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Abstract: Mice fed soy-based diets exhibit increased weight gain compared to mice fed casein-
based diets, and the effects are more pronounced in a model of fragile X syndrome (FXS; Fmr1KO).
FXS is a neurodevelopmental disability characterized by intellectual impairment, seizures, autistic
behavior, anxiety, and obesity. Here, we analyzed body weight as a function of mouse age, diet,
and genotype to determine the effect of diet (soy, casein, and grain-based) on weight gain. We also
assessed plasma protein biomarker expression and behavior in response to diet. Juvenile Fmr1KO

mice fed a soy protein-based rodent chow throughout gestation and postnatal development exhibit
increased weight gain compared to mice fed a casein-based purified ingredient diet or grain-based,
low phytoestrogen chow. Adolescent and adult Fmr1KO mice fed a soy-based infant formula diet
exhibited increased weight gain compared to reference diets. Increased body mass was due to
increased lean mass. Wild-type male mice fed soy-based infant formula exhibited increased learning
in a passive avoidance paradigm, and Fmr1KO male mice had a deficit in nest building. Thus,
at the systems level, consumption of soy-based diets increases weight gain and affects behavior.
At the molecular level, a soy-based infant formula diet was associated with altered expression of
numerous plasma proteins, including the adipose hormone leptin and the β-amyloid degrading
enzyme neprilysin. In conclusion, single-source, soy-based diets may contribute to the development
of obesity and the exacerbation of neurological phenotypes in developmental disabilities, such as FXS.

Keywords: fragile X; Fmr1KO; obesity; soy-based infant formula

1. Introduction

Obesity is an epidemic in the United States where 19% of children, 21% of adolescents,
and 42% of adults have a body mass index (BMI) greater than the 95th percentile [1,2].
In addition, 8% of infants and toddlers have high weight-for-recumbent length measure-
ments, putting them at risk for developing childhood obesity [3]. Obese children are more
likely to exhibit attention deficit/hyperactivity disorder (ADHD), depression, learning
disability, and developmental delay [4]. Neurological phenotypes can be exacerbated by
metabolic conditions. For example, diabetes, hypertension, and obesity during pregnancy
are associated with autism spectrum disorders (ASD) and developmental delays in the
offspring [5]. Contemporary hypotheses propose that exposure to environmental or di-
etary chemicals during gestation and/or postnatal development may predispose infants
to developing obesity, ADHD, and/or autism [6–8]. A critical gap in the literature is the
identification of specific foods or food-specific chemicals associated with body weight and
neurodevelopmental phenotypes.
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Serendipitous observations in our laboratory suggest that the consumption of soy-
based diets is associated with weight gain in Fmr1KO mice, a mouse model utilized to study
fragile X syndrome (FXS) and autism. FXS is the most common form of inherited intellectual
disability and the leading known genetic cause of autism. The major clinical phenotypes as-
sociated with this X-chromosome-linked disorder are highly variable intellectual disability
(overall IQ < 70), autistic-like behaviors, seizures, macrocephaly, and macroorchidism [9].
In most cases, FXS is caused by a trinucleotide repeat expansion mutation in the 5′-UTR of
the FMR1 gene [10] that is associated with transcriptional silencing of the FMR1 promoter
and loss of expression of fragile X messenger ribonucleoprotein (FMRP) [11]. FMRP is
a pivotal mRNA-binding protein with roles in translational regulation, genome stability,
RNA editing, mRNA target binding, microRNA regulation, cell differentiation, ion channel
binding, calcium signaling, excitatory/inhibitory balance, and activity-dependent synapse
development [12]. FMRP expression is absent or greatly reduced in FXS, and many FXS
phenotypes are manifested in Fmr1KO mice, which lack expression of FMRP [13]. FXS
research to date has primarily focused on the brain and the study of severe cognitive and
behavioral deficits; however, there is also a significant weight problem associated with the
disorder. Children with FXS show accelerated prepubescent growth, but a diminution of
the normal pubertal growth spurt [14,15]. Male children with FXS have higher rates of
obesity (31%), compared to their typically developing same-aged peers (18%) [16].

During preclinical testing to evaluate the efficacy of anti-convulsant drugs, we ob-
served that diet (soy-based chow versus casein-based purified ingredient diet) significantly
affects seizure propensity and weight gain in juvenile Fmr1KO mice [17]. The human cor-
relate of juvenile mice maintained on a single-source soy-based rodent chow is babies
exclusively fed soy-based infant formula. We searched the evidence-based literature re-
garding possible adverse health effects associated with consumption of soy-based infant
formulas but found a dearth of published reports and no studies specific to developmental
disorders such as FXS. To address this gap in the literature, we conducted retrospective
medical record and survey analyses and found associations between postnatal consumption
of soy-based infant formula and an increased incidence of seizures and/or autistic behavior
in autism and FXS [18–21]. Here, we hypothesize that the high consumption of soy protein
during postnatal development is a dietary exposure that increases the risk of developing
obesity, particularly in vulnerable populations such as FXS.

Herein, we conducted secondary analyses of our laboratory seizure records that
contained body weight metrics as a function of diet and mouse age and genotype. We
also conducted a prospective evaluation of weight gain, blood plasma biomarkers, and
behavior as a function of consumption of soy-based infant formula diets in WT and Fmr1KO

mice. Finally, we conducted a secondary analysis of infant growth metrics as a function of
postnatal diet (breast milk, soy-based infant formula, cow milk-based infant formula) using
the Centers for Disease Control and Prevention (CDC) Infant Feeding Practices Study II
(IFPSII) and Year 6 Follow-Up (Y6FU) datasets. These studies are necessary as controversy
surrounds the effects of soy on metabolic phenotypes and little is known regarding the
molecular signature of soy consumption, particularly in disease populations. We found
that soy-based diets increased weight gain in Fmr1KO mice irrespective of age. A soy-based
infant formula diet altered the expression of several mouse plasma proteins, including
the adipose hormone leptin and the β-amyloid degrading enzyme neprilysin, as well as
affected learning and repetitive behaviors. Consumption of soy-based infant formula was
not associated with increased obesity in typically developing human infants followed out to
6 years of age, but was associated with an increased need for support in school, respiratory
allergies, and ADD/ADHD.

2. Materials and Methods

Mouse Husbandry: Mice were obtained from our colony, which has been maintained
at the University of Wisconsin-Madison for over 15 years; the strain was originally provided
by the laboratory of Dr. William Greenough (University of Illinois, Urbana-Champaign,
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IL, USA). WT and Fmr1KO mice are in the C57BL/6J background, the most widely used
inbred mouse strain, which has been extensively utilized for FXS and obesity research [13].
Breeding pairs were housed in microisolator cages on a 12 h (0600–1800) light cycle with
ad libitum access to food and water (specific diets are described below). Genotypes were
determined by PCR analysis of DNA extracted from tail biopsies taken at weaning [22].

Diet Formulations: Purina 5015 mouse diet is a complete life-cycle diet designed to
support reproduction, growth, and maintenance of mice (LabDiet, St. Louis, MO, USA).
This high-energy chow supports maximum reproduction for postpartum breeding for
females under the simultaneous stress of lactation and gestation. The main ingredients
include ground wheat, dehulled soybean meal, and ground corn. Calories are provided in
the form of 18% protein, 26% fat, and 56% carbohydrate. Teklad 2019 is a fixed formula,
extruded diet also designed to support the gestation, lactation, and growth of rodents, but
does not contain any alfalfa, soybean meal, animal protein, or fish meal (Envigo, Fitchburg,
WI, USA). The absence of alfalfa and soybean meal minimizes the occurrence of natural
phytoestrogens to less than 20 mg/kg, as opposed to 120–340 mg/kg in Purina 5015 [23].
The absence of animal protein and fish meal minimizes the presence of nitrosamines. The
main ingredients include ground wheat, ground corn, corn gluten meal, and wheat mid-
dlings. Calories are provided in the form of 23% protein, 22% fat, and 55% carbohydrates.
D07030301 is a purified ingredient diet based on the AIN-76A formulation but modified
to match the macronutrient content of Purina 5015 (Research Diets, Inc., New Brunswick,
NJ, USA, Supplementary Table S1) [17]. The main ingredients are corn starch, casein, and
maltodextrin-10. Purified ingredient diets are phytoestrogen-free. AIN-93G is a newer
formulation of the purified ingredient diet recommended by the American Institute of Nu-
trition for the growth, pregnancy, and lactation of rodents [24], with the main ingredients of
corn starch, casein, and maltodextrin-10, and calories provided in the form of 20% protein,
16% fat, and 64% carbohydrates (Research Diets, Inc., New Brunswick, NJ, USA). Powdered
forms of Enfamil Premium (cow milk-based) and ProSobee (soy protein-based) human
infant formulas were purchased from Wal-Mart (www.walmart.com; last accessed on
13 April 2022). Food pellets were produced from the powdered infant formulas (Research
Diets, Inc., New Brunswick, NJ, USA) (Supplementary Table S2). Many micronutrients
in the infant formulas exceeded National Research Council (NRC) recommended levels
for mice; those that were deficient were supplemented including DL-methionine, choline,
and some vitamins and minerals (Supplementary Table S3). The main ingredients in En-
famil Premium include nonfat milk, lactose, vegetable oil (palm olein, coconut, soy, and
high-oleic sunflower oils) and whey protein concentrate. The main ingredients in Enfamil
ProSobee are corn syrup solids, vegetable oil (palm olein, coconut, soy, and high-oleic
sunflower oils), and soy protein isolate. Calories (kcal %) are provided as 8% protein, 47%
fat, and 44% carbohydrates for the cow milk-based infant formula diet (CIF; D14010402
based on Enfamil Premium) and as 10% protein, 48% fat, and 42% carbohydrates for the
soy-based infant formula diet (SIF; D14010401 based on Enfamil ProSobee). Thus, CIF and
SIF contain significantly less protein and more fat than typical mouse diets. Soy oil, which
is present in both CIF and SIF, does not contain phytoestrogens. All test diets provide about
half of their energy, 42–64%, through carbohydrates.

Retrospective Analysis of Mouse Seizure Datasets: As part of our audiogenic-induced
seizure (AGS) testing protocol in mice, body weight data on juvenile animals (postnatal
day 21, P21) was collected over a 5-year period. Herein, those data were analyzed by 2-
way ANOVA with post hoc Tukey’s multiple comparison test to assess differences in body
weight dependent on Fmr1 genotype and diet. As part of a protocol to test pentylenetetrazol-
induced seizure propensity in adult wild type (WT) mice, body weight data was collected
on 2-month-old mice. Herein, those data were analyzed by Student’s t-test. As part
of the prospective testing described below, adult male Fmr1KO mice were randomized
to D07030301, CIF or SIF at 2–3 months of age for breeding purposes and weighed at
approximately 4 months of age; the data were analyzed by 1-way ANOVA with post hoc
Tukey’s multiple comparison tests.

www.walmart.com
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Prospective Mouse Diet Studies: Study 1: Mice were conceived and maintained on
Teklad 2019 diet, weaned, and weighed at P21, and maintained on Teklad 2019 until P30,
at which time the males were randomized to Teklad 2019, CIF, or SIF. Mice were weighed
every 3 days from P18 to P30 and once per week thereafter. A reference cohort included
mice bred and maintained on AIN-93G throughout the study. Mice were anesthetized with
isoflurane before blood was collected from the inferior vena cava with a 21-gauge butterfly
needle, mixed with sodium heparin anticoagulant, spun at 5000 rpm for 10 min, and the
plasma layer quick frozen and stored at −80 ◦C. Blood plasma was shipped to RayBiotech,
Inc. and used to probe mouse protein arrays (RayBiotech, Inc., Norcross, GA, USA; catalog
#QAM-CAA-4000; 200 target proteins). Replicates (n = 3) were averaged and presented
as means and standard deviations of the mean. Two-way ANOVA was used to determine
statistical significance. Study 2: Early postnatal exposure to CIF and SIF was tested by
randomly assigning breeding pairs to CIF or SIF diets with continuous maintenance on
their respective diets throughout pregnancy and lactation. Pups were weaned and weighed
at P21. Study 3: Mice were conceived and maintained on Teklad 2019 diet; males and
females were weaned, weighed, and randomized to Teklad 2019, CIF, and SIF diets at P20;
weighed weekly for 2 months; tested for normal mouse activity (nest building, P47) [25],
learning and memory (passive avoidance, P51) [26], and body composition (EchoMRI, P62
and P76).

Mouse Behavior: Nest building was conducted as described [25]. Briefly, corncob
bedding and two 2X2” white cotton nestlets (catalog #NES3600; Ancare, Baltimore, NY,
USA) were added to clean standard cages with feed and water. A single mouse was
transferred to a nestlet cage at 3 p.m. At 7 a.m. the following day, the mouse was returned to
its home cage. The empty nestlet cage was photographed and the length, width, and height
of the nests were measured. Nests were scored based on the following scale: (0) nestlet
intact, (1) flat nest with partially shredded material, (2) shallow nest with shredded material
but lacks fully formed walls, (3) nest with well-developed walls, and (4) nest in shape of
cocoon with partial or complete roof. The volume of the nest was calculated by multiplying
the length x height x width of the nest. Average data was plotted ±SEM and statistical
significance determined by 2-way ANOVA with post hoc Tukey’s multiple comparison tests.

Passive avoidance was conducted as described [26]. Briefly, mice were acclimated to
the experimental room for at least 20 min prior to testing in a foot shock passive avoidance
paradigm using an aversive stimulator/scrambler (Med Associates Inc., St. Albans, VT,
USA). A bench-top lamp was turned on behind the center of a light/dark shuttle box and
aimed toward the back-left corner away from the dark side of the shuttle box. On the
training day, a mouse was placed in the light side of the shuttle box toward the back corner
away from the opening to the dark side of the shuttle box. The trap door in the shuttle box
was open. After the mouse crossed over to the dark side, the trap door was closed and
the latency time for the mouse to move from the light to the dark side was recorded. The
mouse was allowed to equilibrate in the dark side for 5 seconds before receiving a 2-second
0.5 mA foot shock. After 15 seconds, the mouse was removed from the shuttle box and
returned to its home cage. The apparatus was cleaned with 70% EtOH between animals.
At test times (6, 24 and 48 hours after training), the mouse was placed in the light side of
the shuttle box facing the left rear corner away from the opening to the dark side with the
trap door open. After the mouse crossed to the dark side, the trap door was closed and
the latency time for the mouse to move from the light to the dark side was recorded. If
the mouse did not move to the dark side within 300 seconds, it was gently guided to the
dark side and the trap door was closed. The mouse was allowed to equilibrate to the dark
side for 5 seconds before return to the home cage. Mice only received one shock on the
training day. Testing at 24 and 48 hours measured extinction. Average data was plotted
±SEM and statistical significance determined by 2-way ANOVA with post hoc Tukey’s
multiple comparison tests.

EchoMRI: Awake mice were placed in an enclosed tube and inserted into an EchoMRI
instrument (EchoMRI LLC, Houston, TX, USA) where nuclear magnetic resonance (NMR)
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was used to quantify total body weight, lean mass, fat mass, and water mass in grams.
Average data was plotted ±SEM with statistical significance determined by 2-way ANOVA
with post hoc Tukey’s multiple comparison tests.

Analysis of CDC Infant Feeding Practices II Study (IFPSII) and Year 6 Follow-Up
(F6FU) Datasets: The Food and Drug Administration (FDA) and CDC in collaboration
with NIH and the USDA conducted a longitudinal consumer-based research study entitled,
“Infant Feeding Practices II”, with the goal of understanding and improving the health
status of mothers and children. A series of monthly questionnaires were used to collect
information from the mothers from the 7th month of pregnancy through the infant’s first
year of life. Specifically, the study collected detailed information on the following: (1) foods
fed to the infants including breast milk and infant formula, (2) factors that may contribute
to infant feeding practices and breastfeeding success, (3) mother’s intrapartum hospital
experiences, sources of support, and postpartum depression, (4) mother’s employment
status and child care arrangements, (5) infant sleeping arrangements, (6) other issues such
as food allergies, experiences with breast pumps, and WIC participation, and (7) diets of
pregnant and postpartum women. Four questionnaires (prenatal, maternal dietary intake,
birth screener, and neonatal) as well as nine modules were completed and the deidentified
data made publicly available by the CDC. Participants in the IFPSII included approximately
4000 pregnant women from across the United States whose infants were born between May
of 2005 and March of 2006. The sample was selected from a national consumer opinion
panel consisting of 500,000 households. Mothers (2250 women) qualified and continued
their participation through the baby’s first year. To qualify, a healthy woman must have
given birth to one healthy, full-term, or near-term infant weighing at least 2.5 kg at birth.
The study population was oversampled for low-educated, African American, and Hispanic
women, as well as women living in the Breastfeeding Awareness Campaign’s Community
Demonstration Project areas to increase representation from these groups. There was a
Year 6 Follow-Up study (Y6FU) of children participating in the IFPSII that consisted of a
single questionnaire administered in 2012 and resulting in 1542 completed questionnaires
that included information on development and comorbid disorders [27]. The preliminary
analyses examined long-term child health outcomes at 6 years of age [28]. The IFPSII and
Y6FU were approved by the Research Involving Human Subjects Committee of the Food
and Drug Administration. Datasets were provided as Statistical Analysis Software (SAS)
files from the CDC.

The IFSII and Y6FU datasets were merged to obtain infant feeding, growth data, and
developmental outcomes for the 1542 subjects participating in both surveys. Variables of
interest from the IFSII included the following: sex (N1); exclusive breastfeeding (nexbf,
M2EXBF and M3EXBF); use of cow milk formula for 3 months without any reported use of
soy-based infant formula, and use of soy-based infant formula for 3 months without any
reported use of cow milk formula (N47-2, N47-3, M2A10-2, M2A10-3, M3A10-2, M3A10-3,
N47-4, N47-5, M2A10-4, M2A10-5, M3A10-4, M32A10-5), weight (M3A28, M5A32, M7A31,
MWA34), and height (M3A30IN, M5A34IN, M7A33IN, MWA36IN). Variables of interest
from the Y6FU included the following questions from Section A: Q5. During this school
year, has a special plan been developed at school to provide your 6-year-old with extra
help or support such as a special needs program or an individualized education program
(IEP)? Q6. During this school year, has your 6-year-old received any of the following
services? Speech or language therapy; Occupational therapy or other type of therapy for
help with handwriting or other motor skills; Special instruction or help in one or more
school subjects such as reading or math; Special services because of a problem with vision
or hearing; Psychological services or counseling because of a problem with emotions,
behavior, or socialization; Behavioral support, such as a behavior management plan or
individual support in the classroom by an assistant; Other; None of these. Questions from
Section B included the following: Q1. How tall is your 6-year-old now (without shoes)?
(Tape measure enclosed). Q2. How much does your 6-year-old weigh now (without shoes)?
Q22A. Has a doctor or other health professional ever told you that your 6-year-old has any
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of the following conditions? (a) Hearing problems, (b) A digestive problem such as colitis,
acid reflux, colic, or Crohn’s, (c) Eczema or any kind of kind of skin allergy (such as contact
dermatitis), (d) Hay fever or respiratory allergy (to pets, pollen, mold, dust mites, etc.),
(e) Asthma, (f) Diabetes, (g) Attention Deficit Disorder or Attention Deficit Hyperactivity
Disorder, ADD or ADHD, (h) Autism or developmental delay, (i) Depression or anxiety.

Subjects were binned by sex, exclusive breast milk use for 3 months, and use of cow
milk or soy-based infant formula for 3 months. BMI was calculated as (weight)/(height2)
in metric units. Weight, height, and BMI data at 3, 5, 7, 12, and 72 months of age were
analyzed by mixed-effects ANOVA with matching by age, and grouped data plotted as
min-to-max box plots using Prism version 9.2.0 (GraphPad Software, LLC, San Diego, CA,
USA). Categorial data were analyzed by Chi square, or Fisher exact test if there were less
than 5 subjects in any row or column variable. Statistical significance was denoted by
p < 0.05.

3. Results

3.1. Soy/Grain-Based Rodent Diet Is Associated with Increased Weight Gain in Juvenile Fmr1KO Mice

During the study of seizure susceptibility in mice [17], we observed that juvenile
Fmr1KO mice fed soy protein/grain-based Purina 5015 lab chow exhibited increased weight
gain (22%) compared to Fmr1KO mice maintained on a casein-based, purified ingredient
diet D07030301 (Figure 1A). D07030301 is a modified version of the American Institute of
Nutrition 76A (AIN76A) diet that was matched to Purina 5015 for protein, fat, and carbo-
hydrate content (Supplementary Table S1). Mice were weighed at postnatal day 21 (P21)
immediately prior to seizure testing. A comparison of four diets, including Purina 5015 and
D07030301 plus an additional chow (Teklad 2019) and purified ingredient diet (AIN-93G),
indicated a statistically significant increase in body weight in WT mice fed Purina 5015
compared to AIN-93G and Teklad 2019 but not D07030301 (Figure 1A). D07030301 elicited
increased weight gain in WT mice in comparison to Teklad 2019. The Purina 5015 and
D07030301 have somewhat lower protein and higher fat energy densities than the AIN-93G
and Teklad 2019. AIN-93G has a significantly lower fat but higher carbohydrate energy
density. In contrast, weight gain in Fmr1KO mice was significantly higher in response to
the Purina 5015 and equivalent among the 3 low/no phytoestrogen diets irrespective of fat
and protein energy densities. WT female mice maintained on D07030301 weighed more
than Fmr1KO females on the same diet, while Fmr1KO females maintained on Purina 5015
weighed more than those on D07030301 (Supplementary Figure S1). There were no signifi-
cant differences in body weight dependent on diet in Tg2576 mice, a model for Alzheimer’s
disease, for males fed Purina 5015 (9.37 ± 0.43, n = 10) compared to D07030301 (8.82 ± 0.17,
n = 43; Student’s t-test p = 0.19), although the results approached statistical significance
for a 12% increase in body weight in female Tg2576 fed Purina 5015 (9.30 g ± 0.42, n = 11)
compared to D07030301 (8.27 ± 0.25, n = 43; Student’s t-test p = 0.07) (data not shown).

Body weight data generated by Jackson Laboratories for C57BL/6J mice (catalog
#000664) at 3 weeks of age indicate that males weigh 10.6 g (SD 1.9) and females weigh
10.1 g (SD 1.7) (https://www.jax.org/jax-mice-and-services/strain-data-sheet-pages/
body-weight-chart-000664; last accessed on 13 April 2022), and is based on mice main-
tained on a grain-based chow containing not less than 6% fat and 18% protein (LabDiet®

5K52/5K67). The major ingredients include ground wheat, ground corn, wheat middlings,
ground oats, fish meal, and dehulled soybean meal. The ingredients are most similar to
those in Purina 5015. The energy content is most similar to that of AIN-93G. Fmr1KO male
mice maintained on AIN-93G and both WT and Fmr1KO male mice maintained on Teklad
2019 exhibited average body weights more than one standard deviation below the average
body weight reported for C57BL/6J mice by Jackson Laboratories. Female mice were within
one standard deviation of Jackson Laboratory values.

https://www.jax.org/jax-mice-and-services/strain-data-sheet-pages/body-weight-chart-000664
https://www.jax.org/jax-mice-and-services/strain-data-sheet-pages/body-weight-chart-000664
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Figure 1. Mouse body weight as a function of Fmr1 genotype and diet. (A) Body weight of juvenile
WT and Fmr1KO male mice in response to rodent diets. Cohorts include WT/AIN-93G (n = 10),
WT/D07030301 (n = 80), WT/Purina 5015 (n = 29), WT/Teklad 2019 (n = 29), Fmr1KO/AIN-93G
(n = 7), Fmr1KO/D07030301 (n = 17), Fmr1KO/Purina 5015 (n = 32) and Fmr1KO/Teklad 2019 (n = 23).
Mice were maintained on the indicated diets throughout gestation and lactation and weighed on
postnatal day 21 (P21) immediately prior to seizure testing and average weight in grams with SEM
(y-axis) plotted against genotype (x-axis). Statistics were determined by 2-way ANOVA and Tukey’s
multiple comparison tests denoted by p < 0.05 (*), p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****).
Two ANOVA results include interaction F(3219) = 1.497, p = 0.22; genotype F(1219) = 2.544, p = 0.11;
diet F(3219) = 23.68, p < 0.0001. (B) Schematic of experimental plan. (B) The experimental plan includes
Fmr1HET females were bred and maintained on Teklad2019 (grain-based but low phytoestrogen levels)
diet throughout gestation and lactation. Male WT and Fmr1KO pups were weaned at P21 and randomized
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to diets (Teklad 2019, CIF, SIF) at P30. The pellet infant formula diets were prepared from Enfamil
Premium (cow milk-based, CIF) versus Enfamil ProsSobee (soy protein-based, SIF) infant formulas
(powdered formula purchased from Walmart and pellets synthesized by Research Diets, Inc.). The
mice were weighed at P21, P24, P27, and P30 prior to the diet change, and once per week for 4 weeks
after the diet change. A second reference diet included AIN-93G in which pups were bred and
maintained on AIN-93G throughout the study. (C) Body weight of adolescent WT and Fmr1KO male
mice in response to cow milk- and soy-based infant formula diets for 1 month. WT cohorts include
AIN-93G (n = 9), Teklad 2019 (n = 6), CIF (n = 13), and SIF (n = 10). Statistics were determined
by 2-way repeated measures ANOVA: age x diet F(21,238) = 9.487, p < 0.0001; age F(7238) = 1163,
p < 0.0001; diet F(3,34) = 1.994, p = 0.13; subject F(34,238) = 20.60, p < 0.0001). Fmr1KO cohorts include
AIN-93G (n = 5), Teklad 2019 (n = 10), CIF (n = 7) and SIF (n = 6). Statistics were determined by 2-way
repeated measures ANOVA: age x diet F(21,168) = 6.319, p < 0.0001; age F(7168) = 1463, p < 0.0001;
diet F(3,24) = 3.726, p = 0.0249; subject F(24,168) = 28.47, p < 0.0001). Statistics denoted by p < 0.01
(**) and p < 0.001 (***) for CIF versus SIF. The Fmr1KO CIF cohort is statistically different from the
Fmr1KO AIN-93G and Teklad 2019 cohorts at the same time points (statistics not shown). (D) Body
weight of adult male Fmr1KO mice in response to infant formula diets. Adult male Fmr1KO mice were
randomized to D07030301, CIF or SIF diets at 2–3 months of age for breeding. Mice in the SIF cohort
(n = 5) became noticeably obese compared to those fed CIF (n = 5) or D07030301 (n = 4) and thus all
the mice were weighed at approximately 4 months of age. Body weight is plotted versus diet in a
box-whisker plot. Statistics were determined by one-way ANOVA and Tukey’s multiple comparison
tests: F(2,11) = 6.000, p = 0.017, and denoted by p < 0.05 (*).

These data indicate that postnatal growth is not solely dependent on the energy
density of the diet, as the Purina 5015 and D07030301 diets were matched for percent
protein, fat, and carbohydrate. The data also suggest that the Fmr1 genotype likely interacts
with diet to affect juvenile weight gain in mice. The major difference between Purina
5015 and D07030301 was the protein source, soy, and grains versus casein, respectively.
Ground wheat and corn are major ingredients in both the Purina 5015 and Teklad 2019
chows; however, only the Purina 5015 contains soybean meal. A major limitation to this
retrospective analysis is that the data were collected over several years without a rigorous
planned study design to evaluate the effect of diet on weight gain.

3.2. Purina 5015 Does Not Statistically Alter Weight Gain in Adult Animals

We also asked if the Purina 5015 and D07030301 diets affected weight gain in adult an-
imals. During testing these diets on pentylenetetrazol (PTZ)-induced seizure susceptibility
in adult animals, C57BL/6J mice were maintained on Purina 5015 for 1 month and then
transferred to D07030301 or left on Purina 5015 for an additional 1 month prior to seizure
testing (Supplementary Figure S2). Differences in weight gain (4% increase in females and
5% increase in males fed Purina 5015) approached but did not reach statistical significance
with a minimum of 20 mice per cohort (Student’s t-test, p = 0.07). These data suggest that
fast growing, juvenile animals are more susceptible to the effects of diet on weight gain.
We hypothesized that soy protein was contributing to seizure and weight phenotypes.

3.3. SIF Increases Weight Gain in Adolescent Fmr1KO Mice Compared to CIF

The human correlate of mice fed single-source soy protein-based lab chow is babies fed
soy-based infant formula. We tested the casein- and soy-based infant formulas on weight gain
in WT and Fmr1KO mice. Powdered Enfamil Premium® (cow milk-based infant formula) and
Enfamil ProSobee® (soy-based infant formula) were purchased from Wal-Mart and formulated
into feeding pellets (CIF and SIF, respectively) (Supplementary Tables S2 and S3). The protein
energy densities of CIF and SIF were significantly lower than the mouse diets tested, 8%
CIF and 10% SIF, compared to 18–23% in mouse diets. We chose to formulate powdered
infant formula into feeding pellets, as opposed to adding soy protein isolate to a purified
ingredient diet, to closely mimic what infants are fed.
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Growth charts were generated for WT and Fmr1KO male mice in response to CIF
and SIF over a 1-month period (Study 1). Mice were conceived and maintained on the
Teklad 2019 diet until P30, at which time they were randomized to Teklad 2019, CIF or SIF
(Figure 1B). A fourth cohort was conceived and maintained on AIN-93G throughout the
study. There was no difference in weight gain based on genotype nor between the Teklad
2019, SIF, and AIN-93G diets at all time points tested (Figure 1C). These growth curves
mirror the expected growth trajectories for C57BL/6J mice, as determined by Jackson
Laboratories. There was a statistically significant decrease in body weight at all time
points tested in Fmr1KO mice maintained on CIF compared to SIF. The two-way ANOVA
did not indicate statistical significance in the WT mice as a function of diet, although
the growth curves followed the same pattern as the Fmr1KO mice. Casein alone is not
sufficient to reduce body weight as the AIN-93G and Teklad 2019 growth curves overlapped.
Considering the similar energy densities of CIF and SIF and that the adolescent mice were
still rapidly growing, these data support the conclusion that soy-based diets contribute to
increased weight gain in mice. In this case, the growth curves of the SIF cohorts mirrored
the low/no phytoestrogen mouse diets (Teklad 2019 and AIN-93G), suggesting that the
suboptimal protein content of the SIF was compensated for by a bioactive component in or
associated with soy protein.

3.4. CIF and SIF Are Suboptimal for Mouse Breeding

We assessed early postnatal treatment with CIF or SIF (Study 2); however, all male
and female Fmr1KO pups maintained on either CIF or SIF throughout gestation exhibited
more than one standard deviation decrease in expected body weight compared to Jackson
Laboratories C57/BL6 mice (Supplementary Table S4). Although several litters were
generated, the CIF and SIF diets were not optimal for rodent breeding or postnatal pup
growth. The infant formulas contained adequate fat and carbohydrates for mouse breeding
and lactation, but lower than recommended protein.

3.5. SIF Is Associated with Obesity in Adult Male Fmr1KO Mice

Interestingly, the adult male Fmr1KO mice that were maintained on a SIF diet for breed-
ing purposes developed obesity (Figure 1D). Mice were randomized to D07030301, CIF or
SIF diets at 2–3 months of age for breeding. Mice in the SIF cohort became noticeably obese
compared to those fed CIF or D07030301; hence, all mice were weighed at approximately
4 months of age. The D07030301 mice weighed an average of 28.4 g (SD 1.3) at 16.5 weeks
of age (SD 0.95) compared to the expected Jackson Laboratory weight of 30.5 g (SD 0.5). The
CIF mice weighed an average of 29.4 g (SD 2.6) at 17.5 weeks of age (SD 2.3) compared to
the expected Jackson laboratory weight of 30.7 g (SD 1.1). The SIF mice weighed an average
of 40.3 g (SD 9.3) at 18.1 weeks (SD 3.4) compared to the expected Jackson laboratory weight
of 31.0 g (SD 1.4), resulting in a 37–42% increase in body weight compared to CIF and
D07030302 (p < 0.02).

3.6. Consumption of SIF Is Associated with Altered Plasma Biomarker Expression

Biomarker expression was measured in WT and Fmr1KO mice after maintenance on
Teklad 2019, CIF and SIF diets (Supplementary Tables S5–S9, Study 1 mice). Differentially
expressed proteins are categorized based on genotype and diet (Tables 1–3). Of note,
neprilysin (NEP) was the only target on the arrays that exhibited altered expression in
response to SIF in both WT and Fmr1KO mice. Leptin was elevated in WT mice fed SIF.
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Table 1. Differentially expressed plasma proteins in WT mice dependent on diet.

Protein Target Fold Change Post Hoc t-Test (p)

6Ckine 0.45 1 ≤0.05

Axl 2.02 1 ≤0.02
1.76 2 ≤0.05

B7-1 1.48 1 ≤0.05
2.04 2 ≤0.00
0.73 3 ≤0.05

CD30 1.35 1 ≤0.02

CD36 2.40 1 ≤0.00
2.37 3 ≤0.05

Epiregulin 1.54 1 ≤0.05

Galactin-7 0.44 1 ≤0.04

ICAM-1 6.08 1 ≤0.04
3.68 3 ≤0.05

IL-1 R4 0.12 2 ≤0.01

IL-2 Ra 1.43 1 ≤0.00

Leptin 5.68 2 ≤0.02
0.11 3 ≤0.02

MFG-E8 4.34 3 ≤0.00

MMP-10 4.23 1 ≤0.01
2.07 2 ≤0.00
2.04 3 ≤0.04

Neprilysin 4.38 2 ≤0.03
0.25 3 ≤0.05

1 CIF versus 2019. 2 SIF versus 2019. 3 CIF versus SIF.

Table 2. Differentially expressed plasma proteins in Fmr1KO mice dependent on diet.

Protein Target Fold Change Post Hoc t-Test (p)

B7-1 2.18 2 ≤0.01

CXCL 16 0.77 2 ≤0.04

Epiregulin 1.56 1 ≤0.04

IGFBP-5 0.63 1 ≤0.04
0.73 3 ≤0.05

IL-1 R4 0.17 1 ≤0.02

Lipocalin-2 8.73 2 ≤0.01

Neprilysin 2.45 2 ≤0.05

P-Cadherin 2.11 2 ≤0.00

Prolactin 3.60 1 ≤0.00

Renin 1 2.28 1 ≤0.03

VEGF-B 4.42 1 ≤0.05
1 CIF versus 2019. 2 SIF versus 2019. 3 CIF versus SIF.
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Table 3. Differentially expressed plasma proteins dependent on genotype.

Protein Target Fold Change Post Hoc t-Test (p)

6Ckine 3.27 1 ≤0.02

B7-1 1.87 1 ≤0.02
1.75 3 ≤0.01

BLC 2.08 1 ≤0.03

Galactin-7 2.96 1 ≤0.00

ICAM-1 3.71 2 ≤0.05

MFG-E8 4.77 2 ≤0.00

Prolactin 0.34 2 ≤0.02

TRANCE 2.58 1 ≤0.02

VEGF-B 4.12 1 ≤0.02
1 2019, WT versus Fmr1KO. 2 CIF, WT versus Fmr1KO. 3 SIF, WT versus Fmr1KO.

3.7. SIF Is Associated with Altered Behavior

Next, we asked if SIF affected mouse behavior as a function of the Fmr1 genotype
(Study 3). First, we repeated the growth charts, albeit using both female (Fmr1HET, Fmr1KO)
and male (WT, Fmr1KO) littermate mice in response to Teklad 2019, CIF and SIF diets. Pups
were weaned at P20 and randomized to their respective diets (Figure 2A). There were no
statistical differences in weight gain based on genotype nor between the Teklad 2019 and
SIF diets at all time points tested, similar to Figure 1C. There was a statistically significant
decrease in body weight in Fmr1KO females from P27-P48, and at all time points after
treatment in WT and Fmr1KO males, maintained on CIF compared to SIF. The mixed effects,
two-way ANOVA did not indicate statistical significance in the Fmr1HET female mice fed
CIF versus SIF except at P34. The Fmr1HET and Fmr1KO CIF growth curves overlapped, but
the growth curve for the Fmr1HET mice fed SIF indicated a trend for lower body weights at
all time points compared to Fmr1KO fed SIF. Analysis of body composition by EchoMRI
indicated increased average body weight in male WT and male and female Fmr1KO mice
fed SIF versus CIF due to increased lean mass and not body fat at P62 and P76 (Figure 2B,
Supplementary Figures S3 and S4). Others show higher body weight and lean and fat
mass by EchoMRI in 10-week-old Fmr1KO (FVB/129 background) mice fed a Teklad 18%
protein diet [29], suggesting strain-specific differences. Fmr1KO males fed SIF exhibited a
56% decrease in nest building scores (Figure 2C). WT male mice fed SIF exhibited a 4.6-fold
increase in learning (Figure 2D). Increased learning in WT male mice in response to SIF in
the passive avoidance test concurs with elevated Children’s Memory Scale (CMS) Index
scores in typically developing males in the Beginnings Study soy infant formula cohort [30].

3.8. Soy-Based Infant Formula Is Not Associated with Obesity in Typically Developing Subjects at
6 Years of Age

An increased infant BMI is associated with an obesity status at 5 years of age [31,32].
Based on the mouse data, we postulated that consumption of soy-based infant formula
during postnatal development could be contributing to the childhood obesity epidemic.
Using the IFPSII/Y6FU dataset, we examined growth metrics up to 6 years of age in infants
fed cow milk- versus soy-based infant formulas for the first 3 months of life. Soy-fed
constituted 7.33% of the subjects (N = 36 soy-based formula; N = 455 cow milk formula).
There were statistically significant differences as a function of age, diet, and sex for both
weight and length by mixed-effects model analyses, but the only significant diet finding
between matched sex and age cohorts by multiple comparison analyses was a 13.7%
decrease in body weight in females fed soy-based formula versus those fed cow milk
formula, at 6 years of age, which correlated with decreased BMI (Figure 3). At 12 months
of age, average female BMIs were 16.9 (breast milk), 17.7 (cow milk formula) and 19.2
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(soy-based formula) and male BMIs were 17.5 (breast milk), 18.4 (cow milk formula) and
20.3 (soy-based formula). Although not statistically significant with the small number
of soy subjects, the BMIs at 12 months of age are trending higher with soy-based infant
formula and exceed 20 in the males (Supplementary Figure S5). A healthy infant’s BMI
should not be above 20, which is a risk factor for the development of obesity. Average
female BMIs at 6 years of age were 16.9 (cow milk formula) and 15.1 (soy-based formula),
corresponding to CDC percentiles of 83% and 48%, respectively, which are both in the
normal range (Supplementary Figure S6). Infants are classified as over-weight if they
have a BMI ≥ 85th percentile. The average male BMIs at 6 years of age were 16.3 (cow
milk formula) and 15.6 (soy-based infant formula) with CDC percentiles of 69% and 53%,
respectively. Longitudinal analyses are needed to elucidate the temporal relationships
between soy exposure during infancy and the development of chronic disease. It will be
interesting to examine adolescent and young adult populations as a function of infant
diet if further follow-up studies are conducted by the CDC. The small number of subjects
in the soy cohort and possible errors in parent-reported body weights are limitations to
the analysis.
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Figure 2. Body weight and behavior of adolescent WT and Fmr1KO male mice in response to cow
milk- and soy-based infant formula diets after 2 months treatment. Fmr1HET females were bred and
maintained on Teklad2019 (grain-based but low phytoestrogen levels) diet throughout gestation and
lactation. Female Fmr1HET and Fmr1KO and male WT and Fmr1KO pups were weaned at P20 and
randomized to diets (Teklad 2019, CIF, SIF). (A) The mice were weighed once per week for 2 months.
Female cohorts included Fmr1HET/Teklad 2019 (n = 4), Fmr1HET/CIF (n = 5), Fmr1HET/SIF (n = 6),
Fmr1KO/Teklad 2019 (n = 7), Fmr1KO/CIF (n = 7) and Fmr1KO/SIF (n = 6). Statistics were determined
by 2-way mixed effects model ANOVA: time F(8230) = 1413, p < 0.0001; genotype/diet F(5,29) = 5.122,
p = 0.0017; time x genotype/diet F(40,230) = 8.714, p < 0.0001. Male cohorts included the following:
WT/Teklad 2019 (n = 6), WT/CIF (n = 6), WT//SIF (n = 4), Fmr1KO/Teklad 2019 (n = 5), Fmr1KO/CIF
(n = 5) and Fmr1KO/SIF (n = 7). Statistics were determined by 2-way mixed-effects model ANOVA:
time F(8216) = 2550, p < 0.0001; genotype/diet F(5,27) = 16.78, p < 0.0001; time x genotype/diet
F(40,216) = 13.34, p < 0.0001. Tukey’s multiple comparison tests are denoted by p < 0.05 (x), p < 0.01 (xx),
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p < 0.001 (xxx), and p < 0.0001 (xxxx) where females x = a for Fmr1HET Teklad 2019 versus Fmr1HET

CIF, x = b for Fmr1HET Teklad 2019 versus Fmr1HET SIF, x = c for Fmr1HET Teklad 2019 versus Fmr1KO

2019, x = d for Fmr1HET Teklad 2019 versus Fmr1KO CIF, x = e for Fmr1HET Teklad 2019 versus Fmr1KO

SIF, x = f for Fmr1HET CIF versus Fmr1HET SIF, x = g for Fmr1HET CIF versus Fmr1KO 2019, x = h for
Fmr1HET CIF versus Fmr1KO CIF, x = i for Fmr1HET CIF versus Fmr1KO SIF, x = j for Fmr1HET SIF versus
Fmr1KO 2019, x = k for Fmr1HET SIF versus Fmr1KO CIF, x = l for Fmr1HET SIF versus Fmr1KO SIF, x = m
for Fmr1KO Teklad 2019 versus Fmr1KO CIF, x = n for Fmr1KO Teklad 2019 versus Fmr1KO SIF, and x = o
for Fmr1KO CIF versus Fmr1KO SIF, and males x = a for WT Teklad 2019 versus WT CIF, x = b for WT
Teklad 2019 versus WT SIF, x = c for WT Teklad 2019 versus Fmr1KO 2019, x = d for WT Teklad 2019
versus Fmr1KO CIF, x = e for WT Teklad 2019 versus Fmr1KO SIF, x = f for WT CIF versus WT SIF, x = g
for WT CIF versus Fmr1KO 2019, x = h for WT CIF versus Fmr1KO CIF, x = i for WT CIF versus Fmr1KO

SIF, x = j for WT SIF versus Fmr1KO 2019, x = k for WT SIF versus Fmr1KO CIF, x = l for WT SIF versus
Fmr1KO SIF, x = m for Fmr1KO Teklad 2019 versus Fmr1KO CIF, x = n for Fmr1KO Teklad 2019 versus
Fmr1KO SIF, and x = o for Fmr1KO CIF versus Fmr1KO SIF. (B) EchoMRI measurement of lean body
mass. Female cohorts include Fmr1HET/Teklad 2019 (n = 4), Fmr1HET/CIF (n = 5), Fmr1HET/SIF (n = 6),
Fmr1KO/Teklad 2019 (n = 6), Fmr1KO/CIF (n = 7) and Fmr1KO/SIF (n = 6). Statistics were determined
by two-way ANOVA: interaction F(2,28) = 2.702, p = 0.085; genotype F(1,28) = 4.410, p = 0.045; diet
F(2,28) = 7.438, p = 0.0026. Male cohorts include WT/Teklad 2019 (n = 6), WT/CIF (n = 6), WT/SIF
(n = 4), Fmr1KO/Teklad 2019 (n = 6), Fmr1KO/CIF (n = 5) and Fmr1KO/SIF (n = 7). Statistics were
determined by two-way ANOVA: interaction F(2,28) = 0.1425, p = 0.87; genotype F(1,28) = 0.3857,
p = 0.54; diet F(2,28) = 46.03, p < 0.0001. Tukey’s multiple comparison tests denoted by p < 0.05 (*),
p < 0.01 (**), p < 0.001 (***), and p < 0.0001 (****). Total body weight, fat mass, total water mass, and free
water mass measurements assessed by EchoMRI are provided in the Supplementary Data. (C) Nest
building female cohorts include Fmr1HET/Teklad 2019 (n = 3), Fmr1HET/CIF (n = 5), Fmr1HET/SIF
(n = 5), Fmr1KO/Teklad 2019 (n = 6), Fmr1KO/CIF (n = 7) and Fmr1KO/SIF (n = 6). Statistics were
determined by two-way ANOVA: interaction F(2,26) = 0.008736, p = 0.92; genotype F(1,26) = 0.1821,
p = 0.67; diet F(2,26) = 1.86, p = 0.18. Male cohorts include WT/Teklad 2019 (n = 6), WT/CIF (n = 6),
WT/SIF (n = 4), Fmr1KO/Teklad 2019 (n = 6), Fmr1KO/CIF (n = 5) and Fmr1KO/SIF (n = 7). Statistics
were determined by two-way ANOVA: interaction F(2,28) = 2.94, p = 0.069; genotype F(1,28) = 4.376,
p = 0.046; diet F(2,28) = 2.845, p = 0.075. Tukey’s multiple comparison tests denoted by p < 0.05 (*) and
p < 0.01 (**). (D) Passive avoidance female cohorts include Fmr1HET/Teklad 2019 (n = 4), Fmr1HET/CIF
(n = 5), Fmr1HET/SIF (n = 6), Fmr1KO/Teklad 2019 (n = 6), Fmr1KO/CIF (n = 7) and Fmr1KO/SIF
(n = 6). Statistics were determined by two-way ANOVA: interaction F(2,28) = 2.093, p = 0.14; genotype
F(1,28) = 2.530, p = 0.12; diet F(2,28) = 1.642, p = 0.21. Male cohorts include WT/Teklad 2019 (n = 6),
WT/CIF (n = 6), WT/SIF (n = 4), Fmr1KO/Teklad 2019 (n = 6), Fmr1KO/CIF (n = 5) and Fmr1KO/SIF
(n = 7). Statistics were determined by two-way ANOVA: interaction F(2,28) = 2.998, p = 0.066;
genotype F(1,28) = 6.844, p = 0.014; diet F(2,28) = 3.229, p = 0.055. Tukey’s multiple comparison
tests denoted by p < 0.05 (*). Data shown for 6-hours post-foot shock. Results were not statistically
different for 24- and 48-h post-foot shock.

3.9. Soy-Based Infant Formula Is Associated with an Increased Need for Support in School

Our prior work indicated increased autistic behaviors in autism and FXS with con-
sumption of soy-based infant formula [19–21]. The overall prevalence of autism or develop-
mental delay in the IFSII/Y6FU dataset was 2.86% (0.85% for females and 5.0% for males)
compared to 1.85% autism (0.069% for females and 2.97% for males) reported by the Autism
and Developmental Disabilities Monitoring (ADDM) Network [33]. The higher prevalence
in the survey data agrees with typically higher reported values from household survey data
asking a version of the question, “Has a doctor or health professional ever told you that
your child had autism, Asperger’s disorder, pervasive developmental disorder, or autism
spectrum disorder?”, compared to the reported prevalence by the ADDM [34]. IFPSII/Y6FU
subjects reporting use of soy-based infant formula for the first 3 months of life and Y6FU
outcomes trended for higher autism (N = 36, 5.56% autism) compared to exclusive use of
breast milk (N = 419, 1.91% autism), and cow milk formula (N = 455, 3.52% autism), but
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was not statistically significant (p = 0.22) (Table 4). Binning the data by sex indicated 9.52%
autism in soy-fed males (N = 21), but was also not statistically significant with the small
number of subjects. There was a highly statistically significant, greater than 5-fold increase
in needed classroom support in subjects fed soy-based infant formulas compared to both
breast milk and cow milk formula, as well as a 3.1-fold increase in help needed in school
comparing breast milk and soy-based infant formulas. Binning by sex, females fed soy-
based infant formula exhibited higher hay fever/respiratory allergies, and males needed
more help in school and support in the classroom (Supplementary Tables S10 and S11).
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Figure 3. Infant feeding during the first 3 months of life is associated with growth metrics and
adverse outcomes in children at 6 years of age. Growth cohorts included females fed cow milk
formula (n = 240), males fed cow milk formula (n = 215), females fed soy formula (n = 15), and
males fed soy formula (n = 21). Statistics were determined by two-way ANOVA with mixed-effects
analysis for body weight (age p < 0.0001, diet p = 0.0124, sex p = 0.0049, age x diet p = 0.0010, age
x sex p = 0.9733, diet x sex p = 0.3370, and age x diet x sex p = 0.4498); body length (age p < 0.0001,
diet p = 0.0134, sex P = 0.0059, age x diet p = 0.8580, age x sex p = 0.9953, diet x sex p = 0.7330, and
age x diet x sex p = 0.9936); BMI (age p < 0.0001, diet p = 0.7892, sex p = 0.1773, age x diet p = 0.0861,
age x sex p = 0.7547, diet x sex p = 0.4810, and age x diet x sex p = 0.9901). Statistical significance for
age-matched comparisons is denoted by p < 0.05 (*).
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Table 4. Incidence of adverse outcomes in IFPSII/Y6FU study population as a function of infant diet.

Metric Breast Cow Milk
Formula

Soy
Formula p 1

N 419 455 36
IEP 10% 15% 17% 0.093

Speech Therapy 9.3% 15% 17% 0.037 2

Occupational Therapy 3.3% 4.8% 8.3% 0.26
Help in School 5.5% 11% 17% 0.0035 3

Support in Classroom 2.6% 2.2% 14% 0.0003 4

Hay Fever or Respiratory Allergy 18% 25% 31% 0.024 5

Asthma 8.1% 13% 14% 0.07
ADD or ADHD 1.2% 5.1% 0% 0.0024 6

Autism or Developmental Delay 1.9% 3.5% 5.6% 0.22
1 Chi square 3 × 2. 2 p = 0.014 breast versus cow milk formula, p = 0.16 breast versus soy formula, p = 0.75 cow
milk formula versus soy formula by Chi square 2 × 2. 3 p = 0.0033 breast versus cow milk formula, p = 0.0084
breast versus soy formula, p = 0.3 cow milk formula versus soy formula by Chi square 2.2. 4 p = 0.68 breast versus
cow milk formula, p = 0.0004 breast versus soy formula, p < 0.0001 cow milk versus soy formula by Chi square
2 × 2. 5 p = 0.016 breast versus cow milk formula, p = 0.063 breast versus soy formula, p = 0.43 cow milk formula
versus soy formula by Chi square 2 × 2. 6 p = 0.0012 breast versus cow milk formula by Chi square 2 × 2.

4. Discussion

A minimal number of published studies have assessed the effects of direct ingestion
of soy-based infant formula on laboratory animals [35–38]. Herein, we find increased body
weight, altered behavior, and differential biomarker expression in WT and/or Fmr1KO mice
fed SIF compared to CIF. These mouse studies corroborate recent retrospective medical
record and survey analyses of human subjects indicating associations between consumption
of soy-based infant formula and increased seizures, autism, gastrointestinal problems, and
allergies in autism and FXS, while long-term consumption of breastmilk is protective
against autism in FXS [18–21,39]. The mouse work also corroborates a national population
level study based on health screening examinations linked with insurance claims data,
indicating associations between consumption of soy-based infant formula, and an increased
incidence of epilepsy in children and ADHD in boys [40,41].

Breastfeeding is the best nutrition for infant growth and development [42]; however,
while 83% of mothers initiate breastfeeding, only 50% are breastfeeding at 6 months and
24% at 12 months [43]. Over half of newborns receive formula while in the hospital [43].
The leading infant formulas currently in use are cow milk-based, followed by soy-based.
Estimates indicate that 12–36% of infants in the U.S. receive some soy-based formula during
their first year of life, but there is no data regarding how many are exclusively fed soy-based
infant formula [44–47]. Most infant feeding studies have not differentiated between formula
types when comparing developmental milestones with breast milk feeding. Thus, despite
the prevalent use of soy-based infant formulas, there have been few longitudinal studies
examining their effects on health, and none in developmental disability models [30,48–52],
which may be more prone to both positive and adverse effects in response to environmental
and dietary factors.

Herein, data from the IFPSII/Y6FU study indicated significant associations between
increased need for help in school and support in the classroom in response to soy-based
infant formula, suggesting effects on neurological development. These data concur with a
study in boys 8 years of age fed soy-based infant formula and exhibiting lower Behavior
Rating Inventory of Executive Function test scores compared to those fed cow milk-based
formula [53]. We did not find increased obesity in typically developing children at 6 years
of age. It is interesting that the anthropometric data at 12 months of age indicates trends
for increased BMI in both the male and female soy cohorts, but by 6 years of age, the
soy cohorts have lower BMIs. The results at 12 months of age appear to contradict the
Arkansas Beginning Study; however, a closer examination of their data, which indicates
statistically significant differences between breast milk and cow milk- and soy-based infant
formulas, also shows trends for increased weight and body length in the soy-based infant
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formula cohort at 12 months of age compared to the cow milk-based formula cohort [49].
Likewise, composite, verbal, and nonverbal intelligence indices show trends for decreasing
scores with breast milk > cow-based milk formula > soy-based infant formula [51]. Our
results indicate that increased body weight in response to SIF was significant in Fmr1KO

but not in WT animals, suggesting that soy may have more pronounced effects in FXS and
other developmental disabilities, which were excluded from the Beginnings Study. Altered
growth trajectories in response to soy-based infant formula in both typically developing and
neurodevelopmental populations require further investigation. Analysis of the National
Health and Nutrition Examination Survey (NHANES) 2015–2016 dataset indicates that
soy-based infant formula is associated with lower weight-for-length, head circumference-
for-age and abdominal-for-age Z-scores among infants < 6 months of age [54].

Bench-to-bedside plans for FXS are severely limited by the lack of validated outcome
measures [55]. Several candidate biomarkers are at the early stage of validation [56].
Here, we identify leptin and neprilysin as potential blood-based biomarkers that are
responsive to infant diet. Leptin is a 16 kDa peptide hormone that can cross the blood-brain
barrier and regulate food intake and energy expenditure via hypothalamic circuits [57].
The plasma leptin levels are highly correlated with BMI [58,59]. There are reports of
both reduced and elevated leptin levels in response to phytoestrogen-enriched diets in
rodents [60,61]. Leboucher and colleagues determined that leptin levels were lower in
Fmr1KO mice. Their mice were fed Mucedola 4RF25 chow, which has the main ingredients
of soybean meal extracted toasted, wheat, maize, and fish meal; blood samples were
collected after fasting [62]. We did not find a statistically significant decrease in non-fasting
leptin levels as a function of the Fmr1KO genotype, albeit there was a significant increase
in leptin levels in response to SIF selectively in WT mice. Others find no statistically
significant differences in leptin, cholesterol, triglycerides, adiponectin, free fatty acids, or
glycerol between WT and Fmr1KO mice maintained on a Harlan Teklad low phytoestrogen
laboratory chow [63]. Leptin levels are significantly higher in FXS subjects [64].

Leptin decreases the expression of neprilysin (NEP) [65]. NEP cleaves at the amino-
terminal side of hydrophobic residues, thereby inactivating numerous bioactive peptides,
including the insulin chain and β-amyloid (Aβ) [66]. Plasma NEP levels are associated
with metabolic syndrome in human subjects and obesity in mice [67,68]. Herein, the NEP
was differentially expressed as a function of SIF in both WT and Fmr1KO mice. Thus, the
NEP appears to be a promising target for future investigation that could link metabolic and
neurological phenotypes characteristic of FXS (Figure 4).

The strengths of the prospective mouse study include the use of littermate controls,
matched diets, and complementary physiological, behavioral, and biomarker studies. The
limitation of the mouse work is that metabolism varies between rodents and humans, which
may hinder the translatability of the results between species. Regardless, the findings elicit
significant questions regarding the potential effects of postnatal diet on neurodevelopment.
Mice are the preeminent model for drug testing prior to clinical trials, and diet-drug
interactions could explain why many drugs do not translate well in clinical trials. The
strengths of the IFPSII dataset include its prospective design, the extensive testing of survey
questions, the detail of the data collected about infants’ feeding patterns, the frequency
with which data were collected, the inclusion of questions that address most topic areas
likely to affect infant feeding, the large national sample size, and the 6-year follow-up study.
The strengths of the Y6FU dataset include that it is the largest longitudinal study in the
U.S. to examine the long-term consequences of infant feeding with 52.1% of the IFPSII
cohort completing the follow-up study. The limitations include the sample demographic,
which, although well-distributed throughout the U.S., is not representative of the U.S.
population; all data are self-reported by the mother; no medical records were examined to
confirm infant health, weight, length, or any other characteristic; lack of consideration of
complementary foods; only healthy infants were included. Infants with special needs or
medical problems would be predicted to have increased feeding problems and to be more



Cells 2022, 11, 1350 17 of 22

susceptible to diets or dietary components that exacerbate seizures and other neurological
phenotypes.
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Figure 4. Model of proposed gut-brain interactions underlying soy effects in Fmr1KO mice. SIF could
contribute to increased weight gain through a pathway involving APP metabolism, leptin, and NEP.
It has been hypothesized that amyloidogenic processing of APP in peripheral tissues plays a key
role in the response to nutrient excess and that this could contribute to the pathogenesis of metabolic
diseases [69]. Aβ, which is generated by β-secretase 1 (Bace1) and γ-secretase processing of APP,
can affect numerous metabolic processes [70,71]. APP and Aβ levels are dysregulated in mouse and
human models of FXS [72,73], a disorder comorbid with increased BMI [74] and where more severe
phenotypes are associated with consumption of single-source soy-based diets [17,20,21]. It is known
that soy phytoestrogens increase APP synthesis in primary cultured mouse neuronal cells [17], which
would provide more template for Bace-1 processing, but the mechanism(s) mediating the effects
of dietary soy are not known [75]. Leptin and NEP were identified as plasma-based biomarkers
responsive to SIF. These biomarkers are linked with APP processing [76], obesity [67,77,78], and
each other [65]. Aβ can migrate from the gastrointestinal (GI) tract to the brain and cause cognitive
impairment, but soy flavonoids have a protective effect [79]. Leptin attenuates the detrimental effects
of Aβ on spatial memory in rats [80]; herein, SIF increased leptin levels and improved 6-hr recall
in the passive avoidance test in WT mice. Soy-based diets negatively impact seizure and autism
outcomes in mouse and human models [17–21] consistent with the increased need for classroom
support and help needed in school. In total, these data support a model of overlapping feedback
loops with U-shaped response curves, involving APP processing, leptin, and neprilysin that underlies
diet-induced metabolic and neurological outcomes in response to consumption of single-source
soy-based diets.

5. Conclusions

In summary, single-source, soy-based diets are associated with weight gain and differ-
ential neurological outcomes in a mouse model of FXS. The findings are important because
there is a paucity of studies regarding the effects of pediatric nutrition on neurological de-
velopment and metabolism, particularly regarding infants with developmental disabilities
that are comorbid with obesity, including ASD [81] and FXS [16]. This study could have
powerful translational implications in terms of identifying a dietary intervention (restric-
tion of soy-based infant formula) to improve medical outcomes in vulnerable populations.
Considering the projected prevalence and cost of ASD [34], the role of early-life diet on
neurological development warrants further investigation. In the case of FXS, newborn
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screening would be required to identify infants. Parents typically recognize developmental
delays in their children with FXS as early as 9 months of age, but the average age of diag-
nosis is 36 months [82]. The major challenge confronting the implementation of newborn
screening for FXS is the lack of an effective early-life treatment [82].

Future directions include a rigorous assessment of the effects of exactly matched casein-
and soy protein-based diets on weight gain and behavior in WT and Fmr1KO mice. The CIF
and SIF diets utilized here were formulated from infant formulas optimized for human
nutrition and thus contained significantly less protein and more fat than typical mouse
diets. Moving forward, we will assess the effects of soy protein as a function of FMRP
status with exactly matched casein- and soy-protein-based diets formulated for optimal
mouse nutrition. Herein, fast-growing juvenile animals were more susceptible to the effect
of diet on weight gain, but it will be important to assess dietary effects throughout the
lifespan and as a function of developmental disability and drug treatment. For example, soy
greatly reduces the plasma concentration of valproic acid [83]. Thus, dietary components
that affect the pharmacokinetics and pharmacodynamics of drugs could underlie issues
with translating promising preclinical FXS therapeutics into humans. Unfortunately, most
publications on FXS rodent studies do not report diet details. It will also be important to
perform studies to validate the model proposed in Figure 4. NEP appears to be a promising
biomarker that could link metabolic and neurological phenotypes in FXS and deserves
further investigation. FDA approved drugs have been identified that act as potential NEP
inhibitors [84].
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