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Abstract 

Background:  Endostatin (ES) is a well-established potent endogenous antiangiogenic factor. An ES variant, called 
zinc-binding protein-ES (ZBP-ES), is clinically available; however, its use is limited by rapid renal clearance and short 
residence time. PEGylation has been exploited to overcome these shortcomings, and mono-PEGylated ES (called 
M2ES) as well as mono-PEGylated ZBP-ES (MZBP-ES) are developed in our study. This study aimed to compare the 
biophysical properties and biological effects of M2ES and MZBP-ES to evaluate their druggability.

Methods:  Circular dichroism and tryptophan emission fluorescence were used to monitor the conformational 
changes of M2ES and MZBP-ES. Their resistance to trypsin digestion and guanidinium chloride (GdmCl)-induced 
unfolding was examined by Coomassie staining and tryptophan emission fluorescence, respectively. The biological 
effects of M2ES and MZBP-ES on endothelial cell migration were evaluated using Transwell migration and wound 
healing assays, and the uptake of M2ES and MZBP-ES in endothelial cells was also compared by Western blotting and 
immunofluorescence.

Results:  Structural analyses revealed that M2ES has a more compact tertiary structure than MZBP-ES. Moreover, M2ES 
was more resistant to trypsin digestion and GdmCl-induced unfolding compared with MZBP-ES. In addition, although 
M2ES and MZBP-ES showed comparable levels of inhibiting transwell migration and wound healing of endothelial 
cells, M2ES displayed an increased ability to enter cells compared with MZBP-ES, possibly caused by the enhanced 
interaction with nucleolin.

Conclusions:  M2ES has a more compact tertiary structure, is more stable for trypsin digestion and GdmCl-induced 
unfolding, exhibits increased cellular uptake and shows equivalent inhibitory effects on cell migration relative to 
MZBP-ES, indicating that M2ES is a more promising candidate for anticancer drug development compared with 
MZBP-ES.
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Background
Angiogenesis, the formation of new capillaries from pre-
existing blood vessels, is vital for both physiologic and 
pathologic conditions. As one of the hallmarks of cancer 
[1], the process of angiogenesis is exquisitely regulated 
by a variety of activators and inhibitors [2, 3]. These pro-
angiogenic and anti-angiogenic factors constitute a tightly 

controlled angiogenic balance. Among them, one of the 
first identified endogenous factors with anti-angiogenic 
activities was endostatin (ES) [4]. ES, a 22 kD C-terminal 
fragment of collagen XVIII, can significantly retard tumor 
growth by targeting endothelial cells in mouse models [5] 
when assessed by proliferation, migration, tube forma-
tion, and numerous signaling pathways. The clinical trials 
of ES in the United States failed due to insufficient effi-
cacy and problems in the production and formulation [5]. 
However, mutagenesis of ES by the linkage of MGGSH-
HHHH to the N terminus stabilizes ES and has made it 
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successfully clinically available [5]. This ES variant, also 
known as the zinc-binding protein-endostatin (ZBP-ES), 
was approved by the China Food and Drug Administra-
tion (CFDA) to treat non-small cell lung cancer (NSCLC) 
patients in China in 2005 [6]. As a widely used anticancer 
drug in China, ZBP-ES has exhibited beneficial therapeu-
tic effects [7–9]. A meta-analysis of clinical data, involv-
ing 1953 NSCLC patients, demonstrated that ZBP-ES 
co-treatment significantly improved the overall response 
rate and disease control rate of patients who underwent 
platinum-based doublet chemotherapy by 14.7 and 13.5%, 
respectively [6]. In another study, the endpoints of pro-
gression-free survival (PFS) and overall survival (OS) were 
evaluated in a total of 110 patients with metastatic mela-
nomas [8]. Significant improvements were observed in 
favor of the ZBP-ES plus dacarbazine arm compared with 
the placebo plus dacarbazine arm (PFS, 4.5 vs. 1.5 months; 
OS, 12.0 vs. 8.0 months). However, hindered by its rela-
tively rapid renal clearance and short circulation half-life 
in vivo [10], ZBP-ES was recommended to be taken on a 
daily basis in clinic.

PEGylation, the process of covalent attachment of pol-
yethylene glycol (PEG) to the proteins or peptides, can 
overcome the short half-life problem. PEGylation masks 
the surface of the proteins and increases their molecu-
lar size, therefore protecting them from protease diges-
tion and renal filtration, while at the same time increasing 
the protein’s stability and residence time in vivo [11]. The 
applicability and safety of this strategy have been well doc-
umented, and PEGylated proteins have been used in clin-
ics for years. Our group and our partners have developed a 
second generation of ES by conjugation of a PEG molecule 
to the N terminus of wild-type ES, which is also known as 
M2ES, and have tested its safety and efficacy in preclinical 
and clinical studies [12, 13]. M2ES showed a broad spec-
trum of antitumor activities in several types of tumors 
(data to be published) and was well tolerated in rhesus 
monkeys [12]. Furthermore, in the phase I trial, M2ES 
was well tolerated in pancreatic adenocarcinoma patients 
when concurrently administered with gemcitabine [13]. 
Other groups have also generated mono-PEGylated ZBP-
ES and examined its potency in animal models [14, 15].

The objective of this study was to comprehensively 
compare both the biophysical properties and biological 
activities of M2ES and mono-PEGylated ZBP-ES (MZBP-
ES), and therefore provide a basis for better understand-
ing the druggability and bioactivities of PEGylated ES 
variants.

Methods
Proteins, antibodies, and cell culture
The recombinant proteins used in this study were pro-
vided by Protgen Co., Ltd. (Beijing, China). ES and 

ZBP-ES were expressed in E. coli, refolded into native 
forms and purified. The N-terminal site-directed mono-
PEGylation was conducted by addition of 20  mmol/L 
NaBH3CN and incubating the PEG2000 and proteins 
(PEG2000:protein = 1.5:1) at room temperature for more 
than 2 h, followed by purification.

We purchased primary antibodies against extracel-
lular regulated protein kinases (Erk), phosphor-Erk, 
glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 
(Santa Cruz Biotechnology, Santa Cruz, CA, USA), PEG 
(Abcam, Cambridge, UK), and turbo green fluorescent 
protein (tGFP) (OriGene, Rockville, MD, USA). Anti-ES 
antibody was from our lab stock.

Human microvascular endothelial cells (HMECs) were 
from our lab stock and cultured in Dulbecco’s Modified 
Eagle Medium (DMEM) containing 10% fetal bovine 
serum (Hyclone, Logan, UT, USA).

Circular dichroism (CD)
The far-ultraviolet (UV) CD spectra were obtained by a 
Chirascan™-plus CD Spectrometer (Applied photophysics, 
Surrey, UK). ES or its variants were diluted in 5 mmol/L 
Tris–HCl, pH 7.4, to a final concentration of 10  μmol/L. 
For each protein, data were recorded three times and cor-
rected by subtracting the baseline spectrum of the buffer.

Tryptophan emission fluorescence
Tryptophan emission fluorescence is a good probe to 
monitor the subtle tertiary structural changes of ES [16]. 
Proteins (1 μmol/L) in Tris buffer were measured as pre-
viously described [17].

Proteolysis assay
ES or its variants (0.5  mg/mL) were incubated with 
trypsin (0.2  mg/mL) in phosphate buffer saline (PBS) 
buffer (pH 7.4) at 37 °C [18]. At each indicated time point, 
reaction solutions were quickly removed and mixed with 
the sodium dodecyl sulfate–polyacrylamide gel electro-
phoresis (SDS–PAGE) loading buffer to stop the trypsin 
digestion reactions. The samples were subsequently sub-
jected to SDS–PAGE and stained with the Coomassie dye.

Guanidinium chloride (GdmCl)‑induced unfolding
ES or its variants (0.8  μmol/L) were incubated in 
5 mmol/L Tris–HCl, pH 7.4, containing GdmCl concen-
trations ranging from 0 to 6 mol/L. After incubation for 
24 h at room temperature, GdmCl-induced denaturation 
was monitored by the tryptophan emission fluorescence 
intensity at 318 nm [5, 19]. Data were normalized by sub-
tracting the baseline fluorescence intensity of the buffer. 
The linear extrapolation method was used to evaluate 
the value of the free change energy in the absence of the 
denaturant GdmCl (�G

o
N−U

), the apparent slope of the 
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plots (m), and the concentration of GdmCl at the mid-
point of the unfolding transition (Cm) as described by 
Santoro and Bolen [20].

In vitro protein–protein interactions
The nucleolin-tGFP plasmid was transfected into 
HMECs. Nucleolin-tGFP proteins were immunopre-
cipitated following the procedure described in our pre-
vious study [21]. Subsequently, ES or its variants were 
incubated with the nucleolin-tGFP beads for 1 h at 4 °C. 
After washing with the lysis buffer (150  mmol/L Tris, 
50  mmol/L sodium chloride, 1% NP40, protease inhibi-
tor mixture, pH 7.4), the bead-bound proteins were sub-
jected to Western blotting.

Internalization assay
As previously described [22], HMECs were treated with 
5  μg/mL ES or its variants for 1  h. Subsequently, cells 
were washed with acidic buffer (pH 3.5) and ice-cold PBS 
to remove cell surface-binding proteins. The amount of 
internalized proteins was examined by Western blotting 
or immunofluorescence.

Western blotting
Protein samples were separated by SDS–PAGE and 
transferred to a polyvinylidene difluoride (PVDF) 
membrane. After blocking for 1  h at room tempera-
ture, the membrane was incubated with the indicated 
primary antibodies overnight and then to the corre-
sponding horseradish peroxidase (HRP)-conjugated goat-
anti-mouse or goat-anti-rabbit secondary antibodies 
for 1  h. The enhanced chemiluminescent substrate was 
added to the blot, and reactive bands were detected.

Immunofluorescence
Cells were seeded directly on coverslips, fixed, and 
stained. After blocking with 5% goat serum, cells were 
incubated with the indicated primary antibodies and 
fluorescein isothiocyanate (FITC)-labeled secondary 
antibodies. The nucleus was stained with 4′,6-diamid-
ino-2-phenylindole (DAPI). Images were captured using 
a Nikon A1 confocal microscope (Nikon Corporation, 
Tokyo, Japan).

Transwell migration and wound healing
Transwell migration and wound healing assays were con-
ducted as previously described [22]. Cells were treated 
with the indicated proteins for 6 and 48  h at 37  °C, 
respectively. All experiments were repeated twice.

Statistical analyses
All data from the experiments were presented as 
means ± standard deviations (SDs). Differences between 

two groups were calculated by GraphPad (GraphPad 
Software, San Diego, CA, USA), and considered signifi-
cant if the P value was <0.05 using a two-tailed Student’s 
t test.

Results
Structural analyses
The schematic diagram shows the sequence of ES, ZBP-
ES, M2ES, and MZBP-ES (Fig.  1a). The purity of these 
proteins is shown in Fig.  1b. The proteins were tested 
for secondary and tertiary structures using CD and 
tryptophan emission fluorescence. The CD spectra 
results revealed that no obvious change in the second-
ary structure was observed between ES and ZBP-ES, 
whereas slight differences were observed between M2ES 
and MZBP-ES (Fig.  1c). The maximal Trp fluorescence 
emission wavelengths (λmax) of all the ES variants were 
approximately 318  nm (Fig.  1d), indicating a relatively 
stable core structure of ES variants. However, the fluores-
cence intensities of ES and M2ES were higher than those 
of ZBP-ES and MZBP-ES, respectively, implying that 
the tertiary structure of ES is more compact than that of 
ZBP-ES and that the tertiary structure of M2ES is more 
compact than that of MZBP-ES.

Taken together, N-terminal modifications do not affect 
the core structure of ES, whereas the tertiary structure of 
M2ES is more compact than that of MZBP-ES.

Protease digestion
To identify the stability of ES variants, trypsin was incu-
bated with ES variants for the indicated time periods. 
ES was quickly digested within 20  min, whereas ZBP-
ES was not totally digested until 4 h (Fig. 2a). PEGylated 
proteins were overall more resistant to trypsin digestion 
compared with intact proteins. Interestingly, after incu-
bation for 6  h, the residual amount of full-length M2ES 
was larger than that of MZBP-ES. Quantitative results 
showed that the initial reaction rate was 0.026  mg/
(mL·min) for M2ES and 0.037  mg/(mL·min) for MZBP-
ES. These results showed that M2ES was more resistant 
to trypsin digestion than MZBP-ES.

GdmCl‑induced unfolding
GdmCl-induced unfolding was used to detect the struc-
tural stability and unfolding cooperativity of ES variants. 
Slight changes were observed between the unfolding 
curves of ES and ZBP-ES (Fig.  2b, upper panel). These 
two proteins had a similar Cm value, whereas the modi-
fied ES exhibited lower values of ΔGo

N–U and m (Table 1). 
Moreover, the unfolding curve of M2ES had slight shifts 
towards higher GdmCl concentrations compared with 
that of MZBP-ES (Fig. 2b, lower panel), with increases in 
ΔGo

N–U, m, and Cm (Table  1). These results showed that 
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both the structural stability and unfolding cooperativity 
of M2ES were better than those of MZBP-ES (Fig. 2c).

Biological activities
We next investigated the effects of ES variants on 
endothelial cell activities. ES and its variants significantly 
reduced endothelial cell migration, and PEGylated pro-
teins were more efficient compared with intact proteins 
(Fig. 3a, b). In the Transwell assay, M2ES and MZBP-ES 
inhibited endothelial cell migration to an equivalent 
extent. The wound healing scratch results showed that 
M2ES was slightly more potent than MZBP-ES in retard-
ing wound healing (Fig. 3c).

ES was shown to bind to the vascular endothelial 
growth factor receptor 2 (VEGFR2) on the surface 
of endothelial cells and disrupt vascular endothelial 
growth factor (VEGF)-induced activation of mitogen-
activated protein kinase/extracellular regulated protein 
kinases (MAPK/Erk) [23]. All ES variants inhibited Erk 
phosphorylation (Fig.  3d). ZBP-ES was more potent in 
reducing Erk activation compared with ES, whereas the 
blockage effect of M2ES was more potent than that of 
MZBP-ES.

In summary, M2ES and MZBP-ES had comparable 
effects on the inhibition of cell migration, whereas M2ES 
was more efficient in disrupting Erk activation.

Internalization by endothelial cells and interactions 
with cell surface receptors
Internalization is important, if not critical, for the bio-
logical functions of ES [24]. Increasing the uptake of ES 
via the addition of cholesterol chelating agents [22] or 
engineering a peptide to its N terminus [25] dramatically 
enhanced the therapeutic efficacy of ES. We determined 
the uptake of ES and its variants by HMECs and found 
that ZBP-ES was more efficient in entering the cells than 
ES (Fig. 4a), which validates the data from our previous 
study [16]. Intriguingly, more M2ES proteins accumu-
lated in the cells than MZBP-ES (Fig.  4a). Consistent 
results were obtained by immunofluorescence (Fig. 4b).

Nucleolin is a functional receptor of ES and partici-
pates in the ES internalization process [26]; therefore, 
we explored whether the distinction of ES variant inter-
nalization was attributed to different binding affinities 
to nucleolin. Consistent with the internalization results 
(Fig. 4a, b), ES showed weaker interaction with nucleolin 

Fig. 1  Sequence, purification, and structural analyses of endostatin (ES) variants. a Sequences of ES, zinc-binding protein-ES (ZBP-ES), mono-
PEGylated ES (M2ES), and mono-PEGylated ZBP-ES (MZBP-ES). FL full length. b The purity of ES and its variants examined by sodium dodecyl sulfate–
polyacrylamide gel electrophoresis (SDS–PAGE). c Secondary structures of ES and its variants detected by far-ultraviolet circular dichroism (far-UV 
CD) spectra. d Tertiary structures of ES and its variants tested with tryptophan emission fluorescence
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than ZBP-ES, whereas M2ES showed increased interac-
tion with nucleolin compared with MZBP-ES (Fig. 4c).

Collectively, M2ES exhibited an increased cellular 
uptake than MZBP-ES, possibly caused by the enhanced 
interaction with its functional receptor nucleolin.

Discussion
In this study, we demonstrate that M2ES not only has a 
more compact tertiary structure than MZBP-ES but also 
exhibits more resistance to trypsin digestion and GdmCl-
induced unfolding. Although M2ES shows compara-
ble inhibitory effects on endothelial cell migration and 

Fig. 2  Stability of ES variants under certain conditions. a Trypsin digestion profiles of ES variants for the indicated time. b and c Proteins were 
incubated with different concentrations of guanidinium chloride (GdmCl), and GdmCl-induced denaturation of ES variants was monitored with 
tryptophan emission fluorescence intensity at 318 nm. b Raw data and fitted data of the unfolding process of ES, ZBP-ES (upper panel), and M2ES, 
MZBP-ES (lower panel). c Normalized data of the GdmCl-induced unfolding of ES variants

Table 1  Parameters of the GdmCl-induced unfolding of ES 
variants

GdmCl guanidinium chloride, ∆G
o
N−U

 the free change energy in the absence 
of GdmCl, m the apparent m value defined by the linear extrapolation model, 
Cm the concentration of GdmCl at the midpoint of the unfolding transition, ES 
endostatin, ZBP-ES zinc-binding protein-ES, M2ES mono-PEGylated ES, MZBP-ES 
mono-PEGylated ZBP-ES

Protein �G
o

N−U
 (kJ/mol) m (kJ·L/mol2) Cm (mol/L)

ES 29.23 12.88 2.27

ZBP-ES 24.16 10.70 2.26

M2ES 31.27 14.31 2.18

MZBP-ES 20.57 9.65 2.13
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wound healing compared with MZBP-ES, M2ES is more 
efficient in entering the cells than MZBP-ES, possibly 
due to enhanced interaction with its functional receptor 
nucleolin.

M2ES is more stable towards trypsin digestion than 
MZBP-ES (Fig. 2a). Our previous study revealed that the 
endostatin digestion process contains two stages: cleav-
age of the first four residues (HSHR) during the first stage 
and further digestion of the dominant product in the sec-
ond stage [18]. We therefore supposed that the PEG mol-
ecule in M2ES masks the HSHR residues and therefore 
protects it from degradation by trypsin, whereas the PEG 
molecule of MZBP-ES covers the MGGSHHHHH part, 
instead of the first four residues, making MZBP-ES more 
susceptible to protease digestion.

Endostatin is well established as an antiangiogenic 
factor; therefore, our study focused on the direct 
impacts of ES and PEGylated ES on endothelial cells. 
However, endothelial cells are not the only target of ES. 
Our recent study showed that adipocytes were also tar-
geted by ES. ES can inhibit adipogenesis and dietary-
induced obesity and its related metabolic disorders, 
including glucose intolerance, insulin resistance, and 
hepatic steatosis [27]. Although both intensive and 
extensive researches were performed on ES, and it 
appeared that there was not much progress on this pro-
tein, this new discovery suggests a potential expanded 
application of ES for the treatment of obesity. Moreo-
ver, this discovery opens new avenues for this protein 
and indicates that this is only the beginning.

Fig. 3  Biological activities of ES variants. a and b Representative images and quantified results of the Tranwell migration assay for endothelial cells. 
Human microvascular endothelial cells (HMECs) were seeded into the upper well of the Boyden chamber and treated with the indicated proteins 
for 6 h. Cells were stained with crystal violet, photographed, and counted. c In the wound healing assay, the HMEC monolayer was scratched and 
cultured in serum-free media in the absence or presence of the indicated proteins for 48 h. Cells were photographed at 0 and 48 h, respectively, 
and the relative wound closure was quantified. d Erk phosphorylation of ES variant treatments examined by Western blotting. Error bars indicate 
standard deviations (SDs). *P< 0.05, **P< 0.01, ***P< 0.001, vs. control
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Conclusions
Collectively, these findings suggest that M2ES is a more 
suitable drug candidate in comparison with MZBP-ES 
and provides a basis for further endostatin-based drug 
development.
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