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ABSTRACT

While bacterial operons have been thoroughly stud-
ied, few analyses of chloroplast operons exist, limit-
ing the ability to study fundamental elements of these
structures and utilize them for synthetic biology.
Here, we describe the creation of a plastome-specific
operon database (link provided below) achieved by
combining experimental tools and predictive mod-
eling. Using a Reverse-Transcription-PCR based
method and published data, we determined the
transcription-state of 213 gene pairs from four plas-
tomes of evolutionary distinct organisms. By ana-
lyzing sequence-based features computed for our
dataset, we were able to highlight fundamental char-
acteristics differentiating between operon pairs and
non-operon pairs. These include an interesting ten-
dency toward maintaining similar messenger RNA-
folding profiles in operon gene pairs, a feature
that failed to yield any informative separation in
cyanobacteria, suggesting that it catches unique
traits of operon gene expression, which have evolved
post-endosymbiosis. Subsequently, we used this
feature set to train a random-forest classifier for
operon prediction. As our results demonstrate the
ability of our predictor to obtain accurate (84%) and
robust predictions on unlabeled datasets, we pro-
ceeded to building operon maps for 2018 sequenced
plastids. Our database may now present new op-
portunities for promoting metabolic engineering and
synthetic biology in chloroplasts.

INTRODUCTION

Plastids are cellular organelles mainly found in a diverse
group of photosynthetic organisms (1). They originate from
an endosymbiotic event (∼1.5 × 109 years ago) in which
an ancient cyanobacterium was engulfed and retained by
a eukaryotic cell, giving the latter the benefit of producing
its own energy from sunlight (2). Since the debut of this
co-evolutionary interaction, the majority of cyanobacte-
rial genes were either lost or horizontally transferred to the
host’ nuclear genome, while the plastid genome (plastome)
mainly retained house-keeping and photosynthesis-related
genes (3,4). As a result, the plastid has become highly de-
pendent on imported nucleus-encoded proteins to conduct
basic operations, making it a non-autonomous organelle
(4). Nevertheless, the plastid conserved many of its ances-
tral characteristics and genomic features, such as the circu-
lar genome structure, 70S bacteria-like ribosomes, plastid-
encoded bacterial-like RNA polymerase (PEP) and the or-
ganization of genes in bacterial-like operon transcription
units (5–7).

Operons are DNA units comprised of several genes un-
der the control of a single promoter that often share a com-
mon function (8,9). Inferring the operon map of a par-
ticular organism is an important step toward understand-
ing its genetic regulatory networks, and could contribute
to gene annotation as well (10). Several recent studies have
attempted to predict bacterial operons by utilizing super-
vised machine-learning algorithms trained on experimental
data (11–16). These computational methods typically rely
on features such as intergenic distances between adjacent
genes (16), conservation of gene order (17,18), functional
classifications (19,20) and differential RNA levels (12,13).
Thus, bacterial operons are relatively well-defined (21–24)
and can be found in several online databases (15,25–28).

*To whom correspondence should be addressed. Tel: +972 3 6405152; Fax: +972 3 6405315; Email: iftachy@tauex.tau.ac.il
Correspondence may also be addressed to Prof. Tamir Tuller. Tel: +972 3 6405836; Fax: +972 3 6407308; Email: tamirtul@tauex.tau.ac.il
†The authors wish it to be known that, in their opinion, the first two authors should be regarded as Joint First Authors.

C© The Author(s) 2019. Published by Oxford University Press on behalf of Nucleic Acids Research.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

http://orcid.org/0000-0003-4194-7068
http://orcid.org/0000-0003-0177-0624


Nucleic Acids Research, 2019, Vol. 47, No. 7 3345

Unlike bacteria, plastid operons have no available
databases and were only studied by few. These stud-
ies mainly focused on higher-plant model organisms; in
Hordeum vulgare (barley) the entire operon map was re-
vealed by differential RNA sequencing (29), in Nicotiana
tabacum (tobacco) part of the polycistronic transcripts
were revealed using northern-blot (30), in Spinacia oler-
acea (spinach) the rpoBC and the psbB operons were dis-
covered using northern-blot (31,32), whereas the adeno-
sine triphosphate (ATP) synthase operon was suggested by
comparing its gene content and order to its homologous
ATP synthase gene-cluster in Escherichia coli (33). In al-
gae, part of the Chlamydomonas reinhardtii operons were
studied; several operons were revealed using northern blot
(34), whereas two recent reports identified 16 and 22 poly-
cistronic units by searching for consistency in overlapping
RNA-sequencing reads in the intergenic regions between
adjacent genes (35,36). However, since no large-scale analy-
sis of chloroplast operons exists, the ability to identify them,
distinguish their characteristics, and use these data for syn-
thetic biology purposes remains limited.

Plastid gene expression differs from that of model bac-
teria (e.g. E. coli, Bacillus subtilis etc.) in several features;
chloroplast transcripts are often subject to RNA editing
and splicing (37), the role of transcription termination is
significantly reduced (38,39), many non-coding RNAs are
frequently transcribed (29,36) and the plastome is suggested
to be fully transcribed (38,39). Moreover, the expression of
genes often relies on specific RNA-binding proteins (e.g. the
pentatricopeptide repeat family) that bind cis elements up-
stream from the START codon, thus obstructing the activ-
ity of exoribonucleases and stimulating translation by sup-
pressing stem-loops that hamper ribosome binding (40–42).
Additionally, polycistrons are often regulated by multiple
promoters and are massively processed (43,44), resulting in
the formation of different transcript isoforms that derive
from a single primary transcription unit (41,45,46). Thus,
the plastid operon structure has evolved considerably com-
pared to classical bacterial operons. These differences have
most likely affected the composition and characteristics of
chloroplast operons and gave rise to unique features.

Subsequently, the ability to transform synthetic genes
into plastids has had a major impact on the field of plant
biotechnology as it offers significant benefits compared
to nuclear transformation. Among these advantages are
homologous recombination based site specific integration
(which is not available in many plant and algae nuclei)
(47,48), the absence of gene-silencing (49), relatively high
expression of heterologous genes (50–52) and prolonged
transformation stability in most crops due to maternal in-
heritance (47). A consequent advantage that is particularly
relevant for this study is the option to utilize the plastid’ nat-
ural ability to express polycistrons and design vectors with
multiple genes under the control of a single promoter; thus
minimizing plasmid sizes and allowing the introduction of
several metabolic related transgenes in a single transforma-
tion (53–56).

Since both basic scientific questions and synthetic bi-
ology aspirations are hindered by the lack of large-scale
information on plastid operons, in this work we describe
the creation of a plastome-specific operon map database,

using a combination of experimental tools and predictive
modeling. The full database can be found at: https://www.
energylabtau.com/cppod.

MATERIALS AND METHODS

See Supplementary methods for additional information.

Construction of labeled dataset

Empirical operon detection by RT-PCR. To retrieve data
on plastid operons for Cyanidioschyzon merolae, Phaeo-
dactylum tricornutum and C. reinhardtii, each plastome
(NC 004799, NC 008588 and NC 005353, respectively)
was organized as a list of adjacent gene pairs. From
each organism 20–40 gene pairs were selected for reverse-
transcription PCR (RT-PCR) analysis. Specific primers
were designed for each chosen gene pair; the forward an-
nealed to the 5′ gene, whereas the reverse primer annealed to
the 3′ gene (Figure 1B-1). DNA was extracted from cultures
in standard growth conditions (see Supplementary Meth-
ods) using the chelex protocol (57). Total RNA was ex-
tracted using RNeasy plant Mini Kit (QIAGEN 74903).
The purified RNA from each sample was used for com-
plementary DNA (cDNA) synthesis using Applied Bio-
System High-Capacity cDNA Reverse-Transcription Kit.
Subsequently, for each of the aforementioned templates (i.e.
DNA, RNA and cDNA) each gene pair was amplified by
polymerase chain reaction (PCR) using its specific primers.
The DNA template served as a positive control for the
primers’ efficiency, the RNA template served as a negative
control for denying the presence of plastid DNA and the
cDNA template served as an indicator whether or not the
gene pair is co-transcribed (Figure 1B-2). Only if the DNA
control was positive and the RNA control was negative, the
cDNA control was observed and labeled accordingly; one
for the existence of a band, zero otherwise.

Collection of published operon data. The operon data of
H. vulgare were taken from Zhelyazkova et al. (29, Sup-
plementary Dataset S4). The operon data of Synechocys-
tis sp. PCC6803 were taken from Kopf et al. (12, Supple-
mentary Table S1). All other operon data of cyanobacteria
(i.e. Nostoc azollae, Acaryochloris marina, Cyanothece sp.
ATCC, Trichodesmium erythraeum, Gloeobacter violaceus
PCC 7421 and Synechococcus elongatus PCC 6301) were re-
trieved from DOOR2 (15).

RNA folding energy profiles

To create a RNA folding energy profile for each gene, we
used a 40 nucleotide long sliding window and computed its
free energy using the Vienna package (RNAfold) (58).

Accuracy

accuracy = T P + TN
N

:

Where: TP (True Positives) is the number of operons clas-
sified correctly, TN (True Negatives) is the number of non-
operons classified correctly and N is the number of labeled
observations in the dataset.

https://www.energylabtau.com/cppod
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Feature selection

A wrapped backward elimination feature selection was per-
formed on the entire dataset. In this method our model’
mean accuracy over ten bootstrap samples was computed
at the first part of each iteration of a random-forest clas-
sifier. In the second part, the feature/s with the lowest im-
portance score was/were removed. Ultimately, a feature set
that yielded high accuracy with a small set of features was
manually selected (Supplementary Figure S5).

Robustness test

The error test was carried out by randomly introducing
19 type I (false-positive mistake) or type II errors (false-
negative mistake) into the labels and re-running the predic-
tion pipeline with the selected features. For each error rate
the mean accuracy score over ten bootstrap trained samples
was calculated. For comparison, the same analysis was car-
ried out on a permutated dataset as well (Figure 3C and D).

Enrichment index

Enrichment index (i ) =
Xi
N − Ki

M
Xi
N

Where X is the number of operon genes in the gene type i,
N is the total number of operon genes, K is the total number
(operon or not) of genes in the gene type i and M is the total
number of genes in the dataset.

Random-forest classifier

Initially, the dataset was divided into two groups: gene pairs
that were comprised only of coding-sequences (CDS group)
and a mixture of transfer RNA (tRNA), ribosomal RNA
(rRNA) and CDS gene pairs (mixed group). Then each
group was randomly split into a train set (70% of the data)
and a cross-validation set (30% of the data) of gene pairs. A
scikit-learn random-forest classifier (59,60) (‘n estimators’
value was set to 1000 trees) was fitted based upon the train
set and validated by predicting the cross-validation set. The
process of training and cross-validating was repeated ten
times, where in each round different cross-validation and
train groups were selected. Each round of training and
cross-validating yielded an accuracy score, representing the
percentage of correct predictions on the cross-validation
group (see ‘Materials and Methods’ section: Accuracy). The
final accuracy score was the mean accuracy over ten boot-
strap rounds of training and cross-validating.

Large-scale plastid operon predictions

A total of 2018 plastomes were downloaded from the NCBI
Organelle Genome Resources (see list of names and NCBI
IDs in https://www.energylabtau.com/cppod) and features
were calculated for each. Next, ten bootstrap classifiers
(each classifier was trained and tested on different train and
cross-validation groups) were used in order to predict la-
bels for all organisms, where each gene pair was determined

as ‘1’ or ‘0’ according to the majority voting of the classi-
fiers. Finally, adjacent overlapping operon-pairs were con-
catenated to form full operon maps.

Empiric P-value

The empiric P-value was computed as follows; fifty random
samples were pooled from each group and their relevant
traits were calculated. In each round the data were divided
into two vectors (or groups) summarizing the outputs of all
calculations performed on the extracted data, according to
the hypothesis examined. If the average of the first vector
was larger/smaller (depends on the objective function) than
the average of the second vector, the current round received
a ‘1’, otherwise ‘0’. Finally, the empiric P-value was calcu-
lated as the number of ‘1’ events divided by the number of
total events.

Permutation test

The P-values given in Figure 2 were computed using a per-
mutation test, with no prior assumptions regarding the dis-
tribution of the data. In this test, all values were pooled and
distributed N times into two random vectors, maintaining
the original sizes of the original vectors. The margin be-
tween the means of the random vectors were compared to
the original margin, where the fraction of margins more ex-
treme than the original margin is the P-value. By default, N
= 104, but if this sample size yielded a fraction of 0, N grew
to 105. Due to computation time, if this sample size yielded
a fraction of 0 as well, the P-value given was: P < 10−5.

RESULTS

Constructing an empirical dataset of primary transcription
units

To create a generalist dataset of plastid operons, we began
from obtaining empirical operon data from four chloroplast
genomes: H. vulgare (higher plant), C. reinhardtii (green
alga), C. merolae (red alga) and P. tricornutum (Heterokont)
(Figure 1A) (61). For barley (H. vulgare), we used the pub-
lished operon map that was revealed by RNA sequencing
(29). For the other three species, we extracted total RNA
from cultures in standard growth conditions and performed
RT-PCR on a variety of gene pairs (see Supplementary
Methods), where the forward primer annealed to the 5′
gene and the reverse primer annealed to the 3′ gene (Fig-
ure 1B-1). A DNA template was used to verify that the
primers function properly, and the RNA template was used
to rule out DNA contamination in the cDNA samples. Un-
der these conditions, successful amplification of the cDNA
reports that the two genes analyzed are present on a sin-
gle RNA strand (i.e. Operon Pair, OP), whereas no am-
plification implies that the two are transcribed separately
(i.e. Non-Operon Pair, NOP) (Figure 1B-2). Overall, we
obtained operon data for 213 gene pairs (137 OPs and 76
NOPs) (Supplementary Table S1). To verify the reliability
of the RT-PCR method, we performed the same test on the
known psaA operon derived from the H. vulgare plastome
(psaA-psaB-rps14-trnF-trnR, (29)) (Supplementary Figure
S1A). The results clearly demonstrate that the RT-PCR is

https://www.energylabtau.com/cppod
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Figure 1. The creation of a generalist dataset of plastid operons comprised of distinct evolutionary organisms. (A) Phylogenetic tree of the plastomes and
genomes used to train and test the model (based on (61)); (B) The main pipeline sketch; 1. Primer design for chosen gene pairs; 2. RT-PCR analysis––the
DNA template is used to verify that the primers function properly, the RNA template is used to rule out DNA contamination in the cDNA samples and
the cDNA reports on the transcription state of the pair (OP or NOP); 3. Sequence-based features are computed for each gene pair. Alternatively, known
operon data are retrieved and their sequence-based features are directly computed.

able to determine the actual transcription-state of a primary
polycistron that is comprised of different types of genes (e.g.
CDSs and tRNAs). Moreover, to prove that the RT-PCR
method can robustly amplify cDNA transcripts with tight
secondary structures (e.g. tRNAs), we successfully ampli-
fied the full cDNA transcript of six tRNA genes derived
from the C. reinhardtii plastome (Supplementary Figure
S1B).

For each gene pair we computed roughly 1100 features
(Figure 1B-3 and Supplementary Figure S2) based on se-
quence analysis alone––thus, they could be computed for
any sequenced plastome without requiring additional data
(e.g. RNA-Seq). These features were designed to capture es-
sential gene characteristics (e.g. coded protein hydrophobic-
ity, RNA structure, codon usage bias, nucleotide composi-
tion) and to quantify their level of similarity within each
couple of adjacent genes (Supplementary Figure S2).

Examination of these features yielded an array of in-
dices, which created a significant separation between OPs
and NOPs in our dataset (Supplementary Figure S3). As ex-

pected, intergenic distance and the gene pair conservation,
which have been previously found to hold valuable informa-
tion for operon prediction (15–18), could be used for mean-
ingful classification in our dataset as well (Figure 2A and B).
However, we were able to discover several novel informative
features as well which are relevant to chloroplast operons
but haven’t been reported before in the context of bacterial
operons. One of these features shows that the GC content
is significantly lower in intergenic spacers (IGSs) separating
adjacent operon CDSs (i.e. transcribed spacers), compared
to their non-operon counterparts (Figure 2C). Interestingly,
we also found that neighbor operon CDSs are inclined to
have similar RNA folding energy profiles in their 5′UTRs
(Figure 2D and E). To validate the significance of these find-
ings, we computed the P-value distribution of our entire fea-
ture set while shuffling its labels. We compared this distribu-
tion to that of the original data, and observed that the sig-
nificance of the aforementioned features exceeds the limits
of the randomized data (Supplementary Figure S4). More-
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Figure 2. Operon sequence features. Distribution of (A) intergenic dis-
tances, (B) gene pair conservation, (C) intergenic GC content, (D) RNA
structure similarity (Pearson’ correlation coefficient) among operon and
non-operon gene pairs. (E) Position specific mRNA folding energy mean
margin between gene pairs in absolute values. The bars represent the posi-
tion specific P-value (-log10pv) comparing the OPs mean value to that of
NOPs. The scale for the bar charts is not given, instead the common signif-
icance threshold is drawn (see legend). All P-values were computed using
an unsupervised standard permutation test (see ‘Materials and Methods’
section: Permutation test). All significant P-values were confirmed using
the Benjamini & Hochberg False Discovery Rate (FDR) procedure (62),
NOP = 137, NNOP = 76.

over, all significant P-values were confirmed using the Ben-
jamini & Hochberg False Discovery Rate procedure (62).

To test whether these operon characteristics are shared
with cyanobacterial operons, we computed the same fea-
tures for all coding gene pairs derived from seven dis-
tinct cyanobacteria species. The transcription state of Syne-
chocystis sp. PCC6803 was based on a comparative anal-
ysis of RNA-seq (12), whereas the operon data for the
other six cyanobacteria were predicted by DOOR2 (15). In-
tergenic distance and gene pair conservation were found
significant here as well, emphasizing the generalist nature
of these operon traits (Supplementary Figure S3). Addi-
tionally, we observed that OPs tend to have low CDS or
IGS GC content, both in chloroplasts and in cyanobacteria
(Supplementary Figure S3). However, the messenger RNA
(mRNA) folding profile similarity index failed to create any
informative separation between OPs and NOPs (Supple-
mentary Figure S3), indicating that this feature captures
some of the unique traits for operon gene expression that
have evolved in chloroplasts.

Operon map inference

To create a model for chloroplast operon prediction, we
used our labeled features to train a supervised random-
forest classifier (59,60), where the objective was to predict
whether or not a pair of adjacent genes are transcribed to-
gether. To increase the prediction accuracy and reduce the
number of features used in the final model, we applied an
iterative feature selection algorithm in which the least in-

formative feature was removed at the end of each round
(Supplementary Figure S5). Since some of the features were
relevant to CDSs alone (e.g. codon usage bias), we ran this
feature selection pipeline separately for CDS gene pairs and
for all the rest (i.e. a mixture of CDS, tRNA and rRNA gene
pairs). The final feature composition of our classifier can be
seen in Supplementary Table S2.

To evaluate the performance of our model, we compared
it to an array of random models in which the same data were
used but the labels were permutated. Our overall accuracy,
simply computed as the percentage of correct predictions
for the cross-validation groups, was 84%––significantly
higher (P < 10−4) than the random prediction (58%) (Fig-
ure 3A), with true positive and true negative rates of 87 and
79%, respectively (for the classifiers’ ROC curves and full
metrics, see Supplementary Figure S6 and Supplementary
Table S3). Pursuing a different approach, we discarded the
red alga C. merolae from the initial dataset, re-performed
the iterative feature selection, and applied this prediction
to C. merolae. Our model showed roughly the same met-
rics in this case (Figure 3B and Supplementary Table S3),
strengthening the relevance of its predictions on an organ-
ism that had not been a part of the learning process. To
evaluate the uniqueness of our model to chloroplast oper-
ons, we used it to predict the operon map of Synechocystis
sp. PCC6803 and compared it to its published operon map
(12). The low accuracy score obtained (59%) highlights the
orientation of our model toward predicting plastomic oper-
ons (Figure 3B).

To test the robustness of our prediction against false la-
bels (which may occur due to rare PCR artifacts, sequencing
errors etc.), we performed an error test by randomly intro-
ducing type I or type II errors into our labels and re-running
the prediction pipeline. We observed that rates of up to 19
errors only reduced the accuracy score to around 80% (Fig-
ure 3C and D), thus ensuring that our model is sufficiently
robust given a reasonable error rate in the original dataset.
Finally, we applied our classifier to a large number of avail-
able sequenced chloroplast genomes (2018 plastomes).

Plastid operon characteristics

By analyzing this newly formed database, we observed that
indeed according to our predictor most chloroplast CDSs
are transcribed as polycistrons (94.5 ± 0.05%), as sug-
gested previously (29,47,63–65). We noticed that this ratio
is roughly similar between green plastids (93.7 ± 0.06%),
red plastids (98.86 ± 0.06%) and glacuphytes (Cyanophora
paradoxa, 99.32%) (Figure 4A). To examine whether spe-
cific gene classes have different tendencies to be found in
operons, we computed an enrichment index based on the
hypergeometric distribution (methods: enrichment index).
We observed that genes related to basic cell maintenance
tend to be found in operons, while photosynthesis-related
genes are found as monocistrons more frequently (Figure
4B). Interestingly, the RNA genes received the lowest en-
richment scores, with tRNA having the strongest inclina-
tion toward the monocistronic form, as was hypothesized
previously (5,29). To examine whether operons tend to be
comprised of functionally related genes, we computed the
same enrichment index on randomly-chosen samples of our
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Figure 3. Model performance evaluation. (A) Accuracy scores of the
random-forest classifier on real labels and random labels (see legend).
NCDS = 121, Nmixed = 92. (B) Prediction accuracies on the red alga Cyani-
dioschyzon merolae when discarded from the initial dataset, and on the
cyanobacteria Synechocystis sp. PCC6803 labels derived from (12). The
bars represent coding-sequence gene pairs (‘CDS group’), a mixture of
tRNA, rRNA or coding sequence gene pairs (‘mixed group’) and the
weighted mean of the two groups (‘overall’). Synechocystis sp. PCC6803
encompasses only CDS gene pairs. The bars show mean ± STD. (C) Type
I (false-positive mistake) error test. (D) type II (false-negative mistake) er-
ror test. An overall of 19 errors were introduced into the labels and for each
error rate the prediction pipeline was repeated. The same analysis was car-
ried out on random labels. All accuracy scores were calculated based on
the average accuracies of ten bootstrap trained samples.

database, and compared them to similar samples taken from
a database with permutated labels. The results clearly show
that primary operons in plastids tend to harbor functionally
related genes (Figure 4C).

DISCUSSION

Model construction

Our choices in model selection were driven by our over-
all aspiration to construct a high-quality wide database
of plastid primary operons. Thus, though other vascular
plants––such as N. tabacum––have published operon data,
we only used the barley operon map for two reasons: (i) it is
highly reliable and encompasses all genes and (ii) we wished
to avoid bias toward higher-plant plastid operons in our la-
beled data, as these are known to be highly conserved and
redundant. In addition, we used the red alga C. merolae as
an independent group to validate our model performances
on a test set that had not been part of the initial dataset
(Figure 3B and Supplementary Table S3). Furthermore, we
chose to merge our empirical datasets and create a gener-
alist plastid classifier (as opposed to using each representa-

tive for creating a group-specific classifier); using this wide
perspective, our algorithm is able to grasp the main funda-
mental traits unique to operon genes, and avoid potential
species-specific biases.

It is important to note that our empirical data were col-
lected from cultures in normal growing conditions (see Sup-
plementary Methods). Since it is known that operon maps
might vary to some extent between different conditions
(12,13), our database is likely to have the best predictive
power for organisms in standard growing conditions. Sub-
sequently, due to the nature of primary polycistronic pro-
cessing in chloroplasts and the presence of multiple promot-
ers, our database reflects the structure of primary operons
(whether or not they undergo subsequent processing).

As described above, we decided to separate our predic-
tor into a group where both adjacent genes are CDSs and
another group that contains all the other combinations
(i.e. CDS, tRNA and rRNA). We found the transcription
state (NOPs or OPs) in this mixed group to be less pre-
dictable than that of CDSs (Figure 3A and B; Supplemen-
tary Table S3); one explanation for this is simply the loss
of information induced by comparing two different types
of genes (e.g. tRNA-CDS). Another phenomenon playing
a role in explaining this observation is most likely the fact
that tRNA and rRNA genes have less computable features
(at least based on the approach employed here), compared
to CDSs; while mRNAs tend to have structured and dis-
tinguishable sequence information dictated by the START
to STOP flow, the codon triplet organization, and the con-
straints induced by the final protein sequence, extracting
beneficial information from tRNA and rRNA genes is less
trivial. For these reasons, existing works and tools neglect
the tRNA and rRNA genes and target the CDSs alone
when studying operons (12,13,15,25,27). In this work we
included all genes, and although the CDS group received
higher accuracy scores, the prediction accuracy was high
in the mixed group as well––significantly outcompeting the
random models (Figure 3A).

Since tRNAs are highly-structured and undergo 5′ cleav-
age for their proper maturation (66), we tested the credibil-
ity of our RT-PCR method in these cases. We were able to
show that it properly detects the transcription state of mixed
gene pairs (e.g. tRNA-CDS, Supplementary Figure S1A)
and is able to amplify complete tRNA transcripts (Supple-
mentary Figure S1B).

Operon characteristics

Analysis of the features in our dataset highlighted interest-
ing differences between chloroplast OPs and NOPs. Shorter
intergenic spacer and lower transcript GC content in operon
gene pairs (whether originating from the IGSs or from the
CDSs themselves, Supplementary Figure S3) share the same
logic; these are most likely means of sparing unnecessary
resources. Since the IGS is fully transcribed, having a con-
straint on its length seems sensible in order to spare nu-
cleotides, energy and transcription time. It also seems rea-
sonable to have a constraint on the overall operon GC con-
tent in order to speed up transcription (67), as operon tran-
scripts naturally tend to be long. Subsequently, minimiz-
ing the time-lag between the expression of adjacent operon
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Figure 4. General traits of plastid primary transcripts. (A) The fraction of CDSs and total genes (dashed line) found in operons in green plastids, red
plastids and glacuphytes. All differences return a non-significant empiric P-value of > 0.8 (see ‘Materials and Methods’ section: Empiric P-value). The
total number of genes sampled in each group is given above the relevant bar. The bars show mean ± SE. (B) Operon enrichment in different gene classes.
Additionally, a hypergeometric enrichment/depletion P-value was computed for each group; P < 10−300 for all groups. (C) The distribution of functional
enrichment in operons for 10 000 random samples shown in contrast to the same analysis carried on randomized data (see legend). Z-score and P-value (a
two-tailed Wilcoxon test) between predicted labels and shuffled labels are 2.2 and < 10−300, respectively.

genes is also beneficial since such pairs tend to serve sim-
ilar functions (Figure 4C) and thus may often be required
at roughly the same time. The presence of these features in
both plastids and cyanobacteria (Supplementary Figure S3)
highlights the generality of these concepts.

We were also able to identify a couple of operon fea-
tures in plastids, which are not shared with cyanobacterial
operons (Supplementary Figure S3). Interestingly, we found
a high overall similarity in the mRNA folding profile at
the 5′UTR of two adjacent operon genes (Figure 2D and
E). The complete absence of this signal in cyanobacteria
(Supplementary Figure S3) suggests that it captures unique
traits that have evolved post-endosymbiosis. While mRNA
folding is known to regulate gene expression on several
levels (6,68–73), it is most likely that this characteristic is
mainly related to translation, which unlike in bacteria––has
become a major rate-limiting factor in chloroplast gene
expression (42). Secondary mRNA structures affect both
translation initiation, translation elongation and mRNA
stability; thus, the similarity in folding energy profiles could
be a powerful means for post-transcriptionally regulating
operon genes toward simultaneous expression.

Operons as a form of chloroplast translational regulation

After applying our classifier to a large number of sequenced
plastomes, we organized the plastid genes into functional
groups and examined the transcription state of the differ-
ent groups. Our results show that the operon formation
is widely preferred across all protein-coding groups, while
RNA genes tend to be found in the monocistronic form
(Figure 4B). This negligible role that operons play in reg-
ulation of plastid RNA gene expression could be explained
by the overall high levels of transcription in chloroplasts

(35,38,52) and the rate limiting nature of chloroplast trans-
lation. According to this hypothesis, co-transcription of
functionally related CDSs is expected to be more beneficial
as they are subject to similar translation regulation (Figure
2D and E). On the other hand, the expression of function-
ally related RNA genes as operons would not affect their
expression synchronization, as they are not translated and
are already highly expressed in the first place. Thus, assum-
ing that operons were retained in plastids in order to co-
regulate functionally related genes (Figure 4C), RNA genes
(for which translation regulation is not relevant) could be
expected to adopt the monocistronic form.

CpPOD––an online database for predicted chloroplast oper-
ons

In this work, we have created a model that enables the pre-
diction of primary plastid operons based on an annotated
plastome alone. To make this ability useful, we ran our pre-
dictor on 2018 sequenced plastomes and uploaded the re-
sults to an open access site (see ‘Data Availability’ section).
Besides binary final decision values (0 or 1), one can also
find the predicted operon score, which is a continuous value
between 0 and 1, reflecting the likelihood that the pair is co-
transcribed. This allows the user to select stricter or more
permissive thresholds than the default 0.5 threshold used in
this work, if needed.

CONCLUSION

In this work, we collected empirical operon data from plas-
tomes of four model organisms, each representing a ma-
jor plastid-containing group. Subsequently, we applied a su-
pervised machine learning classification algorithm to build
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a generalist model for primary operon prediction that re-
quires a sequenced plastome alone as input. By analyzing
the features in our dataset, we were able to discover prin-
ciple characteristics of operons, including their low overall
GC content and similar mRNA folding patterns. Using a set
of selected features, we were able to create a full database
for predicted chloroplast operons that encompasses 2018
operon maps.
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