
Copyedited by: RS

1

Journal of Animal Science, 2021, Vol. 99, No. 2, 1–11

doi:10.1093/jas/skab038
Advance Access publication February 6, 2021
Received: 30 November 2020 and Accepted: 2 February 2021
Board Invited Review

© The Author(s) 2021. Published by Oxford University Press on behalf of the American Society of Animal Science.
This is an Open Access article distributed under the terms of the Creative Commons Attribution-NonCommercial License (http://creativecommons.org/
licenses/by-nc/4.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. 
For commercial re-use, please contact journals.permissions@oup.com

Board Invited Review

Advancements in sensor technology and 
decision support intelligent tools to assist smart 
livestock farming
Luis O. Tedeschi,†,1 Paul L. Greenwood,‡,|| and Ilan Halachmi$

†Department of Animal Science, Texas A&M University, College Station, TX 77843-2471, ‡NSW Department of Primary 
Industries, Armidale Livestock Industries Centre, University of New England, Armidale, NSW 2351, Australia, ||CSIRO 
Agriculture and Food, FD McMaster Research Laboratory Chiswick, Armidale, NSW 2350, Australia, $Laboratory for Precision 
Livestock Farming (PLF), Agricultural Research Organization – The Volcani Center, Institute of Agricultural Engineering, 
Rishon LeZion 7528809, Israel

1Corresponding author: luis.tedeschi@tamu.edu

ORCiD number: 0000-0003-1883-4911 (L. O. Tedeschi).

Abstract
Remote monitoring, modern data collection through sensors, rapid data transfer, and vast data storage through the Internet 
of Things (IoT) have advanced precision livestock farming (PLF) in the last 20 yr. PLF is relevant to many fields of livestock 
production, including aerial- and satellite-based measurement of pasture’s forage quantity and quality; body weight and 
composition and physiological assessments; on-animal devices to monitor location, activity, and behaviors in grazing 
and foraging environments; early detection of lameness and other diseases; milk yield and composition; reproductive 
measurements and calving diseases; and feed intake and greenhouse gas emissions, to name just a few. There are many 
possibilities to improve animal production through PLF, but the combination of PLF and computer modeling is necessary to 
facilitate on-farm applicability. Concept- or knowledge-driven (mechanistic) models are established on scientific knowledge, 
and they are based on the conceptualization of hypotheses about variable interrelationships. Artificial intelligence (AI), on 
the other hand, is a data-driven approach that can manipulate and represent the big data accumulated by sensors and IoT. 
Still, it cannot explicitly explain the underlying assumptions of the intrinsic relationships in the data core because it lacks 
the wisdom that confers understanding and principles. The lack of wisdom in AI is because everything revolves around 
numbers. The associations among the numbers are obtained through the “automatized” learning process of mathematical 
correlations and covariances, not through “human causation” and abstract conceptualization of physiological or production 
principles. AI starts with comparative analogies to establish concepts and provides memory for future comparisons. 
Then, the learning process evolves from seeking wisdom through the systematic use of reasoning. AI is a relatively novel 
concept in many science fields. It may well be “the missing link” to expedite the transition of the traditional maximizing 
output mentality to a more mindful purpose of optimizing production efficiency while alleviating resource allocation for 
production. The integration between concept- and data-driven modeling through parallel hybridization of mechanistic and 
AI models will yield a hybrid intelligent mechanistic model that, along with data collection through PLF, is paramount to 
transcend the current status of livestock production in achieving sustainability.
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Introduction
For about 60 yr in the United States (circa 1940 to 2000), 
innumerable livestock experimental data were collected and 
analyzed (Tedeschi, 2019) mainly groupwise, reflecting the 
population’s samples. Such approaches are still commonly 
adopted nowadays, though data are more often obtained on an 
individual animal basis and consistently, given the surge in the 
sensor technology initiated in the 2000s, as shown in Figure 1. 
In tandem with the development, evolution, and dissemination 
of the Internet of Things (IoT), sensor technology became 
available in many shapes, forms, and sizes. While the objective 
of sensors is clearly to collect data, the primary purpose of 
IoT is to facilitate the transfer of data through a network to 
be stored in the cloud, accessed remotely, and processed by 
cloud computing in powerful remote servers. The humongous 
amount of data collected (and stored) by the combination of 
IoT and sensors gave rise to the concept of big data, and, with 
it, scientists sought the modernization of agriculture (Tzounis 
et al., 2017). However, the rapid development and dissemination 

of IoT and sensor devices were not without drawbacks, at least 
for the end user. For example, sensor manufacturers may modify 
their devices to improve their performances, but updating a 
device may jeopardize compatibility with existing data. Thus, 
this creates a problem in the long run because it restrains the 
combination of data obtained from sensors of different brands 
or manufacturers for meta-analytical purposes and limits the 
use of the data for future applications, hindering their reliability 
and acceptability.

Amidst the evolution of sensors and IoT, researchers started 
to foment the concept of precision science based on the premise 
that it would sustainably increase food production and animal 
welfare. The agriculture community adopted the concept, 
and the term precision agriculture was coined as a means of 
optimizing productivity while preserving resources through 
the whole-farm management idea. The adoption of precision 
agriculture did not occur as quickly as anticipated because of the 
lack of proper decision support tools (DST) to apply it (Newman 
et  al., 2000; McBratney et  al., 2005). The DST is the software 
component of precision science that integrates data analytics 
with predictive analytics (i.e., modeling). The evolution in 
precision animal technology closely followed precision agriculture 
(Pham and Stack, 2018), though independent studies had 
already proposed individual animal management through DST 
to increase profitability and productivity (Tedeschi et al., 2004). It 
is not clear whether the failures in adopting DST by the animal 
science community and stakeholders were also related to the 
fact that additional information on individual animals (and 
their surroundings) was needed to customize the predictability 
of DST to be more precise and accurate.

In the animal science community, different terminologies, 
for example, precision livestock farming (PLF), smart livestock 
farming, and smart animal agriculture, to name a few, have been 
assigned to the same paradigm: how to sustainably increase 
food production while maintaining animal welfare and reducing 
environmental burden by merging data acquisition (sensors), 
storage (IoT), and transformation with prediction analytics 
using artificial intelligence (AI) tools (Tedeschi et al., 2017; Walter 
et al., 2017; Wolfert et al., 2017). These terminologies may have 
noticeable or subtle conceptual differences, but, in the end, 
they seek the same outcome of smartly or precisely managing 
livestock operations. Wathes et al. (2008) indicated that PLF uses 
principles and technology of process engineering to manage 
livestock production through “smart” sensors to monitor animal 
growth, milk and eggs production, endemic diseases, animal 
behavior, and components of the microenvironment within 
the production unit, such as temperature and gas emissions. 
Figure 2 illustrates the smart/precise and sustainable production 
paradigm by depicting the sensor technology. It shows examples 
that are currently available to gather data on diverse production 
scenarios for livestock. Advancements in sensor technology 
allow the capture of physiological, behavioral, and productivity 
measurements of individual animals to aid the smart/precise and 
sustainable production paradigm (Tedeschi et al., 2017; González 
et  al., 2018), but, despite how data acquisition materializes 
for this paradigm, a common problem exists, the modeling 
component that may limit the applicability of the technology 
if not adequately integrated with the big data. The precision 
animal breeding concept deals with animals bred for a specific 
purpose, such as production use, environment, or market (Flint 
and Woolliams, 2008), and, although it is an essential component 
for successful animal production, it is not a cornerstone in the 
PLF concept despite ensuring livestock are well suited to the 
environment and elicit optimal responses to PLF.

Abbreviations

AI	 artificial intelligence
DIKW	 data–information–knowledge–wisdom
DL	 deep learning
DMI	 dry matter intake
DST	 decision support tools
GPS	 global positioning system
HIMM	 hybrid intelligent mechanistic model
IoT	 Internet of Things
ML	 machine learning
PLF	 precision livestock farming
RFID	 radio frequency identification
RGB-D	 red–green–blue and depth
SLI	 structured light illumination

Figure 1.  Progression of the number of publications reported by the Web of 

Science core collection database. The base search used the following criteria: 

“((precision near livestock near farming) or (smart near livestock near farming) 

or (smart near animal near agriculture) or (precision near animal) or (precision 

near livestock)) and (sensor* or automatic* or robotic* or electronic*).” 
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Halachmi et  al. (2019) defined PLF as real-time monitoring 
technologies to manage the smallest manageable production 
unit, usually using a sensor-based individual animal approach 
or an animal-centric decision-making approach. Four critical 
considerations for smart livestock farming exist. First, wireless 
networks can handle the amount of data transmitted in “real-time” 
for herd management applications. For instance, for extensive 
systems, the wireless capabilities overcome most of the fixed 
location issues known in wired transmit. Second, wireless data 
transmit combined with AI are powerful enough to handle current 
PLF needs. Third, some PLF sensors are moving from devices 
worn by animals, where a sensor (e.g., collar activity monitor, 
leg pedometer, and rumen bolus) monitors a single animal, to 
sensors that monitor many animals concurrently. For example, 
a single camera captures data for many animals as they exit the 
milking parlor for lameness detection and body condition score 
(Spoliansky et  al., 2016), or only one camera monitors the feed 
bunk to assess individual feed efficiency. Fourth, on-farm real-time 
analyses embedded in sensor devices or local farm computers are 
shifting to offline big data AI-based applications. However, because 
of the unique circumstances of extensive compared with intensive 
livestock systems, it is necessary to continue to evolve wearable 
devices that can provide data in a form suitable for real-time 
wireless transmission from remote sites within extensive systems 
for PLF applications.

Therefore, this review aims to highlight significant 
developments in data gathering using sensor technology 
and predictive analytics by applying modeling techniques to 
improve production, sustainability, and profitability of livestock 
operations, focusing on ruminant production around the globe.

Precision Livestock Farming

Grazing and foraging ruminants

PLF for ruminants in grazing and foraging systems presents 
unusual challenges, particularly for more extensive, remote 
properties with large land areas and livestock numbers. Extensive 
production systems for grazing and foraging ruminants require 

measurement technologies that have specific characteristics, 
including that they can: 1) be fixed on or worn by livestock; 2) be 
strategically positioned and used in locations on properties that 
have a higher frequency of visits by livestock such as watering 
and supplementary feeding points; or 3) provide broader-scale 
animal, pasture, and landscape measurement capacities, such 
as aerial or satellite imagery, and be used for wireless data 
processing and transmission on a spatiotemporal scale suitable 
for extensive livestock enterprises.

Technological developments for remote monitoring in 
extensive grazing systems have varied in their success and 
remain limited in uptake. In contrast, the use of sensing, 
imaging, and other measurement technologies within more 
intensive, confined systems has the advantage of enabling 
data transmission from within facilities where the livestock 
reside and are yarded and, for dairying, at least, are milked as 
in confined animals as discussed below. Similarly, within more 
intensive, smaller-scale grazing systems, it may be feasible to 
incorporate fixed measurement technologies such as imaging 
into grazing paddocks. Certain technologies can be integrated 
into facilities for livestock handling that are managed within 
more extensive systems. However, in these circumstances, 
the frequency of data collection, transmission, and sampling 
may be lower than desired. Hence, it may provide historical 
response data on livestock performance rather than real-time 
performance data, such as behavior and location within the 
grazing and foraging environment. In these situations, the 
historical response data can be used in time series analysis to 
access trends and provide means to forecasting performance.

Smart farming for extensive grazing and rangeland 
systems has the potential to include applications linking 
the environment, livestock, and the supply chain (Walmsley 
et  al., 2014; Greenwood et  al., 2016, 2018; Jorquera-Chavez 
et  al., 2019), including metrics for climate, soils, herbage 
availability from pastures, and animal performance and 
products to enhance genetic improvement, management, and 
production optimization, predictions, and risk management. 
These applications, many of which are still being developed 
using AI, more specifically machine learning (ML), will enable 

Figure 2.  Illustration of different sensor components associated with the IoT to assist in integrating DST within the concept of smart farming or PLF systems. Adapted 

with permission from Tedeschi (2020).
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improvements in monitoring, objective measurement, and 
management of livestock, including their productivity, health 
and welfare, the landscape and environment, labor efficiency, 
and hence profitability and sustainability. The application of 
sensing, imaging, and other remote measurement technologies 
will enable further development of DST to enhance enterprise 
management. These tools require interfaces that producers can 
easily use, for example, BeefSpecs (Walmsley et al., 2014), and 
ideally can be linked to other enterprises across the supply chain. 
Examples of DST include genetic improvement programs, such 
as BREEDPLAN (https://breedplan.une.edu.au/), and precision 
management tools to enhance pasture, grazing, nutritional, and 
landscape management to improve reliability in meeting target-
market specifications (McPhee et  al., 2014, 2020; Walmsley 
et al., 2014). The capacity to link objective measurement tools, 
integrate data across the supply chain, and use the so-called 
dashboards that enable easy access to a range of DST will also 
support improvements in the extensive livestock industries 
(Greenwood et al., 2016, 2018).

Greenwood et  al. (2016) reviewed the use and application 
of various sensors, imaging, and other emerging technologies 
concerning extensive beef production, and González et al. (2018) 
and Halachmi et  al. (2019) further discussed the attributes 
of these technologies for livestock production in general. 
The range of remote, near real-time monitoring technologies 
being developed or applied or with potential applications for 
free-ranging livestock and extensive grazing and foraging 
environments is increasing rapidly and include 1)  in-field 
fixed and ground-, aerial-, and satellite-based measurement 
of pastures, invasive weeds, and soil, water, and greenhouse 
gas monitoring using sensors, photogrammetry (Bloch et  al., 
2019), or other technologies including LiDAR (Fernández-
Quintanilla et al., 2018; Reinermann et al., 2020; Segarra et al., 
2020; Weiss et  al., 2020); 2)  multi-channel, satellite-based 
spectrometry (Segarra et  al., 2020), such as WorldView-2 
Satellite Sensor (https://www.satimagingcorp.com/satellite-
sensors/worldview-2/), which may be coupled with weather and 
soil grids to model and predict pasture biomass components 
and to guide grazing management decisions for sheep and 
cattle (http://grazingapp.com.au/; Badgery et al., 2017); 3) body 
composition (McPhee et al., 2017; Miller et al., 2019; Zhao et al., 
2020) and physiological assessments (Beiderman et  al., 2014), 
including thermal imaging (Halachmi et al., 2008, 2013) to assess 
body temperature (González et  al., 2013) using devices at, or 
fixed to, handling facilities; 4)  automated in-field liveweight 
measurement (Nir et al., 2018) and drafting of livestock coupled 
with radio frequency identification (RFID) to determine 
individual or herd liveweight and growth of cattle (Charmley 
et al., 2006; González et al., 2014, 2018) and sheep (Brown et al., 
2015; González-García et  al., 2018a, 2018b); 5)  virtual fencing 
using global positioning system (GPS)-enabled collars and a 
mobile phone app (https://www.agersens.com/) to remotely 
fence, move and monitor animals, and control herd or flock 
access to pastures and environmentally sensitive areas without 
the need for conventional fencing (Campbell et  al., 2019, 
2020); 6)  on-animal devices to monitor location, activity, and 
behaviors in grazing and foraging environments (Dobos et  al., 
2014; González et al., 2014; Greenwood et al., 2014, 2017; Bailey 
et al., 2015b; Andriamandroso et al., 2016; McGavin et al., 2018; 
Rahman et al., 2018); and 7) early detection of lameness or other 
diseases (Van Hertem et  al., 2014; Steensels et  al., 2016). The 
RFID technology has also been used in conjunction with in-field 
walk-over-weighing units to enable researchers to identify 
parturition date (Aldridge et  al., 2017; Menzies et  al., 2018b), 

maternal parentage (Menzies et al., 2018a), postpartum estrus 
(Corbet et al., 2018), and welfare status more generally, and to 
draft animals for provision of supplementary nutrients and 
monitoring of the live weight and growth response (Imaz et al., 
2019, 2020; Simanungkalit et al., 2020). 

Classification of cattle behaviors that will underpin the 
development of a range of applications and DST in extensive 
environments has used “classical” ML algorithms (Handcock 
et  al., 2009; Dutta et  al., 2015; Smith et  al., 2016), which are 
relatively simple to train. However, they require substantial 
engineering of features and have limitations in the number 
and types of behaviors that can be accurately classified and in 
the transportability of the behavior classifiers across devices 
and environments. Deep learning (DL)-based methods, such as 
sequential Deep Neural Networks, which can use raw sensor 
input data, have the potential to overcome these limitations 
and improve the accuracy and reliability of cattle behavior 
classifications (Rahman et  al., 2016; Kumar et  al., 2019; Peng 
et  al., 2019). Further improvements that allow for on-device 
behavior classifications to enable wireless transmission of 
behavior data will also require methods that have low energy, 
computational, or memory needs to function on embedded 
systems within wearable devices.

The establishment of phenomics platforms for extensive 
livestock will also enhance DST development to improve 
livestock performance within extensive grazing and foraging 
environments. Livestock phenomics platforms can provide a 
broad and deep array of environmental and cattle performance 
and physiological data (Beiderman et  al., 2014; Greenwood 
et al., 2016; Halachmi and Guarino, 2016; Spoliansky et al., 2016; 
Visser et  al., 2020). In doing so, they may help to overcome 
current limitations in data collection and development of new 
(Bailey et  al., 2015a; Pierce et  al., 2020) and potentially more 
relevant productivity and efficiency traits, particularly for 
grazing cattle, that can be used in genomic and quantitative 
genetic selection and development of management tools and 
practices (Greenwood et  al., 2016; Bailey et  al., 2019). Such 
data capture and data management platforms will also enable 
the timely generation of environmental, health, and welfare 
metrics and practices to improve livestock well-being and 
environmental outcomes, which are increasingly being required 
for the provenance of livestock products available to consumers 
(Scollan et al., 2011).

Confined ruminants

Similar to grazing and forage ruminants, many PLF applications 
for confined animals exist. It started with electronic milk 
recording patenting in 1978, then real-time spectroscopy 
patenting in 2007 and 2011, to the more recent heat stress release 
patenting in 2021 (Halachmi, 2015; Halachmi et al., 2019), to list 
just a few applications. The main relatively new applications 
are monitoring individual feed efficiency, early detection of 
lameness, and early lactation diseases.

Monitoring individual feed efficiency
Feed cost represents as much as 65% to 75% of the operational 
expenses in intensive dairy or beef operations (the so-called 
confined ruminants); therefore, every few percentages of feed 
saved has a sizeable economic impact when encouraging the 
adoption of feed efficiency performance. There is a considerable 
variation between individuals, up to 30% (Halachmi et al., 2011, 
2016; Ben Meir et  al., 2018), and, consequently, phenotypic 
and genetic selection of individuals for their feed efficiency 
can have a substantial economic impact. Accordingly, PLF 

https://breedplan.une.edu.au/
https://www.satimagingcorp.com/satellite-sensors/worldview-2/
https://www.satimagingcorp.com/satellite-sensors/worldview-2/
http://grazingapp.com.au/
https://www.agersens.com/
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applications for confined ruminants were developed, with 
the aim of improving feed efficiency. Traditional feed intake 
monitoring systems utilize individual weighing balances 
(electronic scales) and RFID antennas in feeding stalls to 
measure the amount of feed consumed by each animal. The 
electronic scale is the oldest (Halachmi et al., 1998) and likely 
the most straightforward sensor for measuring feed intake in 
group housing and feedlot settings. An electronic scale is placed 
in a feeding station and measures each feed’s weight consumed 
by each animal during each meal at each feed bin. A manager 
can then decide how many electronic scales to deploy along a 
feeding lane given the number of animals. Several companies 
have developed electronic feed weighing systems, including 
the Calan Broadbent Feeding System, the Controlling and 
Recording Feed Intake system, the GrowSafe System, Intergado 
Efficiency, and the Roughage Intake Control system. Numerous 
researchers have evaluated these weighing systems (Halachmi 
et al., 1998; DeVries et al., 2003; Bach et al., 2004; Ferris et al., 
2006; Wang et al., 2006; Chapinal et al., 2007; Stajnko et al., 2010; 
Mendes et  al., 2011; Chizzotti et  al., 2015), but, unfortunately, 
they have been infrequently used in commercial operations 
due to their high price and frequent cleaning and maintenance 
that many cannot afford (Wang et al., 2006; Stajnko et al., 2010). 
Furthermore, some of these systems also maintain full control 
over the collected data, and data manipulation is performed 
without a transparent process to the end user.

Recent research advancements have occurred with low-
cost cameras and computer vision algorithms for designing 
individual feed intake measuring systems to overcome these 
obstacles. The camera is typically positioned above the ration 
pile or feeding lane. Several methods are used to represent a 3D 
geometrical position of the target surface visible to the camera.

Feed intake monitoring with structured light illumination
The structured light illumination (SLI) and time of flight (Lassen 
et  al., 2018) methods refer to systems composed of a camera 
and light projector. The projector is used to project images of 
light patterns across the scene being monitored. An SLI system 
was applied for 3D scanning of dairy cow ration to determine 
the volume and weight of feed in a bin before and after feeding 
dairy cows (Shelley, 2013). When the SLI system was tested on 
272 heaps in a laboratory, it showed a high variance between the 
calculated image weight and actual values (Shelley, 2013). Only 
72% of the results were within 814 g of the difference between the 
estimated mass through image and the scale-measured mass. 
Unfortunately, the SLI requires controlled lighting conditions, 
tuning, and shading; thus, SLI systems currently work only in 
indoor conditions protected from sunlight.

Feed intake monitoring with calibrated stereo cameras
Multiple cameras in calibrated stereo configuration can be used 
to extract depth information on the objects via triangulation 
and analyze the disparity between corresponding points. 
Bloch et  al. (2019) determined feed mass and volume using a 
photogrammetry method, which operates on several images of 
the object of interest (i.e., ration heaps) from various perspectives 
to create a 3D model of the object surface. The method was tested 
in laboratory and cowshed conditions, with 125 and 60 ration 
heaps, respectively. The estimated error for calculating the mass 
under laboratory conditions was 0.483 kg for ration heaps up to 
7 kg. The SD for the cowshed experiment was 0.44 kg, resulting 
in a total error of 1.32  kg for ration heaps up to 40  kg in the 
cowshed (i.e., barn). A significant weakness of this approach is 
that the colored markers used for the point cloud processing 

would not be useful in a cowshed on a working farm because 
dirt can affect their colors, inadvertently detaching them from 
the floor and walls by the tractors that regularly operate in the 
barns. Additionally, eight cameras were required for a single 
heap, making this method impractical.

Feed intake monitoring with red–green–blue and depth cameras 
and infrared sensors
Red–green–blue and depth (RGB-D) cameras provide a 
combination of images representing RGB color wavelengths, 
along with the depth of objects. These cameras include a depth 
sensor based on an IR (infrared) or near-IR projector, and an RGB 
camera, resulting in in-depth information per pixel within the 
RGB image. The 3D data acquisition technique has been used in 
both research and industry to assess object surface conditions 
(Johnson, 2020). Several RGB-D feed intake methods and 
algorithms have also been developed for indoor (Shelley et al., 
2016), outdoor, and open cowshed conditions (Lassen et al., 2018; 
Bezen et  al., 2020). An RGB-D camera and DL algorithm were 
applied to overcome the effect of sunlight on the IR scanner 
(Bezen et al., 2020). The data tested were obtained in an open 
cowshed. The system directly measured the feed intake of a 
single meal, with a mean absolute error of 0.127 kg per meal; 
each meal was in the range of 0 to 8 kg. Currently, the method 
described by Bezen et  al. (2020) looks promising. Perhaps, it 
will be improved when combined with eating behavior sensing 
(Halachmi et  al., 2016). Empirical (i.e., statistical) modeling 
was used to predict daily dry matter intake (DMI) for many 
species (dairy cows, beef cattle, pigs, goats, and sheep; Seymour 
et al., 2019). These models were based on data collected using 
mechanical weighing systems (Halachmi et  al., 2004, 2016; 
National Research Council, 2007; Volden, 2011; Holtenius et al., 
2018). However, daily summaries of rumination and activity 
behavior sensors using “in-house” intensive systems are a 
poor indicator of DMI (Schirmann et al., 2012). Eating behavior 
(Halachmi et  al., 2016), 3D camera (Bezen et  al., 2020), or 2D 
photogrammetry (Bloch et al., 2019) may “deliver the goods.” In 
2020, Jiang et al. (2020) repeated the method developed by Van 
Hertem et al. (2018) and improved its accuracy to more than 98%.

Early detection of lameness
Lameness is second only to mastitis in terms of its detrimental 
effects on dairy herd productivity (Booth et al., 2004). The annual 
incidence of lameness ranges between 4 and 55 cases per 100 
cows (Schlageter-Tello et  al., 2014), depending on the farm, 
location, and year of study. The overall cost of lameness reported 
in the literature varies, from approximately US$ 446 per case 
in the United Kingdom (Esslemont and Kossaibati, 1997) to an 
average cost per case for a sole ulcer, digital dermatitis, and foot 
rot of US$ 216.07, US$ 132.96, and US$ 120.70, respectively, in the 
United States (Cha et al., 2010). Detection of severe lameness is 
relatively easy; however, by the time the animal becomes severely 
lame, successful treatment is less efficient. However, producers 
often miss subtle signs of lameness. A PLF monitoring system 
associated with a DST that could detect milder, subclinical 
lameness cases would be beneficial. Rajkondawar et  al. (2002, 
2006) hypothesized that measuring vertical ground reaction 
forces as animals walked over a force-plate system could 
provide the basis for early detection of lameness. The product 
StepMetrix was developed for lameness detection system by 
using a pressure-sensor mat on which cows walked once or 
twice a day (van der Tol et al., 2003; Chapinal et al., 2010; Van 
Nuffel et al., 2016), but these systems are relatively expensive. 
Van Hertem et  al. (2011) developed a machine vision-based 
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system under Israeli conditions. Together with other animal-
related data that already exist in the farm management software, 
parameters correlated with lameness were identified, including 
milk production and neck activity (Van Hertem et  al., 2013b). 
A  side-view concept (Van Hertem et  al., 2013a) was replaced 
by a 3D camera placed above the cows (Viazzi et al., 2014). The 
combined 3D camera and animal production–behavior-related 
parameters appear to be the “winning setup.”

Early detection of calving diseases
The PLF technology could be potentially efficacious in identifying 
calving diseases (such as mastitis and ketosis) affecting dairy 
cow mammary glands (Steensels et al., 2012, 2016, 2017a, 2017b). 
However, the end user (e.g., farmers and veterinaries) must 
also consider the usefulness of alerts for the systems. The 
relationship of false-positive and false-negative alerts almost 
always challenges biomarker effectiveness. The best designs 
will minimize both false positives and false negatives. Missed 
disease occurrences (i.e., false negatives) limit the system’s 
value, with too many false positives potentially resulting in the 
livestock producer being forced to follow up on alerts that are 
not related to disease occurrence. Managing this balance is not 
always easy. In general, these challenges reflect the difference 
between the theoretical application of technologies and their 
practical and economic use in the field. This is a common 
problem in statistics mainly observed in “clinical trials” (Fawcett, 
2006). While working on mastitis, Steensels et  al. (2017a, 
2017b) addressed a crucial issue on the transportability of an 
application. These authors showed that it is possible to create a 
model on one farm and validate it elsewhere as long as a local 
calibration procedure that allows automatic adaptation to local 
conditions is undertaken. This insight should be considered 
when a new PLF tool is being planned, developed, and validated.

Predictive Analytics
As discussed above, there are many possibilities to improve 
animal production through PLF, and the combination of PLF 
with computer modeling can facilitate its on-farm applicability. 
Contrary to the adoption experience observed with DST in the 
past (Newman et  al., 2000; McBratney et  al., 2005), producers 
appear to be adopting the PLF initiative and its modeling 
components at an increasing rate (John et al., 2016).

Currently, the majority of animal agriculture modeling is 
either empirical (Halachmi et al., 2001, 2004; Nitzan et al., 2006) 
or mechanistic (i.e., concept- or knowledge-driven; France 
and Kebreab, 2008; Tedeschi, 2019; Tedeschi and Fox, 2020). AI 
is a relatively novel concept in many science fields, including 
animal agriculture (Tedeschi, 2019), though its roots date back 
to the 1950s when the adaptive neural network algorithm 
was initially conceptualized (Widrow and Lehr, 1990). Two AI 
approaches are mostly employed these days. ML and DL are 
highly sophisticated, data-driven AI approaches based on neural 
network programming, though some ML and DL may include 
decision tree aspects in their algorithm. In this sense, ML has 
few layers of codes, usually less than five (this is a notional 
threshold that is not definitive), and each layer is based on neural 
network algorithms, whereas DL is a subset of ML algorithms 
that have multiple layers of codes, usually hundreds of layers 
or more, that can retro-feed themselves (i.e., backpropagated; 
Tedeschi, 2019).

Interestingly, for animal agriculture, AI-based approaches 
may be the missing link to expedite the transition of the traditional 

goal of maximizing output mentality to a more mindful purpose 
of optimizing production efficiency while alleviating resource 
allocation for production (Tedeschi and Menendez, 2020). AI, on 
the other hand, is a data-driven technology that can manipulate 
and represent the big data accumulated by sensors and IoT, 
though it cannot explicitly explain the underlying assumptions 
of the intrinsic relationships in the data core because it lacks the 
wisdom in the data–information–knowledge–wisdom (DIKW) 
hierarchy (Cannas et al., 2019; Tedeschi, 2019). Despite AI lacking 
the wisdom component, it provides a robust advancement in 
predictive analytics and provides the opportunity for the human 
element to reap wisdom.

The concept-driven (mechanistic) programming depicted 
in Figure 3A is provided in red (it also represents traditional 
[empirical] programming) vs. the data-driven programming 
(or learning, shown in blue) used by AI technology. In typical 
traditional (i.e., empirical) or concept-driven (mechanistic) 
programming, the algorithm (code) is hardcoded (software), 
and inputs (independent variables) are submitted to calculate 
the outputs (dependent variables), called model predictions 
(Figure 3A). With the boom in the development of expert 
systems in the 1980s, the learning era began to take shape, and 
the question became: can computers create a code given the 
inputs and outputs rather than making predictions based on 
inputs and codes? (Chollet and Allaire, 2018). For data-driven 
programming (learning paradigm), the algorithm (rules of the 
calculation logic) is generated based on inputs and outputs, as 
represented in blue in Figure 3A. That means AI approaches 
learn by comparing inputs and outputs to figure out the rules 
(codes) that can represent the data. The traditional (empirical) 
and concept-driven (mechanistic) approaches have dominated 
predictive analytics in many scientific areas, including animal 
science; the data-driven approach is still incipient but growing 
steadily (O′Grady and O′Hare, 2017; Tedeschi, 2019).

Each of these approaches has benefits and drawbacks that 
are, in part, intrinsic to their assumptions and computational 

Figure 3.  A graphical representation of how data-driven (learning, in blue) 

and concept-driven (mechanistic, in red) paradigms use inputs (independent 

variables), outputs (results), and codes (rules) for predictive analytic purposes 

(A). A  theoretical representation of a parallel hybridization of data- and 

concept-driven paradigms (algorithms) in which decision represents a combined 

prediction that met the minimum acceptability threshold (B). Based on Cannas 

et al. (2019) and Tedeschi (2019).
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barriers. For instance, the mechanistic approach, also referred to 
as deliberative thinking because it represents an abstraction of 
reality, is based on a vast scientific knowledge base. The principal 
benefit of this approach is that humans can analyze the results 
and learn from them, but the degree to which humans acquire 
new knowledge depends on the complexity, abstraction, and 
quality of the concepts used to build the mechanistic model 
in the first place. Perhaps the major limitation of mechanistic 
modeling is the time and effort required to make them and 
their intrinsic deterministic characteristics that might limit 
their applicability when uncertainty dominates the problem. 
The complexity of mechanistic modeling increases (possibly 
exponentially) as the modeling scope changes from a single, 
readily identifiable problem to issues that focus on systems 
with several integrated elements within a network. Given the 
complexity of animal production systems, it is nearly impossible 
to develop mechanistic models that could incorporate all 
perceived essential variables and their constraints and 
relationships in developing a concept-driven model. Thus, 
by design, uncertainty is inadvertently added to mechanistic 
models because of the simplification of reality. This means 
that fewer variables are deliberately included in the model to 
explain the impact of, otherwise created by, many variables. 
Therefore, innovative computational and modeling methods 
must be developed and used to ascertain the adequacy of 
mechanistic models because they are, in fact, a simplification 
of reality. Because of the inherited need to simplify problems 
to be modeled, there is a perception that reductionism leads to 
avoiding the incorporation of other fields of science in solving 
a problem. Reductionism and simplification are not necessarily 
the same thing. Reductionism tends to assume that the 
whole is the sum of the parts, whereas simplification seeks to 
identify essential elements that can mimic reality or the whole. 
Therefore, mechanistic models, which are, by default, based on 
the simplification of reality, can still be used in combination 
with other approaches to avoid extreme reductionism when 
solving complex problems.

Data-driven approaches, based mostly on AI technology, 
are not free of difficulties either. In addition to the lack of the 
wisdom component of the DIKW hierarchy (Cannas et  al., 
2019; Tedeschi, 2019), the data-crunching approach of AI-based 
technology is exceptional, but nothing is known about why 
a prediction is made (Knight, 2017). Furthermore, with the 
development of unsupervised learning (more recently referred 
to as self-supervised learning; LeCun et  al., 2015), the search 
for predictive reasoning may become even more complicated, if 
not impossible. Another limitation of the data-driven approach 
is that its predictability is highly dependent on the quality of 
the training data and, of course, the independent variables 
(i.e., inputs) needed for future predictive purposes. AI is a 
powerful tool to use for large data sets, but AI predictions can 
be wrong. In fact, it has been shown that AI can fail miserably 
with simple tasks (Waldrop, 2019). Perhaps the failure in the 
predictability of AI is not the worst of its misdeeds. The fact that 
AI’s predictions can be manipulated by adding ill-conditioned 
data into the database used to develop AI’s predictive rules 
is more troublesome than its failure to predict correctly. The 
reason is simple; when ill-conditioned data are inserted into 
the database, the AI algorithm lacks the wisdom and proper 
instructions to identify the incorrect data. Once the data are 
inserted, AI cannot identify and certify the information used 
for development and validation purposes. This fact is more 
concerning than the inability to predict incorrectly because the 
predictability can have a high degree of certainty, even if it is a 

high degree of certainty of an incorrect prediction. Furthermore, 
it cannot discern an incorrect prediction or correct it by itself.

Assuming that ill-conditioned data are not used to develop 
or train AI models, the question then becomes: can significant 
advancements in predictive analytics be made if concept- and 
data-driven modeling approaches are integrated? (Tedeschi, 
2019). Alternatively, would their intrinsic drawbacks be 
minimized or surpassed once the integration is achieved? 
While we do not have definitive answers to these questions, 
the integration has certainly been explored in different 
ways (Mertoguno, 2019). The integration of concept-driven 
(mechanistic) modeling with data-driven (e.g., neural network 
and AI) modeling, which requires big data, might substantially 
improve our ability to explain variability within acceptable 
boundaries and improve the model’s predictability. For instance, 
Figure 3B shows a possible integration between concept- 
and data-driven modeling through parallel hybridization of 
mechanistic and learning programming paradigms, yielding a 
hybrid intelligent mechanistic model (HIMM). The HIMM may 
not enhance our ability to understand the underlying principles 
governing production systems or a problem, but they may well 
increase prediction precision and accuracy. Therefore, HIMM 
can become the heartbeat of the next generation of decision 
support intelligence tools, and when combined with the latest AI 
technology, such as natural language processing (https://www.
gwern.net/GPT-3), unsupervised learning (i.e., self-supervised 
learning) will become one step closer.

In retrospect, scientists frequently have accursed the 
lack of data for our inability to make useful predictions 
or forecasts during the Animal Science discipline’s 
establishment and development. Data became increasingly 
abundant as research stations were constructed around 
the world (Tedeschi, 2019), and, more recently, sensors and 
IoT became broadly available, alleviating challenges for the 
collection and storage of data. Through PLF, smart technology 
provided the opportunity for generalized DST adoption by 
livestock operations (O′Grady and O′Hare, 2017). Big data then 
became available, but scientists lacked the means to analyze 
until ML and DL became accessible. However, AI technology 
cannot achieve wisdom in the DIKW hierarchy because AI 
does not explicitly explain the underlying assumptions of the 
data and the particular combination of specific inputs to yield 
the outputs. The ebbs and flows in the evolutionary timeline 
in the Animal Science discipline reflect our incessant search 
for understanding the unknown to improve humankind 
(Cannas et al., 2019; Tedeschi, 2019). Despite our incomplete 
understanding of how AI works its way through the data 
to learn, it is a robust advancement in predictive analytics. 
The next generational wave in mathematical modeling may 
well be the hybridization between mechanistic and learning 
paradigms using, for example, HIMM. This, coupled with 
data collection through PLF, is paramount to achieving truly 
sustainable livestock production.

Acknowledgments
This article is based on presentations at the Production, 
Management, and Environment Symposium on Big Data, 
Artificial Intelligence, and Smart Farming Techniques during the 
2020 Annual Meeting of the American Society of Animal Science, 
July 19 to 23, 2020, that was held online. We contributed equally 
to this manuscript, and the order of authorship is in alphabetical 
order, except for the corresponding author.

https://www.gwern.net/GPT-3
https://www.gwern.net/GPT-3


Copyedited by: RS

8  |  Journal of Animal Science, 2021, Vol. 99, No. 2

Conflict of interest statement
The authors declare no conflict of interest to disclose.

Literature Cited
Aldridge, M. N., S. J. Lee, J. D. Taylor, G. I. Popplewell, F. R. Job, and 

W. S. Pitchford. 2017. The use of walk over weigh to predict 
calving date in extensively managed beef herds. Anim. Prod. 
Sci. 57(3):583–591. doi:10.1071/AN15172

Andriamandroso,  A.  L.  H., J.  Bindelle, B.  C.  N.  Mercatoris, and 
F.  Lebeau. 2016. A review on the use of sensors to monitor 
cattle jaw movements and behavior when grazing. Biotechnol. 
Agron. Soc. Environ. 20(s1):273–286. 

Bach,  A., C.  Iglesias, and I.  Busto. 2004. Technical Note: 
A computerized system for monitoring feeding behavior and 
individual feed intake of dairy cattle. J. Dairy Sci. 87:4207–4209. 
doi:10.3168/jds.S0022-0302(04)73565-1

Badgery,  W., G.  Millar, K.  Broadfoot, J.  Martin, D.  Pottie, 
A.  Simmons, and P.  Cranney. 2017. Better management of 
intensive rotational grazing systems maintains pastures and 
improves animal performance. Crop Pasture Sci. 68(12):1131–
1140. doi:10.1071/CP16396

Bailey,  D.  W., S.  Lunt, A.  Lipka, M.  G.  Thomas, J.  F.  Medrano, 
A. Cánovas, G. Rincon, M. B. Stephenson, and D. Jensen. 2015a. 
Genetic influences on cattle grazing distribution: association 
of genetic markers with terrain use in cattle. Rangel. Ecol. 
Manag. 68(2):142–149. doi:10.1016/j.rama.2015.02.001

Bailey,  D.  W., J.  C.  Mosley, R.  E.  Estell, A.  F.  Cibils, M.  Horney, 
J.  R.  Hendrickson, J.  W.  Walker, K.  L.  Launchbaugh, and 
E. A. Burritt. 2019. Synthesis Paper: Targeted livestock grazing: 
prescription for healthy rangelands. Rangel. Ecol. Manag. 
72(6):865–877. doi:10.1016/j.rama.2019.06.003

Bailey, D. W., M. B. Stephenson, and M. Pittarello. 2015b. Effect 
of terrain heterogeneity on feeding site selection and 
livestock movement patterns. Anim. Prod. Sci. 55(3):298–308. 
doi:10.1071/AN14462

Beiderman,  Y., M.  Kunin, E.  Kolberg, I.  Halachmi, B.  Abramov, 
R.  Amsalem, and Z.  Zalevsky. 2014. Automatic solution for 
detection, identification and biomedical monitoring of a cow 
using remote sensing for optimised treatment of cattle. J. 
Agric. Eng. 45(4):153–160. doi:10.4081/jae.2014.418

Ben  Meir,  Y.  A., M.  Nikbachat, Y.  Fortnik, S.  Jacoby, H.  Levit, 
G. Adin, M. Cohen Zinder, A. Shabtay, E. Gershon, M. Zachut, 
et  al. 2018. Eating behavior, milk production, rumination, 
and digestibility characteristics of high- and low-efficiency 
lactating cows fed a low-roughage diet. J. Dairy Sci. 101:10973–
10984. doi:10.3168/jds.2018-14684

Bezen,  R., Y.  Edan, and I.  Halachmi. 2020. Computer vision 
system for measuring individual cow feed intake using RGB-D 
camera and deep learning algorithms. Comput. Electron. Agric. 
172:105345. doi:10.1016/j.compag.2020.105345

Bloch, V., H. Levit, and I. Halachmi. 2019. Assessing the potential 
of photogrammetry to monitor feed intake of dairy cows. J. 
Dairy Res. 86:34–39. doi:10.1017/S0022029918000882

Booth, C. J., L. D. Warnick, Y. T. Gröhn, D. O. Maizon, C. L. Guard, and 
D. Janssen. 2004. Effect of lameness on culling in dairy cows. J. 
Dairy Sci. 87:4115–4122. doi:10.3168/jds.S0022-0302(04)73554-7

Brown,  D.  J., D.  B.  Savage, G.  N.  Hinch, and S.  Hatcher. 2015. 
Monitoring liveweight in sheep is a valuable management 
strategy: a review of available technologies. Anim. Prod. Sci. 
55(4):427–436. doi:10.1071/AN13274

Campbell,  D.  L.  M., J.  M.  Lea, H.  Keshavarzi, and C.  Lee. 2019. 
Virtual fencing is comparable to electric tape fencing for 
cattle behavior and welfare. Front. Vet. Sci. 6:445. doi:10.3389/
fvets.2019.00445

Campbell, D. L. M., J. Ouzman, D. Mowat, J. M. Lea, C. Lee, and 
R.  S.  Llewellyn. 2020. Virtual fencing technology excludes 
beef cattle from an environmentally sensitive area. Animals. 
10(6):1069. doi:10.3390/ani10061069

Cannas,  A., L.  O.  Tedeschi, A.  S.  Atzori, and M.  F.  Lunesu. 
2019. How can nutrition models increase the production 
efficiency of sheep and goat operations? Anim. Front. 9:33–44. 
doi:10.1093/af/vfz005

Cha,  E., J.  A.  Hertl, D.  Bar, and Y.  T.  Gröhn. 2010. The cost of 
different types of lameness in dairy cows calculated by 
dynamic programming. Prev. Vet. Med. 97:1–8. doi:10.1016/j.
prevetmed.2010.07.011

Chapinal, N., A. M. de Passillé, J. Rushen, and S. Wagner. 2010. 
Automated methods for detecting lameness and measuring 
analgesia in dairy cattle. J. Dairy Sci. 93:2007–2013. doi:10.3168/
jds.2009-2803

Chapinal, N., D. M. Veira, D. M. Weary, and M. A. von Keyserlingk. 
2007. Technical Note: Validation of a system for monitoring 
individual feeding and drinking behavior and intake in 
group-housed cattle. J. Dairy Sci. 90:5732–5736. doi:10.3168/
jds.2007-0331

Charmley, E., T. L. Gowan, and J. L. Duynisveld. 2006. Development 
of a remote method for the recording of cattle weights under 
field conditions. Austr. J. Exp. Agric. 46(7):831–835. doi:10.1071/
EA05314

Chizzotti,  M.  L., F.  S.  Machado, E.  E.  Valente, L.  G.  Pereira, 
M.  M.  Campos, T.  R.  Tomich, S.  G.  Coelho, and M.  N.  Ribas. 
2015. Technical Note: Validation of a system for monitoring 
individual feeding behavior and individual feed intake in dairy 
cattle. J. Dairy Sci. 98:3438–3442. doi:10.3168/jds.2014-8925

Chollet,  F., and J.  J.  Allaire. 2018. Deep learning with R. Shelter 
Island (NY): Manning Publications.

Corbet, N.  J., K. P. Patison, D.  J. Menzies, and D. L. Swain. 2018. 
Using temporal associations to determine postpartum 
oestrus in tropical beef cows. Anim. Prod. Sci. 58(8):1465–1469. 
doi:10.1071/AN17781

DeVries,  T.  J., M.  A.  von  Keyserlingk, D.  M.  Weary, and 
K.  A.  Beauchemin. 2003. Technical Note: Validation of a 
system for monitoring feeding behavior of dairy cows. J. Dairy 
Sci. 86:3571–3574. doi:10.3168/jds.S0022-0302(03)73962-9

Dobos,  R.  C., S.  Dickson, D.  W.  Bailey, and M.  G.  Trotter. 2014. 
The use of GNSS technology to identify lambing behaviour 
in pregnant grazing Merino ewes. Anim. Prod. Sci. 54(10):1722–
1727. doi:10.1071/AN14297

Dutta,  R., D.  Smith, R.  Rawnsley, G.  Bishop-Hurley, J.  Hills, 
G.  Timms, and D.  Henry. 2015. Dynamic cattle behavioural 
classification using supervised ensemble classifiers. Comput. 
Electron. Agric. 111:18–28. doi:10.1016/j.compag.2014.12.002

Esslemont, R.  J., and M. A. Kossaibati. 1997. Culling in 50 dairy 
herds in England. Vet. Rec. 140:36–39. doi:10.1136/vr.140.2.36

Fawcett, T. 2006. An introduction to ROC analysis. Pattern Recognit. 
Lett. 27(8):861–874. doi:10.1016/j.patrec.2005.10.010

Fernández-Quintanilla,  C., J.  M.  Peña, D.  Andújar, J.  Dorado, 
A. Ribeiro, and F. López-Granados. 2018. Is the current state 
of the art of weed monitoring suitable for site-specific 
weed management in arable crops? Weed Res. 58(4):259–272. 
doi:10.1111/wre.12307

Ferris, C. P., T. W. J. Keady, F. J. Gordon, and D. J. Kilpatrick. 2006. 
Comparison of a Calan gate and a conventional feed barrier 
system for dairy cows: feed intake and cow behaviour. Irish 
J. Agr. Food Res. 45(2):149–156. 

Flint,  A.  P.  F., and J.  A.  Woolliams. 2008. Precision animal 
breeding. Philos. Trans. R. Soc. B. 363(1491):573–590. doi:10.1098/
rstb.2007.2171

France, J., and E. Kebreab. 2008. Mathematical modelling in animal 
nutrition. Wallingford (UK): CABI Publishing.

González,  L.  A., G.  Bishop-Hurley, D.  Henry, and E.  Charmley. 
2014. Wireless sensor networks to study, monitor and manage 
cattle in grazing systems. Anim. Prod. Sci. 54(10):1687–1693. 
doi:10.1071/AN14368

González, L., A.-S. Clerc, and C. O’Neill. 2013. Radiant temperature 
of cattle according to rangeland environment and breed. In: 
Michalk, D. L., G. D. Millar, W. B. Badgery, and K. M. Broadfoot, 
editors. Proceedings of the 22nd International Grassland Congress; 

https://doi.org/10.1071/AN15172
https://doi.org/10.3168/jds.S0022-0302(04)73565-1
https://doi.org/10.1071/CP16396
https://doi.org/10.1016/j.rama.2015.02.001
https://doi.org/10.1016/j.rama.2019.06.003
https://doi.org/10.1071/AN14462
https://doi.org/10.4081/jae.2014.418
https://doi.org/10.3168/jds.2018-14684
https://doi.org/10.1016/j.compag.2020.105345
https://doi.org/10.1017/S0022029918000882
https://doi.org/10.3168/jds.S0022-0302(04)73554-7
https://doi.org/10.1071/AN13274
https://doi.org/10.3389/fvets.2019.00445
https://doi.org/10.3389/fvets.2019.00445
https://doi.org/10.3390/ani10061069
https://doi.org/10.1093/af/vfz005
https://doi.org/10.1016/j.prevetmed.2010.07.011
https://doi.org/10.1016/j.prevetmed.2010.07.011
https://doi.org/10.3168/jds.2009-2803
https://doi.org/10.3168/jds.2009-2803
https://doi.org/10.3168/jds.2007-0331
https://doi.org/10.3168/jds.2007-0331
https://doi.org/10.1071/EA05314
https://doi.org/10.1071/EA05314
https://doi.org/10.3168/jds.2014-8925
https://doi.org/10.1071/AN17781
https://doi.org/10.3168/jds.S0022-0302(03)73962-9
https://doi.org/10.1071/AN14297
https://doi.org/10.1016/j.compag.2014.12.002
https://doi.org/10.1136/vr.140.2.36
https://doi.org/10.1016/j.patrec.2005.10.010
https://doi.org/10.1111/wre.12307
https://doi.org/10.1098/rstb.2007.2171
https://doi.org/10.1098/rstb.2007.2171
https://doi.org/10.1071/AN14368


Copyedited by: RS

Tedeschi et al.  |  9

Sydney, Australia. New South Wales: Department of Primary 
Industry; p. 1380–1381. Available at: https://uknowledge.uky.
edu/igc/22/2-8/10[accessed November 19, 2020].

González, L. A., I. Kyriazakis, and L. O. Tedeschi. 2018. Review: 
Precision nutrition of ruminants: approaches, challenges 
and potential gains. Animal 12(s2):s246–s261. doi:10.1017/
S1751731118002288

González-García, E., M. Alhamada, J. Pradel, S. Douls, S. Parisot, 
F.  Bocquier, J.  B.  Menassol, I.  Llach, and L.  A.  González. 
2018a. A mobile and automated walk-over-weighing 
system for a close and remote monitoring of liveweight 
in sheep. Comput. Electron. Agric. 153:226–238. doi:10.1016/j.
compag.2018.08.022

González-García,  E., P.  d.  O.  Golini, P.  Hassoun, F.  Bocquier, 
D. Hazard, L. A. González, A. B. Ingham, G. J. Bishop-Hurley, and 
P. L. Greenwood. 2018b. An assessment of walk-over-weighing 
to estimate short-term individual forage intake in sheep. 
Animal 12(6):1174–1181. doi:10.1017/S1751731117002609

Greenwood,  P.  L., G.  J.  Bishop-Hurley, L.  A.  González, and 
A.  B.  Ingham. 2016. Development and application of a 
livestock phenomics platform to enhance productivity 
and efficiency at pasture. Anim. Prod. Sci. 56(8):1299–1311. 
doi:10.1071/AN15400

Greenwood,  P.  L., G.  E.  Gardner, and D.  M.  Ferguson. 2018. 
Current situation and future prospects for the Australian beef 
industry — a review. Asian-Australas. J.  Anim. Sci. 31(7):992–
1006. doi:10.5713/ajas.18.0090

Greenwood, P. L., D. R. Paull, J. McNally, T. Kalinowski, D. Ebert, 
B.  Little, D.  V.  Smith, A.  Rahman, P.  Valencia, A.  B.  Ingham, 
et al. 2017. Use of sensor-determined behaviours to develop 
algorithms for pasture intake by individual grazing cattle. 
Crop Pasture Sci. 68(12):1091–1099. doi:10.1071/CP16383

Greenwood, P. L., P. Valencia, L. Overs, D. R. Paull, and I. W. Purvis. 
2014. New ways of measuring intake, efficiency and 
behaviour of grazing livestock. Anim. Prod. Sci. 54(10):1796–
1804. doi:10.1071/AN14409

Halachmi,  I. 2015. Precision livestock farming applications: making 
sense of sensors to support farm management. Wageningen (The 
Netherlands): Wageningen Academic.

Halachmi,  I., Y.  Ben  Meir, J.  Miron, and E.  Maltz. 2016. Feeding 
behavior improves prediction of dairy cow voluntary 
feed intake but cannot serve as the sole indicator. Animal 
10(9):1501–1506. doi:10.1017/S1751731115001809

Halachmi, I., C. F. Børsting, E. Maltz, Y. Edan, and M. R. Weisbjerg. 
2011. Feed intake of Holstein, Danish Red, and Jersey cows 
in automatic milking systems. Livest. Sci. 138 (1):56–61. 
doi:10.1016/j.livsci.2010.12.001

Halachmi, I., A. Dzidic, J. H. M. Metz, L. Speelman, A. A. Dijkhuizen, 
and J. P. C. Kleijnen. 2001. Validation of simulation model for 
robotic milking barn design. Eur. J. Oper. Res. 134(3):677–688. 
doi:10.1016/S0377-2217(00)00283-6

Halachmi,  I., Y.  Edan, E.  Maltz, U.  M.  Peiper, U.  Moallem, and 
I. Brukental. 1998. A real-time control system for individual 
dairy cow food intake. Comput. Electron. Agric. 20(2):131–144. 
doi:10.1016/S0168-1699(98)00013-1

Halachmi, I., Y. Edan, U. Moallem, and E. Maltz. 2004. Predicting 
feed intake of the individual dairy cow. J. Dairy Sci. 87:2254–
2267. doi:10.3168/jds.S0022-0302(04)70046-6

Halachmi,  I., and M.  Guarino. 2016. Editorial: Precision 
livestock farming: a ‘per animal’ approach using advanced 
monitoring technologies. Animal 10:1482–1483. doi:10.1017/
S1751731116001142

Halachmi,  I., M. Guarino, J. Bewley, and M. Pastell. 2019. Smart 
animal agriculture: application of real-time sensors to 
improve animal well-being and production. Annu. Rev. Anim. 
Biosci. 7:403–425. doi:10.1146/annurev-animal-020518-114851

Halachmi, I., M. Klopčič, P. Polak, D. J. Roberts, and J. M. Bewley. 
2013. Automatic assessment of dairy cattle body condition 
score using thermal imaging. Comput. Electron. Agric. 99:35–40. 
doi:10.1016/j.compag.2013.08.012

Halachmi,  I., P.  Polak, D.  J.  Roberts, and M.  Klopcic. 2008. Cow 
body shape and automation of condition scoring. J. Dairy Sci. 
91:4444–4451. doi:10.3168/jds.2007-0785

Handcock, R. N., D.  L. Swain, G.  J. Bishop-Hurley, K. P.  Patison, 
T. Wark, P. Valencia, P. Corke, and C. J. O′Neill. 2009. Monitoring 
animal behaviour and environmental interactions using 
wireless sensor networks, GPS collars and satellite remote 
sensing. Sensors (Basel). 9:3586–3603. doi:10.3390/s90503586

Holtenius, K., L. A. O’Hara, and J. Karlsson. 2018. The influence 
of milk yield, body weight and parity on feed intake by dairy 
cows. In: Udén,  P., T.  Eriksson, R.  Spörndly, B.-O.  Rustas, 
and M.  Liljeholm, editors. Proceedings of the 9th Nordic 
Feed Science Conference; Uppsala, Sweden. Department 
of Animal Nutrition and Management, Swedish University 
of Agricultural Sciences (SLU); p.  101–105 Available at: 
https://www.slu.se/nordicfeedscienceconference [accessed 
November 19, 2020].

Imaz,  J.  A., S.  García, and L.  A.  González. 2019. Real-time 
monitoring of self-fed supplement intake, feeding behaviour, 
and growth rate as affected by forage quantity and quality 
of rotationally grazed beef cattle. Animals (Basel). 9(12):1129. 
doi:10.3390/ani9121129

Imaz,  J.  A., S.  García, and L.  A.  González. 2020. Application of 
in-paddock technologies to monitor individual self-fed 
supplement intake and liveweight in beef cattle. Animals 
(Basel). 10(10):93. doi:10.3390/ani10010093

Jiang,  B., X.  Yin, and H.  Song. 2020. Single-stream long-term 
optical flow convolution network for action recognition 
of lameness dairy cow. Comput. Electron. Agric. 175:105536. 
doi:10.1016/j.compag.2020.105536

John, A. J., C. E. Clark, M. J. Freeman, K. L. Kerrisk, S. C. Garcia, 
and I.  Halachmi. 2016. Review: Milking robot utilization, a 
successful precision livestock farming evolution. Animal 
10:1484–1492. doi:10.1017/S1751731116000495

Johnson,  J.  W. 2020. Automatic nucleus segmentation with 
mask-RCNN. In: Arai, K., and S. Kapoor, editors. Advances in 
computer vision, v. 2. Cham: Springer International Publishing; 
p. 399–407.

Jorquera-Chavez,  M., S.  Fuentes, F.  R.  Dunshea, E.  C.  Jongman, 
and R. D. Warner. 2019. Computer vision and remote sensing 
to assess physiological responses of cattle to pre-slaughter 
stress, and its impact on beef quality: a review. Meat Sci. 
156:11–22. doi:10.1016/j.meatsci.2019.05.007

Knight, W. 2017. The dark secret at the heart of AI. MIT Technol. 
Rev. 120(3):54–65. 

Kumar, D. P., T. Amgoth, and C. S. R. Annavarapu. 2019. Machine 
learning algorithms for wireless sensor networks: a survey. 
Inform. Fusion 49:1–25. doi:10.1016/j.inffus.2018.09.013

Lassen,  J., J.  Thomasen, R.  H.  Hansen, G.  Nielsen, E.  Olsen, 
P.  R.  B.  Stentebjerg, N.  Hansen, and S.  Borchersen. 2018. 
Individual measure of feed intake on in-house commercial 
dairy cattle using 3D camera system. Proceedings of the World 
Congress on Genetics Applied to Livestock Production, v. Technologies 
- Novel Phenotypes; Auckland, NZ. Massey University. Available 
at: http://www.wcgalp.org/proceedings/2018/individual-
measure-feed-intake-house-commercial-dairy-cattle-using-
3d-camera [accessed February 13, 2021].

LeCun, Y., Y. Bengio, and G. Hinton. 2015. Deep learning. Nature 
521:436–444. doi:10.1038/nature14539

McBratney, A., B. Whelan, T. Ancev, and J. Bouma. 2005. Future 
directions of precision agriculture. Precis. Agric. 6(1):7–23. 
doi:10.1007/s11119-005-0681-8

McGavin, S. L., G. J. Bishop-Hurley, E. Charmley, P. L. Greenwood, 
and M. J. Callaghan. 2018. Effect of GPS sample interval and 
paddock size on estimates of distance travelled by grazing 
cattle in rangeland, Australia. Rangeland J. 40(1):55–64. 
doi:10.1071/RJ17092

McPhee, M. J., B. J. Walmsley, H. C. Dougherty, W. A. McKiernan, 
and V.  H.  Oddy. 2020. Live animal predictions of carcass 
components and marble score in beef cattle: model 

https://uknowledge.uky.edu/igc/22/2-8/10
https://uknowledge.uky.edu/igc/22/2-8/10
https://doi.org/10.1017/S1751731118002288
https://doi.org/10.1017/S1751731118002288
https://doi.org/10.1016/j.compag.2018.08.022
https://doi.org/10.1016/j.compag.2018.08.022
https://doi.org/10.1017/S1751731117002609
https://doi.org/10.1071/AN15400
https://doi.org/10.5713/ajas.18.0090
https://doi.org/10.1071/CP16383
https://doi.org/10.1071/AN14409
https://doi.org/10.1017/S1751731115001809
https://doi.org/10.1016/j.livsci.2010.12.001
https://doi.org/10.1016/S0377-2217(00)00283-6
https://doi.org/10.1016/S0168-1699(98)00013-1
https://doi.org/10.3168/jds.S0022-0302(04)70046-6
https://doi.org/10.1017/S1751731116001142
https://doi.org/10.1017/S1751731116001142
https://doi.org/10.1146/annurev-animal-020518-114851
https://doi.org/10.1016/j.compag.2013.08.012
https://doi.org/10.3168/jds.2007-0785
https://doi.org/10.3390/s90503586
https://www.slu.se/nordicfeedscienceconference
https://doi.org/10.3390/ani9121129
https://doi.org/10.3390/ani10010093
https://doi.org/10.1016/j.compag.2020.105536
https://doi.org/10.1017/S1751731116000495
https://doi.org/10.1016/j.meatsci.2019.05.007
https://doi.org/10.1016/j.inffus.2018.09.013
http://www.wcgalp.org/proceedings/2018/individual-measure-feed-intake-house-commercial-dairy-cattle-using-3d-camera
http://www.wcgalp.org/proceedings/2018/individual-measure-feed-intake-house-commercial-dairy-cattle-using-3d-camera
http://www.wcgalp.org/proceedings/2018/individual-measure-feed-intake-house-commercial-dairy-cattle-using-3d-camera
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/s11119-005-0681-8
https://doi.org/10.1071/RJ17092


Copyedited by: RS

10  |  Journal of Animal Science, 2021, Vol. 99, No. 2

development and evaluation. Animal 14(S2):s396–s405. 
doi:10.1017/S1751731120000324

McPhee, M. J., B. J. Walmsley, D. G. Mayer, and V. H. Oddy. 2014. 
BeefSpecs fat calculator to assist decision making to increase 
compliance rates with beef carcass specifications: evaluation 
of inputs and outputs. Anim. Prod. Sci. 54(12):2011–2017. 
doi:10.1071/AN14614

McPhee, M.  J., B.  J. Walmsley, B. Skinner, B.  Littler, J.  P.  Siddell, 
L. M. Cafe, J. F. Wilkins, V. H. Oddy, and A. Alempijevic. 2017. 
Live animal assessments of rump fat and muscle score in 
Angus cows and steers using 3-dimensional imaging. J. Anim. 
Sci. 95:1847–1857. doi:10.2527/jas.2016.1292

Mendes, E. D., G. E. Carstens, L. O. Tedeschi, W. E. Pinchak, and 
T.  H.  Friend. 2011. Validation of a system for monitoring 
feeding behavior in beef cattle. J. Anim. Sci. 89:2904–2910. 
doi:10.2527/jas.2010-3489

Menzies,  D., K.  P.  Patison, N.  J.  Corbet, and D.  L.  Swain. 2018a. 
Using temporal associations to determine maternal 
parentage in extensive beef herds. Anim. Prod. Sci. 58(5):943–
949. doi:10.1071/AN16450

Menzies,  D., K.  P.  Patison, N.  J.  Corbet, and D.  L.  Swain. 2018b. 
Using Walk-over-Weighing technology for parturition date 
determination in beef cattle. Anim. Prod. Sci. 58(9):1743–1750. 
doi:10.1071/AN16694

Mertoguno, J. S. 2019. Toward autonomy: symbiotic formal and 
statistical machine reasoning. 2019 IEEE First International 
Conference on Cognitive Machine Intelligence (CogMI); Los 
Angeles, CA. Institute of Electrical and Electronics Engineers; 
p.  210–215. Available at: https://ieeexplore.ieee.org/abstract/
document/8998973 [accessed February 13, 2021]. doi:10.1109/
CogMI48466.2019.00038

Miller, G. A., J. J. Hyslop, D. Barclay, A. Edwards, W. Thomson, and 
C.-A. Duthie. 2019. Using 3D imaging and machine learning 
to predict liveweight and carcass characteristics of live 
finishing beef cattle. Front. Sustain. Food Syst. 3:30. doi:10.3389/
fsufs.2019.00030

National Research Council. 2007. Nutrient requirements of small 
ruminants: sheep, goats, cervids, and new world camelids. 7th ed. 
Animal Nutrition Series. Washington (DC): National Academy 
Press.

Newman,  S., T.  Lynch, and A.  A.  Plummer. 2000. Success and 
failure of decision support systems: learning as we go. J. Anim. 
Sci. 77(E-Suppl):1–12. doi:10.2527/jas2000.77E-Suppl1e

Nir, O., Y. Parmet, D. Werner, G. Adin, and I. Halachmi. 2018. 3D 
Computer-vision system for automatically estimating heifer 
height and body mass. Biosystems Eng. 173:4–10. doi:10.1016/j.
biosystemseng.2017.11.014

Nitzan, R., I. Bruckental, Z. Bar Shira, E. Maltz, and I. Halachmi. 
2006. Stochastic models for simulating parallel, rotary, and 
side-opening milking parlors. J. Dairy Sci. 89:4462–4472. 
doi:10.3168/jds.S0022-0302(06)72495-X

O′Grady, M. J., and G. M. P. O′Hare. 2017. Modelling the smart farm. 
Inf. Process. Agric. 4:179–187. doi:10.1016/j.inpa.2017.05.001

Peng, Y., N. Kondo, T. Fujiura, T. Suzuki, Wulandari, H. Yoshioka, 
and E.  Itoyama. 2019. Classification of multiple cattle 
behavior patterns using a recurrent neural network with long 
short-term memory and inertial measurement units. Comput. 
Electron. Agric. 157:247–253. doi:10.1016/j.compag.2018.12.023

Pham, X., and M. Stack. 2018. How data analytics is transforming 
agriculture. Bus. Horiz. 61(1):125–133. doi:10.1016/j.
bushor.2017.09.011

Pierce, C. F., S. E. Speidel, S. J. Coleman, R. M. Enns, D. W. Bailey, 
J.  F.  Medrano, A.  Cánovas, P.  J.  Meiman, L.  D.  Howery, 
W.  F.  Mandeville, et  al. 2020. Genome-wide association 
studies of beef cow terrain-use traits using Bayesian 
multiple-SNP regression. Livest. Sci. 232:103900. doi:10.1016/j.
livsci.2019.103900

Rahman,  A., D.  Smith, J.  Hills, G.  Bishop-Hurley, D.  Henry, and 
R. Rawnsley. 2016. A comparison of autoencoder and statistical 

features for cattle behaviour classification. International Joint 
Conference on Neural Networks (IJCNN); Vancouver, Canada. 
Institute of Electrical and Electronics Engineers; p. 2954–2960. 
Available at: https://ieeexplore.ieee.org/document/7727573 
[accessed February 13, 2021]. doi:10.1109/IJCNN.2016.7727573

Rahman, A., D. V. Smith, B. Little, A. B. Ingham, P. L. Greenwood, 
and G. J. Bishop-Hurley. 2018. Cattle behaviour classification 
from collar, halter, and ear tag sensors. Inf. Process. Agric. 
5(1):124–133. doi:10.1016/j.inpa.2017.10.001

Rajkondawar, P. G., M. Liu, R. M. Dyer, N. K. Neerchal, U. Tasch, 
A. M. Lefcourt, B. Erez, and M. A. Varner. 2006. Comparison of 
models to identify lame cows based on gait and lesion scores, 
and limb movement variables. J. Dairy Sci. 89:4267–4275. 
doi:10.3168/jds.S0022-0302(06)72473-0

Rajkondawar, P. G., U. Tasch, A. M. Lefcourt, B. Erez, R. M. Dyer, 
and M. A. Varner. 2002. A system for identifying lameness in 
dairy cattle. Appl. Eng. Agric. 18(1):87. doi:10.13031/2013.7707

Reinermann, S., S. Asam, and C. Kuenzer. 2020. Remote sensing 
of grassland production and management—A review. Remote 
Sens. 12(12):1949. doi:10.3390/rs12121949

Schirmann,  K., N.  Chapinal, D.  M.  Weary, W.  Heuwieser, and 
M. A. von Keyserlingk. 2012. Rumination and its relationship 
to feeding and lying behavior in Holstein dairy cows. J. Dairy 
Sci. 95:3212–3217. doi:10.3168/jds.2011-4741

Schlageter-Tello,  A., E.  A.  Bokkers, P.  W.  Groot  Koerkamp, 
T. Van Hertem, S. Viazzi, C. E. Romanini, I. Halachmi, C. Bahr, 
D.  Berckmans, and K.  Lokhorst. 2014. Effect of merging 
levels of locomotion scores for dairy cows on intra- and 
interrater reliability and agreement. J. Dairy Sci. 97:5533–5542. 
doi:10.3168/jds.2014-8129

Scollan,  N.  D., P.  L.  Greenwood, C.  J.  Newbold, D.  R.  Y.  Ruiz, 
K. J. Shingfield, R. J. Wallace, and J. F. Hocquette. 2011. Future 
research priorities for animal production in a changing world. 
Anim. Prod. Sci. 51(1):1–5. doi:10.1071/AN10051

Segarra,  J., M.  L.  Buchaillot, J.  L.  Araus, and S.  C.  Kefauver. 
2020. Remote sensing for precision agriculture: Sentinel-2 
improved features and applications. Agronomy. 10(5):641. 
doi:10.3390/agronomy10050641

Seymour, D. J., A. Cánovas, C. F. Baes, T. C. S. Chud, V. R. Osborne, 
J.  P.  Cant, L.  F.  Brito, B.  Gredler-Grandl, R.  Finocchiaro, 
R. F. Veerkamp, et al. 2019. Invited Review: Determination of 
large-scale individual dry matter intake phenotypes in dairy 
cattle. J. Dairy Sci. 102:7655–7663. doi:10.3168/jds.2019-16454

Shelley, A. N. 2013. Monitoring dairy cow feed intake using machine 
vision [thesis]. Lexington (UK): University of Kentucky. 
Available from https://uknowledge.uky.edu/ece_etds/24/ 
[accessed November 11, 2020].

Shelley,  A.  N., D.  L.  Lau, A.  E.  Stone, and J.  M.  Bewley. 2016. 
Short Communication: Measuring feed volume and weight 
by machine vision. J. Dairy Sci. 99(1):386–391. doi:10.3168/
jds.2014-8964

Simanungkalit, G., R. S. Hegarty, F. C. Cowley, and M. J. McPhee. 
2020. Evaluation of remote monitoring units for estimating 
body weight and supplement intake of grazing cattle. Animal 
14(S2):s332–s340. doi:10.1017/S1751731120000282

Smith,  D., A.  Rahman, G.  J.  Bishop-Hurley, J.  Hills, S.  Shahriar, 
D.  Henry, and R.  Rawnsley. 2016. Behavior classification of 
cows fitted with motion collars: decomposing multi-class 
classification into a set of binary problems. Comput. Electron. 
Agric. 131:40–50. doi:10.1016/j.compag.2016.10.006

Spoliansky,  R., Y.  Edan, Y.  Parmet, and I.  Halachmi. 2016. 
Development of automatic body condition scoring using a 
low-cost 3-dimensional Kinect camera. J. Dairy Sci. 99:7714–
7725. doi:10.3168/jds.2015-10607

Stajnko,  D., P.  Vindiš, M.  Janžekovič, and M.  Brus. 2010. Non 
invasive weighing of live cattle by thermal image analysis. In: 
Joo, E. M., editor. New trends in technologies: control, management, 
computational intelligence and network systems. Shanghai 
(China): InTech China; p. 243–256.

https://doi.org/10.1017/S1751731120000324
https://doi.org/10.1071/AN14614
https://doi.org/10.2527/jas.2016.1292
https://doi.org/10.2527/jas.2010-3489
https://doi.org/10.1071/AN16450
https://doi.org/10.1071/AN16694
https://ieeexplore.ieee.org/abstract/document/8998973
https://ieeexplore.ieee.org/abstract/document/8998973
https://doi.org/10.1109/CogMI48466.2019.00038
https://doi.org/10.1109/CogMI48466.2019.00038
https://doi.org/10.3389/fsufs.2019.00030
https://doi.org/10.3389/fsufs.2019.00030
https://doi.org/10.2527/jas2000.77E-Suppl1e
https://doi.org/10.1016/j.biosystemseng.2017.11.014
https://doi.org/10.1016/j.biosystemseng.2017.11.014
https://doi.org/10.3168/jds.S0022-0302(06)72495-X
https://doi.org/10.1016/j.inpa.2017.05.001
https://doi.org/10.1016/j.compag.2018.12.023
https://doi.org/10.1016/j.bushor.2017.09.011
https://doi.org/10.1016/j.bushor.2017.09.011
https://doi.org/10.1016/j.livsci.2019.103900
https://doi.org/10.1016/j.livsci.2019.103900
https://ieeexplore.ieee.org/document/7727573
https://doi.org/10.1109/IJCNN.2016.7727573
https://doi.org/10.1016/j.inpa.2017.10.001
https://doi.org/10.3168/jds.S0022-0302(06)72473-0
https://doi.org/10.13031/2013.7707
https://doi.org/10.3390/rs12121949
https://doi.org/10.3168/jds.2011-4741
https://doi.org/10.3168/jds.2014-8129
https://doi.org/10.1071/AN10051
https://doi.org/10.3390/agronomy10050641
https://doi.org/10.3168/jds.2019-16454
https://uknowledge.uky.edu/ece_etds/24/
https://doi.org/10.3168/jds.2014-8964
https://doi.org/10.3168/jds.2014-8964
https://doi.org/10.1017/S1751731120000282
https://doi.org/10.1016/j.compag.2016.10.006
https://doi.org/10.3168/jds.2015-10607


Copyedited by: RS

Tedeschi et al.  |  11

Steensels,  M., A.  Antler, C.  Bahr, D.  Berckmans, E.  Maltz, and 
I.  Halachmi. 2016. A decision-tree model to detect post-
calving diseases based on rumination, activity, milk yield, 
BW and voluntary visits to the milking robot. Animal 10:1493–
1500. doi:10.1017/S1751731116000744

Steensels, M., C. Bahr, D. Berckmans, I. Halachmi, A. Antler, and 
E. Maltz. 2012. Lying patterns of high producing healthy dairy 
cows after calving in commercial herds as affected by age, 
environmental conditions and production. Appl. Anim. Behav. 
Sci. 136(2):88–95. doi:10.1016/j.applanim.2011.12.008

Steensels,  M., E.  Maltz, C.  Bahr, D.  Berckmans, A.  Antler, and 
I. Halachmi. 2017a. Towards practical application of sensors 
for monitoring animal health: the effect of post-calving 
health problems on rumination duration, activity and milk 
yield. J. Dairy Res. 84:132–138. doi:10.1017/S0022029917000176

Steensels,  M., E.  Maltz, C.  Bahr, D.  Berckmans, A.  Antler, and 
I. Halachmi. 2017b. Towards practical application of sensors 
for monitoring animal health; design and validation of a 
model to detect ketosis. J. Dairy Res. 84:139–145. doi:10.1017/
S0022029917000188

Tedeschi,  L.  O. 2019. ASN-ASAS SYMPOSIUM: FUTURE OF 
DATA ANALYTICS IN NUTRITION: Mathematical modeling 
in ruminant nutrition: approaches and paradigms, extant 
models, and thoughts for upcoming predictive analytics. J. 
Anim. Sci. 97 (5):1321–1944. doi:10.1093/jas/skz092

Tedeschi, L. O. 2020. Modelling a sustainable future for livestock 
production. Scientia. (134):88–91. doi:10.33548/SCIENTIA523

Tedeschi, L. O., M. A. Fonseca, J. P. Muir, D. P. Poppi, G. E. Carstens, 
J. P. Angerer, and D. G. Fox. 2017. A glimpse of the future in animal 
nutrition science. 2.  Current and future solutions. Rev. Bras. 
Zootec. 46(5):452–469. doi:10.1590/s1806-92902017000500012

Tedeschi, L. O., and D. G. Fox. 2020. The ruminant nutrition system: 
volume I – an applied model for predicting nutrient requirements 
and feed utilization in ruminants. 3rd ed. Ann Arbor (MI): XanEdu.

Tedeschi,  L.  O., D.  G.  Fox, and P.  J.  Guiroy. 2004. A decision 
support system to improve individual cattle management. 
1.  A  mechanistic, dynamic model for animal growth. Agric. 
Syst. 79(2):171–204. doi:10.1016/S0308-521X(03)00070-2

Tedeschi,  L.  O., and H.  M.  Menendez, III. 2020. Mathematical 
modeling in animal production. In: F. W. Bazer, G. C. Lamb, 
and G. Wu, editors. Animal agriculture: sustainability, challenges 
and innovations. Cambridge, MA: Academic Press by Elsevier; 
p. 431–453. doi:10.1016/B978-0-12-817052-6.00025-2

van  der  Tol,  P.  P.  J., J.  H.  M.  Metz, E.  N.  Noordhuizen-Stassen, 
W.  Back, C.  R.  Braam, and W.  A.  Weijs. 2003. The vertical 
ground reaction force and the pressure distribution on the 
claws of dairy cows while walking on a flat substrate. J. Dairy 
Sci. 86(9):2875–2883. doi:10.3168/jds.S0022-0302(03)73884-3

Tzounis,  A., N.  Katsoulas, T.  Bartzanas, and C.  Kittas. 2017. 
Internet of Things in agriculture, recent advances and 
future challenges. Biosystems Eng. 164:31–48. doi:10.1016/j.
biosystemseng.2017.09.007

Van  Hertem,  T., V.  Alchanatis, A.  Antler, E.  Maltz, I.  Halachmi, 
A. Schlageter-Tello, C. Lokhorst, S. Viazzi, C. E. B. Romanini, 
A. Pluk, et al. 2013a. Comparison of segmentation algorithms 
for cow contour extraction from natural barn background 
in side view images. Comput. Electron. Agric. 91:65–74. 
doi:10.1016/j.compag.2012.12.003

Van  Hertem,  T., V.  Alchanatis, A.  Antler, E.  Maltz, I.  Halachmi, 
A. A. Schlageter Tello, C. Lokhorst, A. Vörös, E. Romanini Bites, 
M.  Bahr, et  al. 2011. Experimental setup for the study of a 
computer vision based automatic lameness detection system 
for dairy cows, In: Lokhorst, C., and D.  Berckmans, editors. 
Proceedings of the 5th European Conference on Precision 
Livestock Farming. Prague (Czech Republic): Czech Centre for 
Science and Society; p. 113–121.

Van  Hertem,  T., E.  Maltz, A.  Antler, C.  E.  Romanini, S.  Viazzi, 
C. Bahr, A. Schlageter-Tello, C. Lokhorst, D. Berckmans, and 

I. Halachmi. 2013b. Lameness detection based on multivariate 
continuous sensing of milk yield, rumination, and neck 
activity. J. Dairy Sci. 96:4286–4298. doi:10.3168/jds.2012-6188

Van  Hertem,  T., A.  Schlageter  Tello, S.  Viazzi, M.  Steensels, 
C. Bahr, C. E. B. Romanini, K. Lokhorst, E. Maltz, I. Halachmi, 
and D.  Berckmans. 2018. Implementation of an automatic 
3D vision monitor for dairy cow locomotion in a 
commercial farm. Biosystems Eng. 173:166–175. doi:10.1016/j.
biosystemseng.2017.08.011

Van  Hertem,  T., S.  Viazzi, M.  Steensels, E.  Maltz, A.  Antler, 
V.  Alchanatis, A.  A.  Schlageter-Tello, K.  Lokhorst, 
E.  C.  B.  Romanini, C.  Bahr, et  al. 2014. Automatic 
lameness detection based on consecutive 3D-video 
recordings. Biosystems Eng. 119:108–116. doi:10.1016/j.
biosystemseng.2014.01.009

Van  Nuffel,  A., T.  Van  De  Gucht, W.  Saeys, B.  Sonck, 
G. Opsomer, J. Vangeyte, K. C. Mertens, B. De Ketelaere, and 
S.  Van  Weyenberg. 2016. Environmental and cow-related 
factors affect cow locomotion and can cause misclassification 
in lameness detection systems. Animal 10:1533–1541. 
doi:10.1017/S175173111500244X

Viazzi,  S., C.  Bahr, T.  Van  Hertem, A.  Schlageter-Tello, 
C. E. B. Romanini, I. Halachmi, C. Lokhorst, and D. Berckmans. 
2014. Comparison of a three-dimensional and two-
dimensional camera system for automated measurement of 
back posture in dairy cows. Comput. Electron. Agric. 100:139–
147. doi:10.1016/j.compag.2013.11.005

Visser, C., E. Van Marle-Köster, H. C. Myburgh, and A. De Freitas. 
2020. Phenomics for sustainable production in the South 
African dairy and beef cattle industry. Anim. Front. 10:12–18. 
doi:10.1093/af/vfaa003

Volden,  H. 2011. NorFor – the Nordic feed evaluation system. 
Wageningen (The Netherlands): Wageningen Academic 
Publishers.

Waldrop,  M.  M. 2019. News feature: what are the limits of 
deep learning? Proc. Natl. Acad. Sci. U.  S. A. 116:1074–1077. 
doi:10.1073/pnas.1821594116

Walmsley, B. J., M. J. McPhee, and V. H. Oddy. 2014. Development 
of the BeefSpecs fat calculator to assist decision making to 
increase compliance rates with beef carcass specifications. 
Anim. Prod. Sci. 54(12):2003–2010. doi:10.1071/AN14611

Walter, A., R. Finger, R. Huber, and N. Buchmann. 2017. Opinion: 
smart farming is key to developing sustainable agriculture. 
Proc. Natl. Acad. Sci. U.  S. A. 114:6148–6150. doi:10.1073/
pnas.1707462114

Wang, Z., J. D. Nkrumah, C. Li, J. A. Basarab, L. A. Goonewardene, 
E. K. Okine, D. H. Crews Jr, and S. S. Moore. 2006. Test duration 
for growth, feed intake, and feed efficiency in beef cattle using 
the GrowSafe System. J. Anim. Sci. 84:2289–2298. doi:10.2527/
jas.2005-715

Wathes, C. M., H. H. Kristensen, J. M. Aerts, and D. Berckmans. 
2008. Is precision livestock farming an engineer’s daydream or 
nightmare, an animal’s friend or foe, and a farmer’s panacea 
or pitfall? Comput. Electron. Agric. 64(1):2–10. doi:10.1016/j.
compag.2008.05.005

Weiss,  M., F.  Jacob, and G.  Duveiller. 2020. Remote sensing for 
agricultural applications: a meta-review. Remote Sens. Environ. 
236:111402. doi:10.1016/j.rse.2019.111402

Widrow,  B., and M.  A.  Lehr. 1990. 30 Years of adaptive neural 
networks: perceptron, Madaline, and backpropagation. Proc. 
IEEE. 78(9):1415–1442. doi:10.1109/5.58323

Wolfert, S., L. Ge, C. Verdouw, and M.-J. Bogaardt. 2017. Big data in 
smart farming – a review. Agric. Syst. 153:69–80. doi:10.1016/j.
agsy.2017.01.023

Zhao, K., A. N. Shelley, D. L. Lau, K. A. Dolecheck, and J. M. Bewley. 
2020. Automatic body condition scoring system for dairy 
cows based on depth-image analysis. Int. J. Agric. & Biol. Eng. 
13(4):45–54. doi:10.25165/j.ijabe.20201304.5655

https://doi.org/10.1017/S1751731116000744
https://doi.org/10.1016/j.applanim.2011.12.008
https://doi.org/10.1017/S0022029917000176
https://doi.org/10.1017/S0022029917000188
https://doi.org/10.1017/S0022029917000188
https://doi.org/10.1093/jas/skz092
https://doi.org/10.33548/SCIENTIA523
https://doi.org/10.1590/s1806-92902017000500012
https://doi.org/10.1016/S0308-521X(03)00070-2
https://doi.org/10.1016/B978-0-12-817052-6.00025-2
https://doi.org/10.3168/jds.S0022-0302(03)73884-3
https://doi.org/10.1016/j.biosystemseng.2017.09.007
https://doi.org/10.1016/j.biosystemseng.2017.09.007
https://doi.org/10.1016/j.compag.2012.12.003
https://doi.org/10.3168/jds.2012-6188
https://doi.org/10.1016/j.biosystemseng.2017.08.011
https://doi.org/10.1016/j.biosystemseng.2017.08.011
https://doi.org/10.1016/j.biosystemseng.2014.01.009
https://doi.org/10.1016/j.biosystemseng.2014.01.009
https://doi.org/10.1017/S175173111500244X
https://doi.org/10.1016/j.compag.2013.11.005
https://doi.org/10.1093/af/vfaa003
https://doi.org/10.1073/pnas.1821594116
https://doi.org/10.1071/AN14611
https://doi.org/10.1073/pnas.1707462114
https://doi.org/10.1073/pnas.1707462114
https://doi.org/10.2527/jas.2005-715
https://doi.org/10.2527/jas.2005-715
https://doi.org/10.1016/j.compag.2008.05.005
https://doi.org/10.1016/j.compag.2008.05.005
https://doi.org/10.1016/j.rse.2019.111402
https://doi.org/10.1109/5.58323
https://doi.org/10.1016/j.agsy.2017.01.023
https://doi.org/10.1016/j.agsy.2017.01.023
https://doi.org/10.25165/j.ijabe.20201304.5655

