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Hepatocellular carcinoma (HCC) is a common malignancy worldwide with

poor clinical outcomes, and the infection of hepatitis B virus (HBV) is the

leading cause of this disease. Mounting evidence shows that RNA binding

proteins (RBPs) can modulate the progression of cancers. However, the

functions and clinical implications of RBP-related mRNAs in HBV-related

HCC remain largely unclear. Therefore, we aim to develop a prognostic

model based on the RBP-related mRNAs for HBV-related HCC patients.

Firstly, we identified 626 differentially expressed RBP-related mRNAs in the

HBV-related HCC through the Pearson correlation analysis. Subsequently, the

Kaplan-Meier survival, univariate, Least Absolute Shrinkage and Selection

Operator (LASSO), and multivariate Cox regression analyses were used to

construct a prognostic model comprised of five RBP-related mRNAs.

Furthermore, the patients were categorized into the high- and low-risk

groups by the prognostic model and the patients in the high-risk group had

a poor prognosis. Additionally, the prognostic model was an independent

predictor of prognosis, and the accuracy of the prognostic model was

proved by the receiver operator characteristic (ROC) analysis. Furthermore,

the functional enrichment analysis revealed that various cancer-promoting

processes were enriched in the high-risk group. Taken together, our study may

provide the HBV-related HCC biomarkers of prognosis to improve the clinical

outcomes of patients.
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Introduction

Hepatocellular carcinoma (HCC) comprises approximately

75%-85% of all cases of primary liver cancer, which is the sixth

most frequently diagnosed cancer and the third leading cause of

cancer-related death worldwide in 2020, with an estimated

906,000 new cases and 830,000 deaths (1). However, chronic

infection of the Hepatitis B virus (HBV) remains the leading

cause of liver cirrhosis and hepatocellular carcinomas (2–4).

Moreover, HBV reactivation is common following surgical

resection, transarterial chemoembolization (TACE),

radiotherapy, local ablation therapy, and systemic therapy for

HCC, as well as in patients who receive no specific HCC

treatment (5). Although the treatment methods and

techniques have been constantly improved, the patients with

HBV-related HCC still suffer from a poor postoperative

prognosis (6–8) and a high frequency of recurrence or

metastasis (6, 9–12). Furthermore, how genetic alterations

drive cancer phenotypes and relapse in HBV-related HCC

remains largely unknown. Therefore, accurate risk

stratification for HBV-associated HCC is still necessary.

RNA binding proteins (RBPs) are evolutionarily conserved

proteins that can bind their RNA targets through their

functional RNA-binding domains (13). Consequently, a series

of mRNA metabolic processes were regulated, including pre-

mRNA splicing, capping, polyadenylation, RNA modification,

transportation, localization, translation, and degradation (14).

Aberrant expression and function of RBPs, which are usually

observed in various cancers, result in the promotion or

suppression of carcinogenesis, development, and recurrence

(15). For example, ENO1 is highly expressed in human HCC

tissues and promotes liver cancer progression by functioning as

an RNA-binding protein and recruiting CNOT6 to promote the

degradation of IRP1 mRNA, which leads to down-regulated

expression of Mfrn1 and suppression of mitochondrial iron-

induced ferroptosis (16).

Intriguingly, an increasing number of studies have

demonstrated that RBPs are involved in transcription control

by binding to chromatin. Some chromatin regulators, the

proteins that can directly regulate chromatin functions and

transcription, have been identified as RBPs (17). WDR43, an

RBP essential for embryonic pluripotency, is recruited by

promoter-associated noncoding and/or nascent RNA to open

chromatin and promotes Pol II pause release and transcription

elongation at thousands of its target genes (18). QKI5, another

RBP, has also been found to bind DNA and activate

transcription of some monocytic differentiation-associated

genes (19). Besides, the RBP HNRNPL can stabilize the

binding of pol II to hemidesmosome and extracellular matrix

genes and promote their transcription, therefore contributing to

epidermal renewal (20). Recently, a large-scale RBP ChIP-seq

analysis by Xiao, et al. revealed that 30 RBPs exhibit extensive
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HepG2 (21). Moreover, all of these chromatin-associated RBPs

show a universal preference for active gene promoters and may

directly participate in transcriptional control via interaction with

transcription factors (21–23). Through their interaction with

active chromatin, RBPs collectively play a significant role in

regulating gene expression.

Although RNA binding protein-related prognostic

signatures for HCC (24–26) or HBV-related HCC (27), as well

as an immune-related RNA-binding protein signature for liver

cancer (28), have been developed for the prognosis evaluation of

patients, the RBPs-related mRNA predictive risk model for

HBV-related HCC remains unknown. Therefore, our study

aimed to construct a reliable prognostic signature based on

mRNAs related to 30 RBPs, which are generally localized on

active chromatin regions and participate in transcription

regulation (21). We have systematically identified mRNAs that

were correlated with the 30 chromatin-associated RBPs in HBV-

related HCC. With five RBP-related mRNAs, we established a

reliable prognostic risk model, which can accurately predict the

prognosis of HBV-related HCC patients. Additionally, the

functional enrichment analysis revealed the risk model was

tightly connected with some cancer-promoting pathways, such

as proliferation-related pathways, hypoxia, epithelial-

mesenchymal transition, and angiogenesis pathways. In sum,

our study developed an RBP-related mRNA signature that may

provide a theoretical reference for the prognostic estimation or

clinical treatment of HBV-related HCC patients.
Materials and methods

Data acquisition and pre-processing

We downloaded the gene expression data normalized by

upper quartile fragments per kilobase per million reads (FPKM-

UQ) and clinical information of HBV-related HCC patients (159

paired normal and tumor tissues) from the NODE website

(https://www.biosino.org/node/, accessed on 12 August 2021)

(29). The proteomic data of the above samples were collected

from the Clinical Proteomic Tumor Analysis Consortium

(CPATC) database (https://cptac-data-portal.georgetown.edu/

study-summary/S049, accessed on 14 September 2021). The 159

patients from the NODE website were used as a training cohort.

Additionally, we also downloaded the gene expression data

(FPKM-UQ normalized RNA-seq) and clinical information of

HCC patients (50 normal and 371 tumor tissues) from the TCGA

database (https://portal.gdc.cancer.gov/, accessed on 4 September

2021). Furthermore, according to the clinical information of liver

cancer patients of the TCGA database downloaded in the UCSC

Xena database (http://xena.ucsc.edu/, accessed on 16 September

2021), 145 HBV-positive patients with HCC were screened out as
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the test cohort, including 60 patients with HBV only and 85

patients with HBV and HCV (hepatitis C virus). The gene

expression level was further transformed to log2 (FPKM-UQ+1).

Besides, we also downloaded the gene expression microarray data

of GSE14520 from the Gene Expression Omnibus (GEO) database

(https://www.ncbi.nlm.nih.gov/geo, accessed on 16 March 2022).

The 221 HBV-positive patients with complete survival

information were used as the validation cohort.
Identification of RBP-related
mRNAs in HBV-related HCC

We used the R package limma (v3.44.3) (30) to analyze the

differential expression of genes between normal and HBV-

related HCC tissues, and the genes with |log2(fold change)| >

1.5 and p.adjust< 0.001 were considered differentially expressed.

Then, we screened out mRNAs that were significantly up-

regulated or down-regulated in the RNA-seq data from the

NODE and TCGA databases. Subsequently, the Pearson

method was used to analyze the correlation between the 30

chromatin-related RBPs in HepG2 cells (21) and the

differentially expressed mRNAs, and the mRNAs with |R| >

0.3 and p< 0.05 were identified as RBP-related mRNAs.
Establishment of a prognostic model
composed of RBP-related mRNAs
in the training cohort

The patients with overall survival (OS)< 30 days were

excluded to ensure the accuracy of the analysis. Therefore, we

obtained a training cohort of 158 HBV-related HCC patients

from the NODE database and a test cohort containing 145 HBV-

related HCC patients from the TCGA database. According to the

optimal cut-point of the RBP-related mRNA expression

determined by the “surv_cutpoint” function in the survminer

package (survminer package version v.0.4.8, https://rpkgs.

datanovia.com/survminer/index.html, accessed on 6 November

2020), the training cohort was divided into the high- and low-

expression groups. The Kaplan-Meier survival analysis and log-

rank test were used to assess the difference in OS between the

high- and low-expression groups using the survival package (31).

Subsequently, we selected the RBP-related mRNAs that were up-

regulated in tumors and were associated with poor prognosis of

patients or down-regulated in tumors and were related to a

good prognosis.

Next, the survival package was used to perform the

univariate Cox regression analysis to obtain OS-related

mRNAs (p< 0.001). The LASSO Cox regression analysis was

utilized to filter some mRNAs through the R package glmnet
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(32) to prevent the model from overfitting. Multivariate cox

regression was used to construct the prognostic model and the

risk score of each patient was calculated according to the

formula: risk score = Sn
i=1Coefi*Expi. The “Coef” indicates

the coefficient of each mRNA derived from the multivariate

Cox analysis and “Exp” represents the expression level of

each mRNA.
Evaluation and validation for the
prognostic value of the RBP-related
mRNA prognostic model in the training
and test cohorts

According to the optimal cut-point of the risk score, the

training and test cohorts were divided into a high-risk group and

a low-risk group, respectively. The Kaplan-Meier survival

analysis and log-rank test were used to assess the difference in

OS between the high- and low-risk groups. The R package

survivalROC (survivalROC package version v.1.0.3, https://

cran.r-project.org/web/packages/survivalROC/index.html,

accessed on 22 December 2020) was employed to draw the time-

dependent ROC curves for the risk score to evaluate the

prediction accuracy of the prognostic model. Then we drew

the scatterplots of risk scores and survival status of patients

between high- and low-risk groups. The expression heatmaps of

the mRNAs in the model were drawn by the R package

pheatmap (https://cran.r-project.org/web/packages/pheatmap/

index.html/). The RBP-mRNA co-expression network was

constructed to explore the relationships between the RBPs and

their related mRNAs. The Cytoscape software (33) (v.3.8.2,

https://cytoscape.org/, accessed on 22 October 2020) was

performed to visualize the co-expression network.
The relationship between risk score and
clinical characteristics

We compared the difference in risk scores via the Wilcoxon

test between the patients with early-stage (TNM stage I-II) and

late-stage (TNM stage III-IV), as well as the difference in risk

scores between the alive and dead patients. Moreover, we used

the Kaplan-Meier survival analysis to evaluate the differences in

OS between the high- and low-risk groups in different subgroups

classified by clinical characteristics, including TNM stage (stage

I-II, stage III-IV), viral infection (HBV, both HBV and HCV).

The univariate Cox and multivariate Cox analyses were used to

assess the independent prognostic value of the risk score and

clinical characteristics (age, gender, and TNM stage). The ROC

curve analysis was conducted to compare the accuracy in

predicting the prognosis of risk score and other clinical features.
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Functional enrichment analysis

Functional annotations of differentially expressed genes

(DEGs) between the high- and low-risk groups were

performed by the R package ClusterProfiler (34). The terms of

Gene Ontology (GO) with p.adjust< 0.05 were considered to be

significantly enriched. The gene set enrichment analysis (GSEA)

between the high- and low-risk groups was conducted based on

the hallmark gene sets (h.all.v7.4.symbols.gmt) through the

GSEA software (v.4.1.0; http://www.broadinstitute.org/gsea/

index.jsp, accessed on 18 March 2021). The hallmark pathways

with the normalized enrichment score |NES | > 1 and FDR< 0.05

were considered to be significantly enriched.
Verification for the prognostic value of
the RBP-related mRNA prognostic model
in the validation cohort

According to the optimal cut-point of the risk score, the

validation cohort was divided into a high-risk group and a low-

risk group. The Kaplan-Meier survival analysis and log-rank test

were used to assess the difference in OS between the high- and

low-risk groups. The time-dependent ROC curves for the risk

score were drawn to evaluate the prediction accuracy of the

prognostic model. We compared the difference in risk scores via

the Wilcoxon test and Kruskal-Wallis test between the patients

with different TNM stages, as well as the difference in risk scores

between the alive and dead patients. The Cox analyses were used

to assess the independent prognostic value of the risk score and

clinical characteristics. R package GSVA (35) was performed

based on the hallmark gene sets to calculate the enrichment

score for each pathway for each patient. Limma package was

used to search hallmark pathways with significantly different

enrichment scores between the high- and low-risk groups

(p< 0.05).
Cell culture

The human HCC cell lines HepG2, Hep3B, and PLC were

grown in Dulbecco’s modified Eagle’s medium (DMEM)

supplemented with 10% fetal bovine serum (FBS). HepAD38

cell line stably transformed with two copies of HBV genome was

maintained in MEM medium supplemented with 10% FBS, 0.3

mg/ml tetracycline, and 400 mg/ml G418 (GIBCO BRL/Life

Technologies) (36). The HLCZ01 cell line was cultured with

DMEM/F12 medium supplemented with 10% FBS, 40 ng/mL of

dexamethasone, and 10 ng/mL of EGF in collagen-coated tissue

culture plates as described previously (37).
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RNA preparation and qRT-PCR
determination for mRNAs

A total of 23 HCC samples and adjacent normal tissues were

collected from HCC patients who underwent surgical resection

from June 2019 to November 2021 in the Hunan Cancer

Hospital. All patients involved provided written informed

consent. This research was approved by the Ethics Committee

of Hunan Cancer Hospital.

For the assessment of RBP-related mRNAs’ expression in

tissue, total RNA was extracted from the tissue and cells samples

using TRIzol reagent (Thermo Fisher Scientific). Reverse

transcription of total RNA was performed using PrimeScript™

RT reagent Kit with gDNA Eraser (Takara, Kusatsu, Japan) to

avoid genomic DNA contamination. Quantitative PCR was

conducted using SYBR® Premix Ex Taq™ II (Tli RNaseH

Plus) (Takara) with cDNA product, and the primers for PCR

are listed in Supplementary Table 1. RBP-related mRNA

expressions were analyzed using the 2-DDCT method. GAPDH

mRNA was used as a control. Outliers were removed for the

accuracy of the results, and the T-test (after F-test) was utilized

to analyze the differences in mRNA expression levels between

the HCC tissues and adjacent tissues.

For hepatic HBV DNA detection, total DNA was isolated

from liver tissue samples of HCC patients and real-time PCR

for HBV DNA was performed as described previously (38).

The primers used for PCR detection to HBV DNA were

5 ’-CACCTCTGCCTAATCATC-3 ’ (sense) and 5’-GGA

AAGAAGTCAGAAGGCAA-3’ (antisense). GAPDH was used

as the internal control. The primers used for PCR detection to

GAPDH DNA were 5’- GCACCGTCAAGGCTGAGAAC-3’

(sense) and 5’-TGGTGAAGACGCCAGTGGA-3’ (antisense).

The relative fold change of HBV DNA was calculated using

the 2-DCT method.
ELISA

HBs antigens in culture supernatants were measured using

commercial ELISA kits (Shanghai Kehua Bio-Engineering

Company, KHB) according to the manufacturer’s manuals.
Plasmids construction, lentivirus
production, and cell counting assay

The shRNAs targeting human F11 and PSRC1 were

designed and subcloned into the lentiviral vector pLKO.1-puro

(Sigma-Aldrich) (Supplementary Table 2). The lentiviral

plasmids were co-transfected with packaging plasmids
frontiersin.org
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pMD2.G and psPAX2 into HEK293T cells for 24h or 48h.

Lentivirus expressing shRNAs or pLKO.1-puro (non-target

control, NTC) were collected and added into the culture

medium of Hep3B and PLC cells in the presence of polybrene.

Cell numbers were determined by trypan blue counting and data

were presented as mean ± SD.
Western blotting

Cell lysates were prepared in RIPA buffer [10% SDS, 20%

NP-40, 0.5M EDTA, 5M NaCl, and 1.25M Tris-Cl (pH 8.0)]

supplemented with proteasome inhibitors. Equal amounts of

protein were separated on SDS-PAGE gels and then transferred

to PVDF membranes (Amersham, GE, USA). Membranes were

incubated with specific primary antibodies: anti-F11 (45895-1;

Signalway Antibody); anti-PSRC1 (32879-1; Signalway

Antibody). Anti-b-actin (66009-1-Ig; Proteintech) served as

the loading control. HRP-conjugated anti-mouse or anti-rabbit

secondary antibodies were used, and signals were detected using

Western ECL substrate (Beyotime).
Statistical analysis

Data were analyzed on R software (version v.4.0.2, https://

www.r-project.org/, accessed on 22 June 2020). The limma

package was used to identify the DEGs between the two

groups. The Pearson method was used to analyze the

correlation between RBPs and differentially expressed mRNAs.

The differences in risk scores between different groups were

calculated with the Wilcoxon test or Kruskal-Wallis test. Unless

otherwise stated, p-value<0.05 were considered significant.
Results

Identification of differentially expressed
mRNAs associated with RBPs in HBV-
related HCC

The analysis process of differentially expressed mRNAs

related to RBPs is shown in the flowchart (Figure 1A). First,

we identified 1,341 differentially expressed mRNAs between the

159 paired normal and HBV-related HCC from the NODE

database. Meanwhile, we detected 2,057 differentially expressed

mRNAs between the 50 normal and 145 HBV-related HCC from

the TCGA database. Then, we chose 1,041 differentially

expressed mRNAs that were both significantly up-regulated

and down-regulated in the tumor tissues of the NODE and

TCGA databases. Subsequently, a total of 626 mRNAs were

identified as RBP-related mRNAs by expression correlation
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analysis of the 30 chromatin-related RBPs and 1,041

differentially expressed mRNAs (|R| > 0.3, p< 0.05).

Furthermore, for the 626 RBP-related mRNAs, we screened

out mRNAs whose expression levels are negatively correlated

with the prognosis of patients, according to the Kaplan-Meier

survival analysis in both the training cohort (NODE) and test

cohort (TCGA). Then, 513 shared mRNAs were identified

between the training and test cohorts, with 207 upregulated

and 306 downregulated.
Construction of a prognostic model
consisting of five RBP-related mRNAs in
the training cohort

Among 513 RBP-related mRNAs, 135 mRNAs were further

screened to be associated with OS through univariate Cox

analysis in the training cohort (p< 0.001). Then, the LASSO

Cox analysis was performed to avoid the overfitting of the

model. As shown in Figures 1B, C, the upper abscissa

represents the number of mRNAs with non-zero coefficients

under the corresponding lambda. As the lambda value increased,

there were fewer mRNAs with non-zero coefficients (Figure 1B).

As a result, 11 mRNAs were obtained according to the optimal

parameter (the lambda value corresponding to the dotted line on

the left in the figure) selection with minimum criteria in the

LASSO model (Figure 1C). Subsequently, the multivariate Cox

analysis was performed to build a prognostic model consisting of

five RBP-related mRNAs (Figure 1D). Next, we calculated the

risk score of each patient based on the coefficients (Table 1) and

the expression of these five mRNAs.

The forest plot of the univariate Cox regression analysis for

the five RBP-related mRNAs in the training cohort showed three

mRNAs (F11, FBP1, and SLC6A13) were protective factors for

the prognosis of HBV-HCC patients (HR< 1), whereas two

mRNAs (NXPH4 and PSCR1) were risk factors (HR > 1)

(Supplementary Figure 1A). The Pearson correlation analysis

(|R| > 0.3, p< 0.05) showed that 20 of 30 chromatin-related RBPs

were tightly associated with the five mRNAs in the prognostic

model. We also constructed an RBP-mRNA co-expression

network to visualize their relationships (Supplementary

Figure 1B). The detailed correlations of these mRNAs with

RBPs and risk types are shown in the Sankey plot

(Supplementary Figure 1C).
The expression of the five mRNAs of the
prognostic model and survival analysis

The boxplot indicated the mRNAs expression of F11, FBP1,

and SLC6A13 were significantly down-regulated in the HBV-

related HCC tissues compared to normal tissues from the NODE
frontiersin.org
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FIGURE 1

Identification of the differentially expressed mRNAs associated with RBPs and construction of a prognostic model. (A) The flowchart for
identification of RBP-related mRNAs. (B) The LASSO coefficient profiles of the RBP-related mRNAs related to OS. (C) The cross-validation plot
of LASSO regression Cox analysis shows the optimal parameter selection with minimum criteria (the lambda value corresponding to the black
dashed line on the left). (D) Forest plot of the five RBP-related mRNAs obtained via the multivariate Cox regression analysis.
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database, whereas the NXPH4 and PSRC1 were significantly up-

regulated (Supplementary Figure 2A). Similarly, the expression

levels of these 5 mRNAs were dysregulated between the normal

and HBV-related HCC tissues from the TCGA database

(Supplementary Figure 3A). The survival analyses based on

expression levels of these 5 mRNAs were conducted to further

clarify their prognostic role in the HBV-related HCC. The

mRNAs F11, FBP1, and SLC6A13 were associated with

the good prognosis of the HBV-related HCC patients in the

training cohort (Supplementary Figures 2B–D) and test cohort

(Supplementary Figures 3B–D). In contrast, the mRNAs

NXPH4 and PSRC1 were associated with the poor prognosis

of the patients in the training cohort (Supplementary Figures 2E,

F) and test cohort (Supplementary Figures 3E, F).
Assessment and validation for the
prognostic value of the RBP-related
mRNA model

Firstly, the training cohort was divided into the high-risk

(n = 50) and low-risk (n = 108) groups based on the optimal cut-

point of risk score (risk score = -1.6378). Kaplan-Meier survival

curve demonstrated that the survival rate of the high-risk group

was significantly lower than that of the low-risk group

(Figure 2A). Additionally, time-dependent ROC curves were

drawn to verify the accuracy of the prognostic model, and 1-, 3-

and 5-year AUC values reached 0.818, 0.806, and 0.790,

respectively (Figure 2B). The distributions of risk score and

survival status between the high- and low-risk groups are plotted

in Figures 2C, D. The heatmap showed the expression levels of

the five RBP-related mRNAs between the high- and low-risk

groups (Figure 2E).

Furthermore, to test the prognostic performance of the RBP-

related mRNA model, the test cohort was categorized into the

high-risk (n = 54) and low-risk (n = 81) groups according to the

optimal cut-point of risk score (risk score = -2.3237). Consistent

with the previous result, Kaplan-Meier survival curve

demonstrated that the patients in the high-risk group had

shorter OS than that of the low-risk group (Figure 3A). ROC

curves showed the 1-, 3- and 5-year AUC values were 0.740,

0.763, and 0.734, respectively (Figure 3B). The distributions of
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risk score and survival status between the high- and low-risk

groups are plotted in Figures 3C, D. The heatmap showed the

expression levels of the five RBP-related mRNAs between the

high- and low-risk groups (Figure 3E).
Correlation of the risk score of the
prognostic model with clinical
characteristics

The relationship between the risk score of the 5-mRNA

model and clinical characteristics was evaluated to explore

whether the model was associated with the clinical

characteristics. The patients with late-stage (TNM stage III-IV)

had higher risk scores than patients with early-stage (TNM stage

I-II) in the training cohort (Figure 4A) and test cohort

(Figure 4B). The dead patients also had higher risk scores than

alive patients in the training cohort (Figure 4C) and test

cohort (Figure 4D).

Then, the stratification analysis was used to evaluate

differences in OS between the high- and low-risk groups of

various subgroups stratified by the clinical characteristics. In the

training cohort, the prognosis of patients with high-risk scores

was worse than that of patients with low-risk scores in the

subgroups classified by the early and later stages (Figures 4E, F).

Additionally, in the test cohort, the patients in the high-risk

group had a poorer prognosis than that of patients in the low-

risk group in the subgroups categorized by the clinical

characteristics, including TNM stage I-II, TNM stage II-IV,

HBV-positive, and HBV- and HCV-positive (Figures 4G–J).
The prognostic model served as an
independent prognostic factor for HBV-
related HCC patients

To evaluate whether this model can be used as an

independent prognostic factor for HBV-related HCC patients,

we performed univariate Cox analysis and multivariate Cox

analysis. First, in the training data set, the result of the

univariate factor Cox analysis showed that the risk score of the

model was highly correlated with the patients’ prognosis
TABLE 1 The coefficients of 5 RBP-related mRNAs by the multivariable Cox regression analysis in the training cohort.

Gene symbol Ensembl ID Genomic location Coefficient

F11 ENSG00000088926 Chr4: 186,266,189-186,289,681 -0.240334189

FBP1 ENSG00000165140 Chr9: 94,603,133-94,640,249 -0.184718481

SLC6A13 ENSG00000010379 Chr12: 220,621-262,873 -0.156826316

NXPH4 ENSG00000182379 Chr12: 57,216,794-57,226,449 0.172572929

PSRC1 ENSG00000134222 Chr1: 109,279,556-109,283,186 0.366513978
f

The reference genome version used for the Genomic location was GRCh38. Chr, chromosome.
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(Figure 5A). The result of the multivariate Cox analysis indicated

the risk score can be used as an independent prognostic factor

for the patients (Figure 5B). Similarly, the univariate (Figure 5C)

and multivariate Cox analysis (Figure 5D) in the test cohort also

demonstrated the risk score can act as an independent

prognostic factor. Moreover, in the training cohort (Figure 5E)

and test cohort (Figure 5F), the AUC values of the risk score

were also higher than those of other clinical characteristics such

as age, gender, and TNM stage.
Functional enrichment analysis

The GO enrichment and GSEA analyses were employed to

further explore the potential biological prognostic model

involved in HBV-related HCC patients. The up-regulated
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DEGs between the high- and low-risk groups were mainly

enriched in cell cycle-related pathways (Figures 6A, C).

However, down-regulated DEGs were mainly enriched in

some metabolic-related pathways (Figures 6B, D). The GSEA

analyses for genes in the training and test cohorts suggested

that some pathways closely related to cancer were enriched in

the h igh-r i sk group , such as “HALLMARK G2M

CHECKPOINT” , “HALLMARK MITOTIC SPINDLE” ,

“HALLMARK DNA REPAIR”, “HALLMARK EPITHELIAL

MESENCHYMAL TRANS IT ION ” , “HALLMARK

GLYCOLYSIS” , and “HALLMARK INFLAMMATORY

RESPONSE” pathways (Figures 7A, B). Conversely,

“HALLMARK OXIDATIVE PHOSPHORYLATION” and

some other metabolic pathways were enriched in the low-risk

group (Figures 7A, B). Similarly, the GSEA analysis for

proteins in the test cohort revealed that the high-risk group
B

C

D

E

A

FIGURE 2

Evaluation of the prognostic performance of the RBP-related risk model in the training cohort. (A) Kaplan–Meier curve shows the difference in
OS between the high- and low-risk groups in the training cohort. (B) The 1-, 3-, and 5-year ROC curves based on the risk score show the
accuracy of the prognostic prediction of the RBP-related risk model. (C) The distribution of risk scores of patients in the high- and low-risk
groups. (D) The distribution of survival time and status of patients in the high- and low-risk groups. (E) Heatmap of clustering analysis for the
expression of five RBP-related mRNAs in the high- and low-risk groups.
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was enriched in the pathways associated with cancer

(Supplementary Figure 4A), whereas the low-risk group was

enriched in the pathways re levant to metabol i sm

(Supplementary Figure 4B).
Verification for the prognostic value of
the RBP-related mRNA model

To further evaluate the prognostic performance of the RBP-

related mRNA model, we divided the validation cohort into the

high-risk (n = 109) and low-risk (n = 112) groups based on the

optimal cut-point of risk score (risk score = -1.2607). Similar to

previous results, the Kaplan-Meier survival curve indicated that

the patients in the high-risk group had a lower survival rate than

that in the low-risk group (Figure 8A). ROC curves of risk score

showed the 1-, 3- and 5-year AUC values were 0.681, 0.612, and
Frontiers in Oncology 09
0.627, respectively (Figure 8B). As shown in Figure 8C, as the

tumor stage increased, the risk score also increased significantly.

The dead patients also had higher risk scores than alive patients

in the validation cohort (Figure 8D). The univariate (Figure 8E)

and multivariate Cox analysis (Figure 8F) supported that the risk

score could serve as an independent prognostic factor. The result

of Gene Set Variation Analysis (GSVA) demonstrated that the

metabolic-related pathways were enriched in the low-risk group

and the proliferation-related pathways were enriched in the

high-risk group (Supplementary Figure 5).
Determination of the five RBP-related
mRNAs’ expression levels in HCC

To examine the expression of the five RBP-related mRNAs

in HCC by experiment, we performed the quantitative real-
B

C

D

E

A

FIGURE 3

Verification for the prognostic performance of the RBP-related risk model in the test cohort. (A) Kaplan–Meier curve shows the difference in OS
between the high- and low-risk groups in the test cohort. (B) The 1-, 3-, and 5-year ROC curves based on the risk score show the accuracy of
the prognostic prediction of the RBP-related risk model. (C) The distribution of risk scores in the high- and low-risk groups. (D) The distribution
of survival time and status of patients in the high- and low-risk groups. (E) Heatmap of clustering analysis for the expression of five RBP-related
mRNAs in the high- and low-risk groups.
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time PCR with RNAs extracted from 23 pairs of HCC tissues

and adjacent tissues in which the presence of HBV DNAs was

confirmed among the genomic DNAs (Supplementary

Figure 6). Our experimental results indicated that, compared

to adjacent tissues, F11 and FBP1 were significantly down-

regulated (Figures 9A, B), whereas PSRC1 was significantly

up-regulated (Figure 9C) in HCC tissues. However, in our

experiment, we didn’t observe the expression change of

NXPH4 and SLC6A13 mRNA levels between HCC tissues
Frontiers in Oncology 10
and adjacent tissues (Figures 9D, E), both of whom were lower

than that of the other three mRNAs.

The expression levels of the five RBP-
related mRNAs in HBV- and HBV+
Hepatoma cells

To further examine the effect of HBV on the five RBP-related

mRNAs, we compared their expression in HBV- and HBV+
frontiersin
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FIGURE 4

The relationship between the risk score and clinical characteristics of patients. The box plots show that the risk scores of patients with stage III-
IV are significantly higher than those of patients with stage I-II in the training cohort (A) and test cohort (B). The box plots show that the risk
scores of dead patients are significantly higher than those of alive patients in the training cohort (C) and test cohort (D). Kaplan–Meier curves
show the difference in OS between the high- and low-risk groups in two subgroups of the training cohort, including Stage I-II (E) and Stage III-
IV (F). Kaplan–Meier curves show the difference in OS between the high- and low-risk groups in several subgroups of the test cohort, including
Stage I-II (G), Stage III-IV (H), HBV (only HBV-positive) (I), and HBV-HCV (both HBV- and HCV-positive) (J).
.org

https://doi.org/10.3389/fonc.2022.970613
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org


Xu et al. 10.3389/fonc.2022.970613
HCC cells, including HBV- and HBV+ HLCZ01 cells, as well as

HepG2 and HepAD38 cells (Figures 9F, G, I, J). It was found that

the expression levels of F11 and FBP1 mRNAs were significantly

decreased, while the expression level of PSRC1 mRNA was

significantly increased in the presence of HBV (Figures 9H,

K). However, NXPH4 and SLC6A13 mRNA levels were not

significantly different between HBV- and HBV+ HCC cells.
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The effect of RBP-related mRNAs on
cell proliferation of HBV-related HCC
cell lines
To explore the function of RBP-related mRNAs in HBV-

related HCC, we knocked down the expression of F11 and
B

C

D

E F

A

FIGURE 5

Univariate Cox, multivariate Cox, and ROC curve analyses of the risk score and clinical characteristics in the training and test cohorts. Forest
plots of the univariate (A) and multivariate (B) Cox regression analyses of risk score and clinical characteristics in the training cohort. Forest plots
of the univariate (C) and multivariate (D) Cox regression analyses of the risk score and clinical characteristics in the test cohort. (E) The ROC
curves at 1-year OS of the risk score and clinical characteristics in the training cohort. (F) The ROC curves at 1-year OS of the risk score and
clinical characteristics in the test cohort.
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FIGURE 6

GO enrichment analysis of DEGs between the high- and low-risk groups. (A) The top 10 GO biological processes with the significant
enrichment of the up-regulated genes between the high- and low-risk groups in the training cohort. (B) The top 10 GO biological processes
with the significant enrichment of the down-regulated genes between the high- and low-risk groups in the training cohort. (C) The top 10
GO biological processes with the significant enrichment of the down-regulated genes between the high- and low-risk groups in the test
cohort. (D) The top 10 GO biological processes with the significant enrichment of the down-regulated genes between the high- and
low-risk groups in the test cohort.
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B

A

FIGURE 7

The GSEA analysis for genes between the high- and low-risk groups. (A) The hallmark pathways that were significantly enriched in the high- and
low-risk groups based on the transcriptome data in the training cohort. (B) The hallmark pathways were significantly enriched in the high- and
low-risk groups based on the transcriptome data in the test cohort. Pathways marked in yellow are some pathways that were both enriched in
the high-risk group of training and test cohorts, and pathways marked in purple are some pathways that were both enriched in the low-risk
group of training and test cohorts.
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PSRC1 with shRNAs in Hep3B and PLC, two cell lines that

contain Hepatitis B viral DNA and secrete HBsAg. Our

experimental results show that cell proliferation increased after

the knockdown of F11 (Figures 9L, M). However, PSRC1
Frontiers in Oncology 14
knockdown leads to decreased cell proliferation (Figures 9N,

O). Therefore, F11 and PSRC1 may play a suppressive and

enhancing effect on cell proliferation of HBV-containing HCC

cell lines, respectively.
B

C D
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A

FIGURE 8

Verification for the prognostic performance of the RBP-related risk model in the validation cohort. (A) Kaplan–Meier curve shows the difference
in OS between the high- and low-risk groups in the validation cohort. (B) The 1-, 3-, and 5-year ROC curves based on the risk score show the
accuracy of the prognostic prediction of the RBP-related risk model. (C) The box plot shows the difference in risk scores of patients with
different TNM stages. (D) The box plot shows the difference in risk scores of patients with different survival statuses. Forest plots of the
univariate (E) and multivariate (F) Cox regression analyses of risk score and clinical characteristics in the validation cohort.
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FIGURE 9

The expression levels of the five RBP-related mRNAs in HCC tissues and cells, and their effect on cell proliferation. The scatter plots show F11
(A), FBP1 (B), PSRC1 (C), NXPH4 (D), and SLC6A13 (E) mRNA expression levels in HCC tissues (Tumor) and adjacent normal tissues (Normal). (F)
HBsAg in the supernatant of HBV-infected (HBV+) or uninfected (HBV-) HLCZ01 cells was detected by ELISA. (G) The viral pregenomic RNA
level determined by real-time PCR was shown as the number of HBV pregenomic RNA copies per 106 cells. (H) The mRNA abundance of F11,
FBP1, SLC6A13, NXPH4, and PSRC1 was assayed in HBV+ or HBV- HLCZ01 cells. The differences of HBsAg, the viral pregenomic RNA level, and
the five RBP-related mRNAs’ expression levels were also compared between HepG2 (HBV-) and HepAD38 (HBV+) cell lines (I–K). The
expression levels of the five RBP-related mRNAs were normalized by GAPDH mRNA. Cell growth was determined by trypan blue counting in
Hep3B (L) or PLC (M) cells expressing NTC or shF11 (shF11#1 or shF11#2). Knockdown efficiency of F11 was verified by Western blotting. Cell
growth was also determined by trypan blue counting in Hep3B (N) or PLC (O) cells expressing NTC or shPSRC1 (shPSRC1#1 or shPSRC1#2).
Knockdown efficiency of PSRC1 was verified by Western blotting. *P<0.05 between the indicated groups; **P<0.01 between the indicated
groups; ***P<0.001 between the indicated groups.
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Discussion

HBV is a hepatotropic virus that can cause persistent

infection and chronic hepatitis, which may ultimately lead to

cirrhosis and HCC (39, 40). Despite the HBV vaccination and

antiviral therapies are effective, HBV-related HCC remains the

current major factor for liver cancer and mortality (4, 41).

Therefore, the search for reliable prognostic biomarkers to

improve clinical outcomes for patients is urgent. Multiple

RBPs have been demonstrated to be related to the prognosis of

HCC patients (24, 25, 42), including HBV-related HCC (27).

Although emerging evidence implicates gene expression has

been regulated by RBP at the transcriptional level (19, 21–23),

the prognostic values of genes associated with chromatin-

relevant RBPs in HBV-related HCC remain largely unknown.

Thence, we herein aimed to develop a prognostic model for

HBV-positive HCC patients based on the mRNAs related to

chromatin-relevant RBPs.

In this study, we firstly screened out 1,041 mRNAs that were

differentially expressed between normal and HBV-related HCC

tissues. Subsequently, we identified 626 differentially expressed

mRNAs related to the 30 RBPs associated with chromatin based

on the proteomic and RNA-seq data. Furthermore, 135 RBP-

related mRNAs were confirmed to be associated with the

prognosis of HBV-related HCC patients through the survival

and univariate Cox regression analyses in the training cohort.

Afterward, combining the LASSO and multivariate Cox

regression analysis, a panel of five RBP-related mRNAs was

selected to construct a prognostic model in the training cohort.

The risk score of each patient in the training, test, and validation

cohorts were calculated based on the expression levels of the five

genes. Moreover, we evaluated and verified the prognostic value

of this model in the training, test, and validation cohorts. The

patients were divided into the high- and low-risk subgroups

based on the optimal cut-point of risk score, patients in the high-

risk group had a worse prognosis. Multivariate Cox regression

analysis indicated that the risk score was an independent risk

factor for OS. ROC curve analysis suggested that the prognostic

model has high accuracy in the prognostic prediction for HBV-

related HCC patients.

GSEA analyses between the high- and low-risk groups

indicated that some cancer-related pathways were enriched in

the high-risk group, including the proliferation- and metastasis-

related pathways, while some metabolic pathways were enriched

in the low-risk group (Figure 7 and Supplementary Figures 4–5).

Previous studies have shown that HCC can be broadly categorized

into the proliferation and nonproliferation subgroups, and the

proliferation subgroup that tends to have a more aggressive

phenotype was related to a poor prognosis of HCC patients (43,

44). Thus, in our study, we considered the high-risk group as the

proliferation subgroup and the low-risk group as the metabolism

subgroup (nonproliferation subgroup). Consistent with previous

findings, the HBV-related HCC patients of the proliferation
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subgroup had a worse clinical outcome than those of the

metabolism subgroup (1). Concretely, the hypoxia, glycolysis,

epithelial-mesenchymal transition, and angiogenesis pathways

were enriched in the high-risk group, but the oxidative

phosphorylation pathway was enriched in the low-risk group

(Figure 7 and Supplementary Figures 4–5). Metabolic

reprogramming is an important biological process by which

cancer can acquire the material and energy, and one hallmark

of it is the increase in aerobic glycolysis with the decrease in

oxidative phosphorylation (45). The hypoxic environment

promotes anaerobic glycolysis in cancer and the cancer cells

prefer the glycolytic anaerobic metabolism even under normal

circumstances (46). Additionally, some studies suggested that the

hypoxia-inducible factor proteins could promote angiogenesis in

HCC tumors by inducing the expression of proangiogenic factors

(47). As the tumor cells in the high-risk group tend to and

angiogenesis phenotypes, the antiangiogenics might be suitable

for the treatment of patients in the high-risk group (48, 49). To

sum up, we explored the possible reasons for the different

outcomes of patients in the high- and low-risk groups and

potential therapy for patients in the high-risk group.

Our study revealed that the five mRNAs that constituted the

prognostic model were all significantly dysregulated and related

to the OS of HBV-related HCC patients. Among them, F11,

FBP1, and SLC6A13 were down-regulated in HBV-related HCC

and can act as the protective factors for the prognosis of HBV-

related HCC patients. In contrast, the NXPH4 and PSRC1 were

down-regulated in HBV-related HCC and can serve as the

prognostic risk factors. The previous study revealed that the

mRNA and protein levels of FBP1 were significantly decreased

in HCC tissues relative to normal tissues (50). Mounting

evidence also shows that FBP1 can inhibit the occurrence and

development of HCC through the metabolic pathways (51, 52).

Furthermore, the low FBP1 expression can predict a poor

clinical outcome in HCC (51, 53). Recent research found that

NXPH4 promotes the proliferation and migration of lung cancer

cells (54). The bioinformatics-based study uncovered that the

mRNA expression level of NXPH4 was significantly up-

regulated in HCC (55). The high mRNA levels of PSRC1 are

associated with poor survival of HCC patients (56) and the

oncoprotein DDA3 encoded by the PSRC1 gene is

downregulated by p53 (57). Experimentally, we validated

significant down-regulation of F11 and FBP1, but up-

regulation of PSRC1 mRNA level in HCC tissues. However,

we were unable to detect the expression variation of NXPH4 and

SLC6A13 mRNA in HCC, possibly as a result of their low

expression levels in both HCC tissues and adjacent tissues.

Interestingly, we found long-term survival of HBV leads to

down-regulated expression levels of F11 and FBP1 mRNAs but

up-regulated PSRC1 mRNA in HBV-replicating hepatocellular

carcinoma cell lines (Figures 9F–K). Moreover, F11 decreases but

PSRC1 increases cell proliferation of HBV-containing HCC cells

(Figures 9L–O), indicating their potential tumor-suppressive and
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promoting function in HCC development, respectively.

Collectively, the above evidence suggests that the five mRNAs

may play pivotal roles in the occurrence and progression of HCC.

To sum up, based on the 5 RBP-related mRNAs, our study

developed and validated the prognostic model for HBV-related

HCC patients. Furthermore, in clinical applications, measuring

the expression levels of only five mRNAs can provide an accurate

prognosis for patients and is beneficial to reduce costs. Although

our study used three independent cohorts, there are still some

limitations. Firstly, a relatively small number of HBV-positive

patients were used in this study. Thus, further validation in the

other cohort containing a relatively large number of patients can

verify the accuracy of the model. Secondly, future studies about

the molecular mechanisms of the five mRNAs in the model will

further support our study. Nonetheless, the prognostic model

may serve as the biomarker for HBV-related HCC patients.
Conclusions

In conclusion, this study identified 626 differentially expressed

mRNAs associated with 30 chromatin-related RBPs in the HBV-

related HCC. A 5-mRNA panel derived from these mRNAs was

used to establish the prognostic model for HBV-related HCC

patients. Additionally, the accuracy of the prognostic models was

validated separately in the independent datasets. Therefore, the

models may be useful for clinical prognostic risk stratification.
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