcer detection in the
small bowel [8], whereas the ability to diagnose CD in the colon
is unknown. Results are promising, and AI could have a pivotal
role in the future of non-invasive diagnosis of CD with pan-en-
teric CE. The aim of this study was to examine the ability of a
deep learning framework to detect CD lesions in single images
of the small bowel or colon captured with pan-enteric CE, de-
termine the localization of lesions, and the ability to character-
ize lesions of different severity.

Patients and methods
Study design

Patients with suspected or known CD were recruited from three
centers in the Region of Southern Denmark managing adult pa-
tients with inflammatory bowel diseases. All patients were pro-
spectively enrolled in a clinical trial examining non-invasive
modalities for diagnosing suspected CD (http://ClinicalTrials.
gov Identifier NCT03134586) or assessing treatment response
in patients with known CD (http://ClinicalTrials.gov Identifier
NCT03435016).

CD was clinically suspected in patients with diarrhea and/or
abdominal pain for more than 1 month (or repeated episodes of
diarrhea and/or abdominal pain) associated with a fecal calpro-
tectin > 50mg/kg and at least one additional finding suggesting
CD: elevated inflammatory markers, anemia, fever, weight loss,
perianal abscess/fistula, a family history of inflammatory bowel
disease, or suspicion of CD after sigmoidoscopy.

Patients with an established diagnosis of CD based on ECCO
criteria [10] were included if they had clinical disease activity

(Harvey-Bradshaw Index ≥5 or Crohnʼs Disease Activity Index
≥150), endoscopic activity (Simple Endoscopic Score for
Crohnʼs disease ≥3), and a clinical indication for medical treat-
ment with corticosteroids or biological therapy.

All patients had a standardized work-up including medical
history, physical examination, blood and stool samples, ileoco-
lonoscopy, pan-enteric CE, magnetic resonance imaging enter-
ocolonography, and bowel ultrasound.

Capsule endoscopy procedure

Pan-enteric CE was performed with the PillCam Crohn's capsule
(Medtronic, Dublin, Ireland) after overnight fasting and bowel
preparation with 2+2 L of polyethylene glycol (Moviprep) as
previously described by ESGE [11]. Videos were analyzed with
the PillCam Software v9.

Image selection and classification

Images with a normal mucosa or CD lesions located in the small
bowel or colon were manually searched and randomly collected
by three gastroenterologists with experience in CE and inflam-
matory bowel diseases (M.D.J., J.B.B. and M.L.H.). Images were
anonymized and assigned into one of the following 13 categor-
ies by authors M.D.J. and J.B.B.:
▪ Small bowel: normal mucosa, normal mucosa with lymphoid

hyperplasia, normal mucosa with bubbles and/or debris,
non-ulcerated inflammation, aphthous ulceration, ulcer, fis-
sure / large ulcer

▪ Colon: normal mucosa, normal mucosa with bubbles and/or
debris, non-ulcerated inflammation, aphthous ulceration,
ulcer, fissure/large ulcer

The following definitions were used for image classification:
▪ Normal: No or minimal luminal content (estimated <1mm in

size) and mucosa without erythema, edema or mucosal
breaks

▪ Debris: Dark fluid or solid luminal content without sur-
rounding erythema or mucosal break

▪ Bubbles: Luminal pocket of air reflecting the flashlight
▪ Aphthous ulceration: Small superficial mucosal break with

surrounding erythema (estimated<5mm in size)
▪ Ulcer: Mucosal break with loss of substance and fibrin
▪ Fissure: Longitudinal ulcer
▪ Large ulcer: Ulcer involving >50% of the lumen
▪ Non-ulcerated inflammation: Erythema and edema without

mucosal break

In case of disagreement, a consensus decision was reached. If
more lesions were seen in the same image, the most severe le-
sion determined the overall classification. The visual illustration
of image classification is in ▶Fig.1.

Image processing

After manual classification of all collected images, the images
needed to be preprocessed in order to effectively train the
deep learning algorithms. Since the original images contain
text information near the corners, the Chan-Vese segmentation
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via graph cuts was used to extract the binary mask and to seg-
ment the relevant information from the image [12].

Four different algorithms were employed for textural im-
provements:

Contrast increase: The original image is split into three indi-
vidual intensity channels (red, green, and blue channels, RGB
image). In each channel, the adjustment was applied, where
the bottom 1% and the top 1% of all pixel values were satura-
ted. At the end, grayscale channels were merged back to form
an enhanced RGB image.

Histogram equalization: The input RGB image was converted
to a different color space that describes colors similarly to how
the human eye tends to perceive them. In this color space, hue
(H) channel specifies the base color, saturation (S) channel re-
presents the vibrancy of the color and captures the amount of
gray in a particular color, and value (V) channel in conjunction
with S channel describes the intensity or brightness of the col-
or. In the next step, a contrast-limited adaptive histogram
equalization (CLAHE) was applied on the V channel [13]. This
non-parametric equalization operates on small regions in the
image and computes histograms corresponding to distinct sec-
tions of the image. Subsequently, it uses them to redistribute
the lightness values of the image. In the last step, the enhanced
HSV image was converted back to RGB color space.

Gradient X: The original RGB image was converted to a single
grayscale image by forming a weighted sum of the red, green,
and blue component. In the next step, the X-directional gradi-
ent of the grayscale image was extracted. The resulting image
was then copied into three color channels of RGB to form the
output image.

Dehazing: First, the complement image of the original RGB
input was computed and dehazing algorithm that relies on a
dark channel prior was used. The algorithm was originally de-
signed to reduce the atmospheric haze, and it is based on the
observation that unhazy images contain pixels that have low
signal in color channels, which is also our case in CE images. At
the end, the complement image was derived again and used as
an enhanced output image.

For better illustration of all four described methods, their
visual outcomes on three random samples are provided in

▶Fig.2. All possible subsets of these image transformations
were evaluated, but the highest performance was achieved
when all variants (original image plus four new variants) were
considered together. It demonstrates that every single trans-
formation adds to the robustness of our proposed system.

Using the image processing steps previously described, five
separate datasets were created; one for original images and the
remaining four for enhanced images. For each dataset, a sepa-

▶ Fig. 1 Examples of image classification. a Normal colon. b Normal colon with debris. c Aphthous ulceration in the colon; d Ulcer in the colon.
e Fissures in the colon; f Large ulcer in the terminal ileum.
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rate deep learning model was trained and at the end, the results
were merged to a single classification output. Configuration of
all five models, however, was the same. The only difference be-
tween them was that they were trained either on the original
set of images or on a set of images with a specific texture en-
hancement method.

Splits for training and validation

Two separate data splits were performed to evaluate our auto-
mated framework:
▪ Random split: In this split, 70% of all input images from each

category were randomly chosen for training, 10% for valida-
tion, and remaining 20% were used as an independent test
set.

▪ Patient split: In this split, all images from a single patient
were used either for training or for testing. The ratio be-
tween training, validation, and testing samples was as close
as possible to the previous split.

Because the size of the training dataset was not sufficient for a
deep learning algorithm, a data augmentation was employed.
In the training part of the dataset, each image was rotated by
90°, 180°, and 270°. Together with the mirroring operation ap-
plied on original and rotated samples, the augmentation step
resulted in seven new training samples that were derived from
each original image.

The training process was done using a fine-tuning approach
that is known as transfer learning [14]. The stochastic gradient
descent was utilized with the momentum optimizer and the in-
itial learning rate of 0.001. The mini-batch size of 8 images was
used. Each model was trained for 30 epochs. In this work, only
results obtained on the independent test set that was not used
during the training process are reported.

ResNet-50 architecture pre-trained on ImageNet was em-
ployed [15]. The last three layers were removed and replaced
with new fully-connected layer, softmax layer, and classification
layer. The last layer was set to classify images directly to our 13
desired categories. All images were resized to an appropriate
input size using the bicubic interpolation, and all tests were
performed using MATLAB R2019b.

After training, all five models were evaluated on test images.
For each test image variant, softmax probabilities for each out-
put class were extracted. At the end, corresponding probabil-
ities were multiplied (five values for each output class, one
from each model) and assigned the test image to the output
class with the highest value. Illustration of this approach is
provided in ▶Fig.3.

Statistics

Manual classification of images served as reference standard.
The sensitivity, specificity, and diagnostic accuracy of our auto-
mated framework for detection of CD lesions was calculated

▶ Fig. 2 Illustration of applied texture enhancement methods on three random samples from our collected data. The five columns correspond
to original images, contrast increase images, histogram equalization images, gradient x images, and dehazing images, respectively.
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from 2×2 contingency tables with 95% confidence intervals
(CI). For the overall evaluation of sensitivity and specificity, a le-
sion was considered true positive if it was detected in accord-
ance with manual reading irrespective of the localization (i. e.
an ulceration in the small bowel classified as an ulceration in
the colon is a true positive for detection of ulceration overall).
Agreement between the gold standard and our automated fra-
mework for lesion classification was assessed with kappa statis-
tics. Kappa values were interpreted the following way: absence
of agreement 0, slight agreement <0.20, fair agreement 0.21
to 0.40, moderate agreement 0.41 to 0.60, substantial agree-
ment 0.61 to 0.80, and almost perfect agreement >0.81 as pro-
posed by Landis and Koch [16].

Ethics
The above-mentioned studies were approved by the Local Eth-
ics Committee of Southern Denmark (S-20150189 and S-
20170188) and the Danish Data Protection Agency (journal
number 16/10457 and 18/11210). All patients gave informed
consent before participation including permission to use anon-
ymized CE videos for additional analysis.

Results
A total of 38 patients were included in the study of which 33 pa-
tients were examined for clinically suspected CD and five pa-
tients had an established diagnosis of CD. After ileocolonosco-

Fine-tuned models Softmax probabilities

Multiply per class
Output = class with max value

class 1 class 2 class 3 class 13

0.01 0.02 0.84 0.05…ResNet-50 model

Original

Contrast increase

class 1 class 2 class 3 class 13

0 0.21 0.34 0.01…ResNet-50 model

class 1 class 2 class 3 class 13

0.02 0 0.67 0.04…ResNet-50 model

Histogram equalization

Gradient X

class 1 class 2 class 3 class 13

0.68 0.02 0.22 0.01…ResNet-50 model

Dehazing

class 1 class 2 class 3 class 13

0.01 0.01 0.75 0.11…ResNet-50 model

▶ Fig. 3 Illustration of the classification process.
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py with biopsies, pan-enteric CE and MR-enterocolonography,
31 patients were diagnosed with active CD. Ulcerations were
located in the small bowel, colon, and small bowel plus colon
in 12, 10 and 9 patients, respectively.

Overall, 7744 anonymized image frames (small bowel 4972,
colon 2772) were manually collected and annotated. 2748 of
them contained at least one ulceration (small bowel 1857, co-
lon 891). A total of 408 images showed non-ulcerative inflam-
mation in patients with concomitant lesions consistent with CD
or an established diagnosis of CD. The number of images and
specific lesions used for training, validation, and testing in
both splits are shown in ▶Table 1.

Lesion classification

Our automated framework was evaluated on three different
levels. The first level is a multiclass classification, where 13 clas-
ses used in the training process were considered. For the pa-
tient split, the algorithm was tested on 1431 image frames
(▶Table 2). The agreement between the automated frame-

work and manual reading was substantial (κ=0.74). Using a
random split of patients for training, validation, and testing,
an almost perfect agreement was achieved on 1558 images (κ
=0.89).

The framework was able to firmly distinguish between the
small bowel and colon. For the random split, only four of 558
images of the colon were misclassified as the small bowel (29
of 493 for the patient split), and only seven of 1000 images of
the small bowel were misclassified as the colon (18 of 938 for
the patient split).

Diagnostic accuracy

The second set of tests was focused on the diagnostic accuracy
for the detection of CD. For the patient split, the automated
framework detected ulcerations consistent with CD with a sen-
sitivity, specificity, and diagnostic accuracy of 95.7% (CI 93.4–
97.4), 99.8% (CI 99.2–100), and 98.4% (CI 97.6–99.0), respec-
tively (▶Table 3). The diagnostic accuracy was similar for le-
sions located in the small bowel and colon – 98.5% (CI 97.5–

▶Table 1 Number of images used for training, validation, and testing in both considered splits.

Random split Patient split Total

Training (after

augmentation)

Validation Testing Training (after

augmentation.)

Validation Testing

Small
bowel

Normal 712
(5,696)

101 204 714
(5,712)

101 202 1017

Normal with
bubbles/debris

1415
(11,320)

202 406 1,429
(11,432)

202 392 2023

Lymphoid hyper-
plasia

32
(256)

4 10 32
(256)

4 10 46

Non-ulcerated
inflammation

21
(168)

2 6 22
(176)

2 5 29

Aphthous ulcera-
tion

514
(4,112)

73 148 538
(4,304)

73 124 735

Ulcer 504
(4,032)

72 144 520
(4,160)

72 128 720

Fissure/large
ulcer

280
(2,240)

40 82 285
(2,280)

40 77 402

Colon Normal 150
(1,200)

21 44 154
(1,232)

21 40 215

Normal with
bubbles/debris

901
(7,208)

128 258 916
(7,328)

128 243 1287

Non-ulcerated
inflammation

266
(2,128)

37 76 270
(2,160)

37 72 379

Aphthous ulcera-
tion

184
(1,472)

26 54 193
(1,544)

26 45 264

Ulcer 237
(1,896)

33 68 254
(2,032)

33 51 338

Fissure/large
ulcer

203
(1,624)

28 58 219
(1,752)

28 42 289

Total 5,419
(43,352)

767 1,558 5,546
(44,368)

767 1,431 7744
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99.2) and 98.1% (CI 96.3–99.2), respectively. For detection of
CD including non-ulcerated inflammation, the sensitivity, spe-
cificity, and diagnostic accuracy was 96.1% (CI 94.2–97.6),
99.9% (CI 99.4–100), and 98.5% (CI 97.7–99.0), respectively.

For the random split, the sensitivity, specificity, and diag-
nostic accuracy was 96.2% (CI 94.3–97.6), 100% (CI 99.6–
100), and 98.6% (CI 97.8–99.1), respectively, with similar re-
sults for lesions located in the small bowel and colon (▶Table
3). Ulcerations plus non-ulcerated inflammation was detected
with a sensitivity 97.2% (CI 96.6–98.3), specificity 100% (CI
99.6–100) and diagnostic accuracy 98.8% (CI 98.2–99.3).

Severity of Crohnʼs lesions

Images were grouped according to the type of lesion irrespec-
tive of their location in the small bowel or colon, and the ability
of the automated framework to determine the severity of le-
sions was compared with manual reading. For the patient split,
normal mucosa, aphthous ulcerations, ulcers and fissures/ large
ulcers were classified with substantial agreement (κ=0.72,
▶Table 4). Using a random split for training and testing, the
agreement was almost perfect (κ=0.90).

Discussion
CE is patient-friendly and non-invasive, and, compared to cross-
sectional imaging, highly sensitive for the earliest lesions of CD
[4, 17]. Additional information obtained with CE about the
proximal distribution of CD affects the prognosis and medical
treatment [1, 18, 19]. Hence, CE is the preferred method for ex-
amining the small intestine in patients with suspected CD with-
out obstructive symptoms [5, 6]. With the Crohnʼs capsule,
pan-enteric evaluation in one procedure is now feasible. Al-
though the role of pan-enteric CE in CD is not yet established,
it could play a major role in a future algorithm for noninvasive
diagnosis and monitoring of CD.

The risk of capsule retention, required bowel preparation,
and time consumption used for video analysis are important
limitations for the clinical use of pan-enteric CE. Our study ad-
dresses the use of deep learning algorithms for optimizing the
video analysis. At present time, there are no evidence-based re-
commendations regarding the optimal reading protocol for
analyzing CE recordings [20]. With the existing software, read-
ing times can be reduced by increasing the frame rate or the
number of images seen simultaneously, or by using a quick
view function (i. e. only a fraction of images is shown). Increas-
ing the speed, however, results in lower detection rates [21].
Although missed lesions is undesirable, these techniques may
be justified in patients with diffuse involvement of the gastroin-
testinal tract, e. g. CD. Deep learning algorithms are attractive
because of their potential for fast video analysis while main-
taining a high diagnostic accuracy.

Previous studies in this field were focused on the small bow-
el. In a retrospective study by Aoki et al. including 5800 images
of erosions and ulcers, and 10,000 normal images, lesions were
detected with a 90.8% diagnostic accuracy and an AUC of 0.958
[22]. Interestingly, the degree of obscuration due to bubbles,
debris, and bile reduced the sensitivity, regardless of the lesion
size. The false negative rate was 19.4% and 8.5% in patients
with major and minor obscuration, respectively (P=0.001).
Klang et al. developed a deep learning algorithm for the auto-
mated detection of small bowel ulcers in patients with CD
[23]. With 7391 images of ulcerations and 10,249 images of
normal mucosa, a diagnostic accuracy of 96.7% was achieved.
The algorithm required a median of less than 3.5 minutes to
analyze a complete small bowel CE. A recent meta-analysis on
this topic showed sensitivity and specificity of 95% (CI 89–98)
and 94% (CI 90–96), respectively for ulcer detection in the
small bowel with deep learning algorithms [8].

The largest retrospective study performed so far was not in-
cluded in the meta-analysis, however. Ding et al. collected
113,426,569 images from 6970 patients examined with small

▶Table 3 Diagnostic accuracy, sensitivity and specificity for detection of ulcerations in the small bowel and colon in patients with suspected or
known Crohnʼs disease.

TP TN FP FN Accu-

racy

(%)

95%CI Sensi-

tivity

(%)

95%CI Specificity

(%)

95%CI

Patient split

▪ Small bowel 317 602 2 12 98.50 97.50–99.18 96.35 93.72–98.10 99.67 98.81–99.96

▪ Colon 130 283 0 8 98.10 96.29–99.18 94.20 88.90–97.46 100 98.70–100

▪ Overall 447 885 2 20 98.38 97.55–98.98 95.72 93.46–97.36 99.77 99.19–99.97

Random split

▪ Small bowel 359 620 0 15 98.49 97.52–99.15 95.99 93.47–97.74 100 99.41–100

▪ Colon 174 302 0 6 98.76 97.31–99.54 96.67 92.89–98.77 100 98.79–100

▪ Overall 533 922 0 21 98.58 97.83–99.12 96.21 94.26–97.64 100 99.60–100

Data are shown for two different split of images used training, validation and testing of the deep learning framework.
TP, true positive; TN, true negative; FP, false positive; FN, false negative.
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bowel CE performed on various indications [24]. In this exten-
sive multi-center analysis, automated CE analysis achieved a
per lesion sensitivity of 98.1% (CI 96.0–99.2) and a specificity
of 100% (99.9–100) for detection of ulcers. Inflammation was
diagnosed with a 93,9% sensitivity (CI 92.6–94.9). The deep
learning algorithm identified abnormalities with a higher sensi-
tivity and significantly shorter reading times compared to man-
ual analysis (5.9 ±2.2 minutes vs. 96.6±22.5 minutes, P<
0.001).

To the best of our knowledge, this is the first study to exam-
ine the use of deep learning for detection of CD in the both the
small bowel and colon. It is also the first study to apply texture
enhancement methods for capsule endoscopy images. In 7744
images collected from patients with clinically suspected or
known CD, our automated framework diagnosed ulcerations
with an almost perfect sensitivity and specificity (> 95%) com-
pared to manual analysis by two gastrointestinal experts. In
our test set of 1558 images, only four colon images (about
0.26% of all test samples) and seven small bowel images (about
0.45% of all test samples) were misclassified. Typical reasons in-
clude abnormalities in inputs caused by some rare artifacts.

It should be emphasized, that we did not use a grading scale
to evaluate the bowel cleansing and image quality in each
frame although non-diagnostic CEs were excluded from the a-
nalysis (i. e. large amount of debris precluding a complete ex-
amination). Instead, we randomly selected images from pa-
tients examined for CD and classified them according to the
type of lesion and presence of debris or bubbles. Our aim was
create an algorithm that could discriminate a normal mucosa
with debris or bubbles from CD lesions. We achieved a similar
high diagnostic accuracy for detection of ulcerations in the
small bowel and colon. Although the image quality was not in-
cluded in our analysis, the impact of obscuration found by Aoki
et al. [22] did not result in a lower sensitivity for detection of CD
in the colon.

Endoscopic disease severity is currently based on validated
scores with ileocolonoscopy or CE: Crohn's Disease Endoscopic
Index of Severity (CDEIS), Simple Endoscopic Score for Crohn's
Disease (SES-CD), Lewis Score or Capsule Endoscopy Crohn's
Disease Activity Index (CECDAI) [17]. Common denominators
in these scores are ulcer size and the affected surface. No pre-

vious study of deep learning algorithms included lesion charac-
terization, which is fundamental for determining the disease
severity. In this study, ulcerations were classified as aphthous
ulcerations, ulcers, or fissures/large ulcers with a substantial to
almost perfect agreement compared to manual reading. In a
recent study, Barash et al. found an agreement between man-
ual reading and deep learning of 67% for discriminating ulcers
of different severity with small bowel CE (grades 1–3 from mild
to severe) [25]. There was excellent accuracy when comparing
grade 1 ulcerations with grade 3 ulcerations (specificity and
sensitivity of 0.91 and 0.91, respectively). These results encou-
rage a future role of deep learning algorithms for autonomous
assessment of the disease severity in CD.

There are some limitations to this study. First, two different
splits for training and testing were applied. With the random
split, there is a risk of bias in favor of the automated classifica-
tion because images from the same patient are included for
training and testing. Hence, the algorithm may recognize le-
sions with similar appearance from the same patient, which
tends to increase the diagnostic accuracy. With the patient
split, images from the same patient were used either for train-
ing or for testing. This, however, tends to lower the diagnostic
accuracy because of variance in visual appearance between pa-
tients (color, lighting, debris, bubbles, lesions types, localiza-
tion, etc.). Validation of our results in a larger cohort will over-
come this issue. Second, the number of patients was limited
and the analysis was retrospective, although patients were re-
cruited from two ongoing prospective studies of patients with
suspected or known CD based on accepted clinical criteria.
Third, this study – similar to previous studies – included static
images of normal mucosa and CD lesions, and results cannot
be generalized to full-length CEs. Our results need validation
on full length video sequences. This step is pivotal before clini-
cal implementation of the framework. Fourth, the algorithm
performed equally well in the small bowel and colon. However,
we did not include a grading scale to evaluate the bowel cleans-
ing and image quality in each image frame. Finally, data aug-
mentation was used in the analysis to increase the number of
samples. This is very common in studies employing deep learn-
ing techniques. It should be emphasized that this process only
applies for training the algorithm.

▶Table 4 Classification of images with the gold standard and deep learning framework according to the severity of ulcerations regardless their locali-
zation.

Deep learning framework

Normal Aphthae Ulcer Fissure/large ulcer Total

Gold standard Normal 885 0 1 1 887

Aphtae 9 146 14 0 169

Ulcer 14 56 65 44 179

Fissure/large ulcer 11 9 39 60 119

Total 919 211 119 105 1354

Data are shown for the patient split used for training. The inter-modality agreement for severity of lesions is substantial (κ=0.72).
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Conclusions
In conclusion, we built a robust and efficient framework for au-
tomated recognition of CD lesions with various severities loca-
ted in the small bowel and colon. The technical solution relies
on combined multiple pre-trained deep learning models and a
unique image preprocessing step. The framework was exten-
sively evaluated using different testing scenarios, and we re-
port results with almost perfect agreement with the clinical
standard. These results are promising for future automated di-
agnosis of CD. Deep learning approaches have great potential
to help clinicians detect, localize, and determine the severity
of CD with pan-enteric CE.
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