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In the study of memory engrams, synaptic memory allocation is a newly emerged
theme that focuses on how specific synapses are engaged in the storage of a given
memory. Cumulating evidence from imaging and molecular experiments indicates that
the recruitment of synapses that participate in the encoding and expression of memory
is neither random nor uniform. A hallmark observation is the emergence of groups of
synapses that share similar response properties and/or similar input properties and are
located within a stretch of a dendritic branch. This grouping of synapses has been
termed “synapse clustering” and has been shown to emerge in many different memory-
related paradigms, as well as in in vitro studies. The clustering of synapses may emerge
from synapses receiving similar input, or via many processes which allow for cross-talk
between nearby synapses within a dendritic branch, leading to cooperative plasticity.
Clustered synapses can act in concert to maximally exploit the nonlinear integration
potential of the dendritic branches in which they reside. Their main contribution is
to facilitate the induction of dendritic spikes and dendritic plateau potentials, which
provide advanced computational and memory-related capabilities to dendrites and
single neurons. This review focuses on recent evidence which investigates the role of
synapse clustering in dendritic integration, sensory perception, learning, and memory as
well as brain dysfunction. We also discuss recent theoretical work which explores the
computational advantages provided by synapse clustering, leading to novel and revised
theories of memory. As an eminent phenomenon during memory allocation, synapse
clustering both shapes memory engrams and is also shaped by the parallel plasticity
mechanisms upon which it relies.
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INTRODUCTION

Memory Engram Allocation in the Brain
Memory formation and storage relies on structural changes that occur in the connectivity between
neurons. Richard Semon, an early advocate of a physical theory of memory, was the first to term
the neural substrate containing memories as the memory engram (Semon, 1904; Schacter, 2001).
He defined the engram as the lasting modification produced by experience and stimulation in the
brain. Attempts in the 20th century to find and identify the engram were intense. Karl Lashley is
most famous for performing a long series of lesion experiments in the cerebral cortex of rats in an
attempt to find associations between carefully targeted lesions and the ability of animals to solve
maze tasks in which they were trained. While the lesions did cause memory impairments, Lashley’s
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studies showed that impairments occurred irrespective of the
location of the lesion, leading him to conclude that the
memory engram is not localized, but it is spread broadly and
indiscriminately throughout the brain (Lashley, 1950). Other
experiments identified specific loci of stimulation that evoke
memories, such as the experiments of Penfield and Rasmussen
who applied electrical stimulation to epileptic patients in order
to identify the centers of seizures. They found that electrical
stimulation in specific brain regions could cause a vivid recall
of various memories (Penfield and Rasmussen, 1950). Another
historically significant case is the famous patient HenryMolaison
whose bilateral removal of the medial temporal cortex led
to anterograde amnesia. This bolstered the idea that episodic
memories may be processed in the hippocampus (Scoville and
Milner, 1957) before being consolidated. These earlier studies
hinted at the existence of cellular memory engrams but lacked the
tools to visualize or manipulate them. Thus, a causal link between
memories and the neural substrate that contains them remained
elusive for decades.

It was not until a few years ago that optogenetics, molecular
labeling methods and 2-photon imaging allowed scientists to
precisely identify the neurons which are involved in the learning
and recall of specific memories (reviewed in Rogerson et al.,
2014; Josselyn et al., 2015; Tonegawa et al., 2015; Poo et al.,
2016). The first study that revealed the cellular memory engram,
i.e., the existence and identification of populations of neurons
that are sufficient and necessary for learning was (Han et al.,
2007). Since then, numerous studies have characterized the
properties and even manipulated cellular memory engram in
various ways. These manipulations include the ligand- and
light-driven neuronal activation of neurons, pharmacological
activators/suppressors of plasticity, combined with a variety of
imaging techniques for the identification and exploration of
the properties of cellular populations engaged in the long-term
storage of memories (Guzowski et al., 1999; Zhang and Linden,
2003; Han et al., 2007; Reijmers et al., 2007; Silva et al.,
2009; Bergstrom et al., 2011; Liu et al., 2012; Mayford, 2014;
Lai et al., 2018).

The formation of memory engrams is associated with
the action of multiple mechanisms that alter the functional
properties of neuronal circuits during learning processes,
which are collectively grouped as plasticity phenomena and
act on multiple spatial and temporal scales (Bhalla, 2014).
On the neuronal circuit level, plasticity is associated with
changes in the intrinsic excitability of neurons (Zhou et al.,
2009) and/or the excitability of their dendritic domains
(Zhang and Linden, 2003; Losonczy et al., 2008), as well
as on homeostatic phenomena that shape neuronal responses
(Turrigiano, 2008). In addition, memory engrams are subject to
the effects of epigenetic mechanisms such as the contribution
of DNA methylation to memory storage (Day and Sweatt,
2011) and histone acetylation to memory maintenance and
reconsolidation (Gräff et al., 2014). However, the main (and
best studied) mechanism via which memories are believed to
be encoded in these neuronal populations is the plasticity of
synaptic strengths, which occurs primarily within the dendritic
regions of excitatory neurons. At the level of the synapse,

plasticity is expressed both presynaptically, and post-synaptically
(Larkman et al., 1992), and even affects the local excitability
properties of dendrites (Sjöström et al., 2008). Thus, to
understand memory engram formation we need to understand
how sub-cellular, primarily synaptic, modifications occur as
a consequence of learning, and how these modifications
relate to cellular engrams. It is important, first, to identify
patterns of spatial allocation of synapses within dendrites
during learning.

Engram Allocation and Synapse Clustering
In the neocortex, most excitatory synapses reside on dendritic
spines. Spines provide a conducive environment for synaptic
plasticity and evidence shows that their emergence and
stabilization correlates strongly with synaptic plasticity
(Matsuzaki et al., 2004; Yasumatsu et al., 2008). Experiments
have demonstrated spine dynamics such as emergence, retraction
and morphological changes in multiple different brain regions
(Trachtenberg et al., 2002; Holtmaat and Svoboda, 2009; Fu et al.,
2012). The dynamics of spines, such as their turnover are affected
by sensory experience and learning (Holtmaat et al., 2005; Hofer
et al., 2009), and seem to be differentially regulated during
adolescence and adulthood (Holtmaat et al., 2005; Zuo et al.,
2005). Moreover, the location and distribution of stable spines is
crucial for the activation of local ionic conductances, impacting
the integration mode of dendrites (Ariav et al., 2003; Häusser
and Mel, 2003; Poirazi et al., 2003a; Losonczy and Magee, 2006;
Silver, 2010; Branco and Häusser, 2011; Yuste, 2011; Longordo
et al., 2013) and consequently, the properties of cellular memory
engrams. This distribution is greatly influenced by biophysical
mechanisms within dendrites that shape postsynaptic responses
and enable local forms of plasticity. The synapse strength
modification that is required for plasticity can be causally linked
to somatic spiking by the backpropagating action potential that
reaches the dendritic branches (such as, in the case of Hebbian
plasticity). In the absence of somatic spiking, that modification
can also be induced locally via dendritic spikes (Hardie and
Spruston, 2009).

Based on the above, there are at least two possible
scenarios regarding the distribution of activated spines following
experience and/or learning-induced plasticity: (a) random and
distributed; or (b) patterned, in a way that sub-serves a
specific function. We suggest that clustering is a type of
patterned synaptic activation that is optimal for inducing
local spiking and/or local synaptic plasticity. In the following
paragraphs, we discuss experimental evidence for each of
these scenarios.

Random and Distributed
Synapses can be scattered, seemingly randomly in dendrites,
with the location of synapses being determined by anatomy
(Braitenberg and Schüz, 2013). In this case, the connectivity of
neuronal circuits depends on the overlap of dendritic arbors
and axonal processes, as dictated by Peters’ rule (Peters et al.,
1976). There is evidence that such random connectivity may
exist in sensory cortices, however it is not known if this
arrangement follows Peters’ rule. A series of experiments which

Frontiers in Molecular Neuroscience | www.frontiersin.org 2 December 2019 | Volume 12 | Article 300

https://www.frontiersin.org/journals/molecular-neuroscience
https://www.frontiersin.org
https://www.frontiersin.org/journals/molecular-neuroscience#articles


Kastellakis and Poirazi Synaptic Engrams

used high-speed 2-photon imaging and electrophysiological
recordings to probe the response properties of spines in the
visual (Jia et al., 2010), auditory (Chen et al., 2011) and barrel
(Varga et al., 2011) sensory cortical areas found that neighboring
spines in dendrites of pyramidal neurons responded to different,
apparently random orientations, sound frequencies or whiskers,
and whisker combinations, respectively. This indicated that
there was no specific regular organization of synapses at
the spatial scale of the dendrite, but instead, there is an
unstructured mixture of connections. Crucially, the authors
did not observe dendritic regenerative events such as dendritic
spikes in those studies. It can, therefore, be hypothesized that
such observations support the idea that dendrites can act as
simple conducting devices. This model of ‘‘passive’’ dendritic
integration has inspired the earliest computational models of
neuronal network research in the 20th century (Minsky and
Papert, 1969; Hopfield, 1988). Even though such a view of
dendrites is now outdated because it reduces neurons to point
thresholding devices, they have been instrumental in the study
of memory storage in artificial neuronal populations. These
models have helped to established synaptic weight changes and
connectionism as the predominant mechanism for learning in
artificial systems (McClelland and Rumelhart, 1986; Hornik
et al., 1989). Under such a model, the encoding of the engram
would be expected to take place mainly via the dendritic
backpropagation of action potentials, a plasticity process that
does not require clustering.

Patterned
In several brain areas, it has been found that synapses are not
randomly placed in dendrites, but tend to form groups or clusters
of synapses (DeBello and Zito, 2017). These clusters of synapses
have special significance for synaptic integration: activating a
sufficient number of synapses in a short stretch of dendrite
can elicit a self-regenerating, powerful dendritic spike (Losonczy
and Magee, 2006). Dendritic spikes are much stronger and
longer-lasting responses than ordinary excitatory post-synaptic
potentials (EPSPs). They can strongly modulate the firing of the
neuron, and can induce localized plasticity at the dendritic level
(Spruston, 2008; Hardie and Spruston, 2009). It should be noted,
however, that a dendritic spike will emerge under any condition
that provides the critical (i.e., minimum-required), dendrite-
specific, amount of local depolarization. A depolarization that
is sufficient to open voltage-gated conductances and remove
the Mg++ block from NMDA receptors in its vicinity, thus
leading to supra-linear increases in Ca++/Na+ influx that rapidly
surpass the threshold for Na+/NMDA/Ca++ spikes. There are
at least two different ways to induce such critical dendritic
depolarizations (Figure 1).

(a) Synapse clustering: nearly-synchronously activated inputs that
are tightly-packed close to each other would be very efficient
in both inducing a strong depolarization and counteracting
signal attenuation at the site of EPSP induction (Figure 1A).
In thick and long branches, signal attenuation is substantial
and thus spatial clustering of inputs within small stretches is
likely to be the most efficient way to induce a local spike. Such

spatial clustering of inputs has been reported in several brain
areas, either in its anatomical [inhomogeneous spine density
(Makino and Malinow, 2011; Yadav et al., 2012; Druckmann
et al., 2014)] or in its functional form [homogeneous spine
density—clustered activation of inputs (Kleindienst et al.,
2011; Fu et al., 2012; Takahashi et al., 2012)].

(b) In-branch localization of synapses: nearly-synchronously
activated inputs that are distributed within short, thin
branches are likely to have the same effect, as signal
attenuation is much smaller in these branches (Figure 1A).
Indeed, both experiments (Polsky et al., 2004; Losonczy and
Magee, 2006) and modeling (Poirazi et al., 2003b; Gómez
González et al., 2011) show that uniform distribution of
co-activated inputs within the thin, oblique dendrites of
CA1 pyramidal neurons is equally potent in generating
dendritic spikes as restricting those activated inputs in small,
spatially concise clusters. Such in-branch localization has
been suggested to drive the tuning of visual cortex dendritic
branches to specific orientations (Wilson et al., 2016) and
is functionally analogous to the activation of a cluster of
synapses.

Insofar as both synapse clustering and in-branch co-activation
drive nonlinear responses in dendrites, their effect on the
plasticity and function of the neuron is expected to be largely
similar (Figures 1B,C). This may explain the disparity between
experiments that have failed to find synaptic clusters of
orientation in the visual cortex (Jia et al., 2010) with ones that
do (Wilson et al., 2016).

MECHANISMS FOR THE GENERATION OF
SYNAPTIC CLUSTERS

Considering the different patterns of spatial synaptic allocation
that have been observed, it is important to identify mechanisms
that lead to the nonrandom, clustered positioning of synapses.
There are many mechanisms and/or conditions that can facilitate
the formation of synaptic clusters in neuronal dendrites during
learning and experience. In the following paragraphs, we discuss
the most prominent ones, all of which require at least one of the
following: (a) convergence of axonal projections carrying similar
information onto the same dendrite; (b) the presence of active
ionic conductances in dendrites; (c) activity-dependent axonal
rewiring; and (d) local protein synthesis.

Clustering During Development
During development, spontaneous activity refines neuronal
connections, creating clusters of synapses with similar activity
patterns. Niculescu et al. (2018) found that the activation of TrkB
and postsynaptic brain-derived neurotrophic factor (BDNF)
were required for synapse clustering in developing neurons.
This intrinsic mechanism in developing hippocampal neurons
acts in concert with proBDNF signaling, which downregulates
synapses that are out-of-sync with the cluster activity. This
combination suggests an efficient mechanism that facilitates the
creation of synaptic clusters in the developing hippocampus.
Lee et al. (2016) combined whole-cell electrophysiology with
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FIGURE 1 | Synaptic and cellular engram formation. (A) Dendritic spikes can be induced either from localized activation of a co-active group of synapses (clustered
synapse allocation) or from more dispersed activation of synapses within the same branch segment (In-branch allocation). (B) In both cases, the elicitation of
dendritic spikes is integrated with the somatic compartment, controlling the action potential generation or bursting behavior of the neuron and enabling local or
global plasticity to occur. (C) Neuronal populations activated for each memory are selected by mechanisms such as excitability and CREB activation leading to the
selection of a population memory engram. Mechanisms for the generation of synaptic clusters: (D) cooperative sharing of plasticity-related resources such as
proteins facilitates cooperative LTP in nearby synapses after LTP induction. The spreading of activation of plasticity-related proteins, enzymes, and mRNAs may
prime nearby synapses for subsequent plasticity. (E) Co-active axons in nearby synapses can drive cooperative plasticity by initiating similar resource-sharing
mechanisms as a result of coincident activation (F) a single axon may make multiple contacts in a short segment of a dendrite, thereby driving cooperative plasticity
via synchronized synapse activation.

2-photon imaging and glutamate uncaging to study the dynamics
of synaptogenesis in developing hippocampal slices. They
discovered that thereNMDA receptor activationwas functionally
coupled with ryanodine-sensitive intracellular calcium release
which is a crucial factor in the determination of the spatial and
temporal dynamics of transient calcium signals which facilitate
and lead to synaptogenesis. This mechanism is apparently
tuned to detect synaptic inputs which are correlated in space
and time, thus facilitating local synapse cluster formation.
Thus, NMDA receptors, coupled to internal calcium store
release, are well suited to guide synapse clustering and the fine
structure of synaptic connectivity in emerging neural networks
(Lee et al., 2016).

Clustering by Cooperative Plasticity
Cooperativity is the characteristic property of LTP according
to which the activated synapses can overcome the plasticity
threshold as a group (Figure 1C). Cooperativity is believed to
be initiated by the influx of calcium through NMDA receptor
activation (Bliss and Collingridge, 1993; Sjöström et al., 2001).

This activation and elevation of calcium levels initiates multiple
biochemical signaling pathways in the dendritic domain (Baudry
et al., 2011). Certain pathways can not only facilitate LTP at
the stimulated synapse but also at neighboring synapses. This
activity can coordinate the potentiation of multiple synapses
leading to the formation of a group of nearby potentiated
synapses, thus leading to the creation of a synapse cluster.
The temporal dynamics of LTP and its consolidation (which
can be slow as it is a protein-dependent process), allow for
these interactions. Examples of these pathways are the MAPK
(mitogen-activated protein kinase) and mTOR (mechanistic
target of rapamycin) cascades, which are active for several
minutes post-stimulation and LTP initiation (Wu et al., 2001).
The long-time course of this activation allows proteins and
kinases to spread to neighboring synapses, thus facilitating LTP
induction in them. Part of theMAPK signaling pathway is the Ras
GTPase, which has been correlated with increased spine volumes
after LTP induction. Ras can spread to nearby spines over
the time course of minutes (Harvey et al., 2008). Additionally,
the RhoA GTPase similarly spreads out of stimulated spines
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for about 5 µm along the length of the dendrite (Murakoshi
et al., 2011). The molecular mechanisms described are candidates
to support the potentiation of groups of co-active synapses,
which form synapse clusters at the spatial scale of about
20 µm (Hering and Sheng, 2001; Patterson and Yasuda,
2011; Winnubst et al., 2012). Glutamate uncaging experiments
have directly demonstrated cooperative plasticity in dendrites
in vitro, showing LTP cooperativity and the potential for
clustering at the level of the single branch but not its siblings
(Govindarajan et al., 2010).

Synaptic clustering is also dependent and supported by the
presence of polyribosomes and smooth endoplasmic reticulum
(SER). Using electron microscopy reconstruction, Chirillo et al.
(2019) found that the rich presence of SER and polyribosomes in
spines led to the creation of distinct synaptic clusters leaving the
poor dendritic regions asynaptic. In addition, SER was enriched
in the shafts near LTP-potentiated synapses, indicating that it
might facilitate spine formation and potentiation in its vicinity
in a cooperative manner.

Clustering by Axonal Rewiring and Spine
Turnover
In certain learning protocols, as well as during development,
the addition of new synapses during synaptogenesis and
spinogenesis tends to occur near existing, mature synapses (Fu
et al., 2012). This addition of new synapses near existing ones
effectively changes the wiring diagram and can lead to synapse
clustering. Modeling studies (Poirazi and Mel, 2001) suggested a
mechanism for activity-dependent rewiring according to which
newly formed spines would establish stable contacts with passing
axons, only if those axons had correlated activity with existing,
mature spines, thus contributing to cluster formation. This
mechanism relied on the formation of silent (NMDA-only)
synapses that would turn into regular synapses in the presence
of correlated input from nearby mature spines. Such changes
are typically much slower than LTP cooperativity (on the order
of days), as they require the restructuring of neural tissue and
formation of new spines (Trachtenberg et al., 2002; Chklovskii
et al., 2004; Holtmaat et al., 2005). Synapse turnover is a
process that persists in the adult brain (Trachtenberg et al.,
2002) and thus it is possible for LTP cooperativity to interact
with synapse turnover or with the conversion of filopodia to
mature dendritic spines. Such interaction would contribute to the
de novo formation of synapse clusters.

It should be noted that clustering may also result from
synapses originating from the same axon. Using serial-section
transmission electron microscopy to image hippocampal tissue,
Bloss et al. (2018) found single presynaptic axons that formed
multiple spatially clustered inputs, These clustered synapses
resided on the distal, but not on the proximal dendrites of
CA1 neurons. These clustered synapses occurred predominantly
in entorhinal rather than in thalamic afferents and had
the morphological features of strong synapses. The authors
verified using computational simulations that those clustered
connections could efficiently depolarize the dendrites, thus
sub-serving the same, common goal of clustering which is to
engage the dendritic nonlinearities.

Clustering (or in-Branch Localization)
Reinforced by Dendritic Plateaus
Synaptic activation which leads to the generation of dendritic
depolarization plateaus has been found to be effective for the
initiation of synaptic potentiation, even in the absence of somatic
spiking in CA1 neurons (Hardie and Spruston, 2009; Cichon and
Gan, 2015). This mechanism could facilitate the formation or
enrichment of synaptic clusters in specific dendrites, or more
generally the in-branch potentiation of synaptic inputs within
a dendritic segment, which in both cases increases the potential
for somatic burst firing. Interestingly, dendritic voltage plateaus
have been found to be correlated with the quick formation
of new place fields in CA1 neurons (Sheffield and Dombeck,
2015; Bittner et al., 2015) and were produced via interaction
between entorhinal and hippocampal CA3 input. Interestingly,
these plateaus are implicated in a non-Hebbian plasticity rule that
allows the formation of place fields in CA1 neurons primed by
dendritic plateaus which occurred many seconds earlier, a novel
form of plasticity termed behavioral time scale synaptic plasticity
(BTSP; Bittner et al., 2017). It is thus possible that clustering,
which can naturally cause the initiation of dendritic plateaus is
correlated with this form of plasticity.

In parallel with excitatory synapse clustering, recent research
has identified that inhibitory synapse allocation may also follow
similar dynamics. When dendritic spines undergo modification
in vivo, it was found that inhibitory synapses located within
10 µm of them also undergo modifications, and this spatially
coordinated clustering of excitatory and inhibitory synapses
modifications was increased under sensory deprivation (Chen
et al., 2012). This could indicate a ‘‘co-clustering’’ mechanism
that allows inhibitory synapses to regulate the plasticity or
the function of excitatory synaptic clusters. Indeed, the loss of
inhibition in a region may facilitate excitatory synapse clustering.
Computational modeling has suggested that inhibitory synapses
can determine the sign and presence of plasticity in neighboring
dendritic segments (Bar-Ilan et al., 2013). Evidence from in vitro
experiments indicates that GABA uncaging reduces the calcium
transients caused by backpropagating action potentials within
a distance of 20 µm from the uncaging site, indicating that
appropriate placement of inhibitory dendritic synapses may have
a crucial role in permitting the formation of synaptic clusters
nearby (Hayama et al., 2013).

SYNAPSE CLUSTERING ENABLES NEW
MODES OF NEURAL PROCESSING

The machinery of clustering and its observation in many
different experiments raise intriguing questions about the
functional role of clustering in the brain. The now abundant
evidence of dendritic spike generation, patterned spatial synaptic
arrangement, and clustered activation both in vitro (Häusser
et al., 2000; Schiller et al., 2000; Ariav et al., 2003; Losonczy
and Magee, 2006; Nevian et al., 2007; Larkum and Nevian, 2008;
Kim et al., 2012; Makara and Magee, 2013) and in vivo (Lavzin
et al., 2012; Major et al., 2013; Smith et al., 2013) highlight
that dendrites have computational capabilities that go beyond
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the simple linear integration which is mediated by distributed
connectivity. This means that the connectionist models which
account only for distributed connectivity needed to be updated
to account for the effect of nonlinear dendrites.

Computational studies of clustered activation of synaptic
inputs in the dendrites of models of both simplified (Mel,
1993; Poirazi and Mel, 2001) and also anatomically and
biophysically detailed neurons (Poirazi et al., 2003a,b) have
demonstrated how clustered input can engage local dendritic
nonlinearities to influence, not only the electrical effect of
the dendrite, but also the neuronal output. The synchronous
activation of synapses which reside in the same apical branch
of a pyramidal neuron model resulted in supralinear responses
(Poirazi et al., 2003a). This computational prediction was verified
via recordings from L5 neocortical pyramidal neurons (Polsky
et al., 2004). The supralinear response of the neurons is the
result of the dendritic spikes initiation, a phenomenon that
is not present when synapses are stimulated between different
branches. Supralinear dendritic responses have been reported
in experiments in oblique dendrites of CA1 pyramidal cells by
stimulating groups of synapses within individual radial oblique
dendritic branches (Losonczy and Magee, 2006). This ability
to respond to synchronized input indicates that supralinear
dendrites may act as coincidence detectors via the initiation of
fast dendritic spikes (Ariav et al., 2003; Losonczy and Magee,
2006; Gómez González et al., 2011) or may detect asynchronous
bursting inputs via the initiation of slow dendritic spikes
(Gómez González et al., 2011). The nonlinear activation of
such independent integrative compartments has established the
two-stage model of neuronal processing (Figure 2), according
to which dendrites act as a second layer of nonlinearities, and
thus each neuron can be considered as a two-layer neural
network (Poirazi et al., 2003b; Katz et al., 2009). This finding
has profound implications for the functioning of neurons,
primarily because it increases their storage capacity by an
order of magnitude (Poirazi et al., 2003a). Interestingly, recent
work has found that interneurons can also exploit dendritic
nonlinearities of their dendrites (Figure 2), which allows
them to be modeled as a 2-layer network, thereby increasing
their computational capacity (Tzilivaki et al., 2019). It is
interesting thus to explore how the brain takes advantage of the
capacities afforded by clustering and its dendritic machinery,
and this has been a focus of experimental dendritic research in
recent years.

SYNAPSE CLUSTERING IN SENSORY
SYSTEMS

Synapse clustering is relatively well studied in sensory cortices,
and multiple functions have been ascribed to the nonlinear
properties of clustered synapses. In fact, the first evidence for
anatomical synapse clustering in relation to experience was
demonstrated in the dendrites of the cells of the adaptive
microcircuit of the auditory localization circuit of the barn
owl (McBride et al., 2008). Barn owls which have been raised
with prismatic spectacles typically develop an adaptive zone.
This does not exist in normal animals and is a result of the

animal’s abnormal experience. McBride et al. (2008) found
increased clustering of axodendritic contacts in the adaptive
zone as well as decreased clustering in the normal zone,
indicating that this type of learning is correlated with dendritic
synapse clustering. In another study, Takahashi et al. (2012)
visualized the synaptic activation of neurons in the barrel cortex
of mice and found that activated synapses formed functional
‘‘assemblets.’’ These synapses were synchronized and spatially
confined (Takahashi et al., 2012). Neighboring spines were
found to be significantly co-activated compared to control
and formed functional synaptic assemblets which consisted
of groups of synapses (2–12 synapses spaced <10 µm) in
dendritic branches. The spines of the assemblets were larger
in size in comparison to spines that did not participate in
assemblets, indicating that assemblets were likely formed via
LTP mechanisms. The authors confirmed that by demonstrating
the reduced clustered activity of synapses when the tissue
was cultivated in the presence of NMDA receptor antagonist.
The authors were able to pinpoint the source of the observed
clustered co-activation of synapses, which was attributed to the
concurrent activation of the afferent axons terminating on the
clustered synapses.

In the visual cortex, Wilson et al. (2016) used 2-photon in vivo
calcium imaging to characterize the orientation tuning and
arrangement of synaptic inputs terminating on spines of Layer
2/3 pyramidal neurons in the ferret visual cortex. Interestingly,
while the orientation preference of the visual cortex neuron
represented the summed synaptic orientation-tuned inputs to
the neuron, it did not account for differences in orientation
selectivity among neurons. The authors identified a nonlinear
relationship between input and outputs that was correlated with
the spatial clustering of co-tuned inputs. Dendritic branches with
clusters of similarly tuned inputs exhibited calcium dendritic
events, which in turn shaped the orientation selectivity of the
neuron. Thus the degree of clustering on single visual neurons
strongly predicts somatic orientation selectivity. Along the same
lines, Gökçe et al. (2016) mapped the spatial organization of
glutamatergic synapses between layer 5 pyramidal in the mouse
visual cortex using a combination of optogenetics and 2-photon
calcium imaging. The authors performed a combinatorial
analysis of the likelihoods of specific synapse arrangements, to
demonstrate that the synapses of intralaminar inputs formed
clusters on the basal dendrites of layer 5 pyramidal cells,
containing 4–14 synapses in a stretch of ≤30 µm of the dendrite
(Gökçe et al., 2016).

In order to identify the role of clustered inputs in the
visual system, Iacaruso et al. (2017) used 2-photon imaging
to map the spatial receptive fields in dendritic spines the
visual cortex of mice. This allowed them to determine which
synaptic inputs responded to different locations in the visual
scene. Their results showed that inputs that represented
similar visual features from the same location in visual space
clustered on neighboring spines, while inputs from visual field
regions outside the receptive field of the neuron tended to
synapse on higher-order branches. Those long-range inputs
were more also likely to represent the same oriented edges
as the postsynaptic neuron when the receptive field of the
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FIGURE 2 | Computational basis of 2-layer neuronal integration. (A) Nonlinear integration in CA1 neurons can results in a sigmoidal-like response of the dendrite to
synaptic input. y-axis: observed depolarization (excitatory post-synaptic potentials, EPSP), x-axis: expected depolarization (EPSP) if the dendrite had a completely
linear response. (B) The simplified model which predicts the firing rate output of a CA1 neuron is a 2-layer neural network with sigmoidal activation functions
[adapted from Poirazi et al. (2003a,b), with permission]. (C) Hippocampal fast-spiking interneurons (the morphology shown) also have nonlinear dendrites.
(D) Dendrites with supralinear responses axes as in (A). (E) Dendrites with sublinear responses. Adapted with permission from Tzilivaki et al. (2019).

input was spatially displaced in the direction of the axis of
the receptive field orientation of the postsynaptic neuron. This
specific synaptic connectivity is apparently suited to amplify
the responses to elongated edges. These edges are enriched in
the natural visual environment, and thus this arrangement of
clustered and non-clustered synapses could be a mechanism for
contour integration.

In addition to experimental work, the potential of synapse
clustering to determine the neuronal output of sensory neurons
has been investigated using computational models. Nonlinear
dendritic processing can affect the stimulus selectivity of a
neuron, even if the total synaptic weight of the preferred stimulus
does not exceed that of the non-preferred input. Cazé et al. (2017)
used computational modeling to demonstrate how this stimulus
selectivity arises from the spatial distribution of synapses.
This stimulus selectivity increases the neuron’s robustness to
synaptic and dendritic failure. Using compartmental modeling
they also showed how this clustered activation model is
compatible with the that the mixture of selectivities in
dendrites is different from the somatic selectivity (Cazé et al.,
2017). Synaptic clustering may also have a functional role
in the olfactory system. Migliore et al. (2015) used a 3D
model of mitral and granule cell interactions, to identify

the mechanisms for the formation of multiple odor-activated
synaptic clusters related to individual glomeruli. They studied
how and to what extent the glomerular units interact or
interfere with each other during learning, and developed a
theoretical framework in which the olfactory bulb contains ‘‘odor
operators’’ unique to each individual. While speculative, this
model provides a function for clustering in the olfactory system
(Migliore et al., 2015).

Overall, clustering in sensory systems is relatively well studied
and we now have a partial understanding of how it contributes to
sensory tuning. Considering the long timescale of sensory system
development, it is likely that developmental mechanisms of
clustering are primarily responsible for sensory synaptic clusters.
Indeed, one of the first observations of clustering was in the barn
owl visual adaptive region during development (McBride et al.,
2008).

SYNAPTIC CLUSTERING IN LEARNING
AND MEMORY

Studies of learning and memory have recently ascribed
multiple memory-related roles to synapse clustering. Makino
and Malinow (2011) used fluorescent tagging of glutamate
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receptor type 1 (GluR1) subunits to visualize the trafficking
of AMPA receptors during the normal sensory experience
and also during periods of sensory deprivation (whisker
removal) in mice. Normal experience (e.g., whisking) caused
coordinated trafficking of GluR1 subunits to neighbor synapses
in the dendrites of somatosensory neurons. The clustering of
GluR1 subunits was abolished on sensory-deprived mice, which
indicates that learning under a rich sensory environment resulted
in higher clustering. Kramár et al. (2012) examined the role of
timing in the induction of LTP in rat hippocampal slices in order
to explore the possible effects of spaced repetition in learning.
Interestingly they found that when theta stimulation was spaced
apart by more than 1 h there was a marked enhancement of
LTP. The effect of spaced repetition resulted in the potentiation
of co-localized synapses which did not undergo LTP initially.
This suggests a general rule for clustered potentiation as a
mechanism that results from spaced repetition and improves
memory learning (Kramár et al., 2012).

Localized synaptic turnover has also been found to have an
effect on both memory performance and synapse clustering.
Frank et al. (2018) used in vivo 2-photon microscopy to trace the
spine dynamics in dendrites of the retrosplenial cortex before and
after episodic-like memory learning. They found that increased
turnover rates before learning correlated with post-learning
performance of the learned task (Figure 3E) as well as with
increased learning rate. Interestingly, pre-learning turnover and
memory performance also correlated with an increased incidence
of synapse clustering in the imaged dendrites (Figures 3F,G),
even though the total number of newly acquired synapses did
not change. In addition, the authors used genetically modified
CCR5-knockout mice, which are known to exhibit enhanced
spine turnover, and demonstrated that it results in enhanced
memory and spine clustering of new synapses. Detailed analysis
showed that there are sub-regions of increased synaptic turnover
(hotspots) within dendrites, which facilitate the incidence of
synaptic clusters post-learning. It thus becomes evident that these
hotspots of increased synaptic turnover in dendrites serve as a
substrate for memory-enhancing synapse clustering.

Last but not least, computational modeling has been
instrumental for the study of the relationship between synapse
clusters and memory. In fact, models were the first to identify
the potential for nonlinear integration and processing in
dendrites (Segev and Rall, 1988; Mel, 1993; Poirazi and Mel,
2001), informing subsequent electrophysiological and imaging
studies. Recent results suggest that the engram formation
process is guided by a competitive selection process in which
neurons are recruited to encode a memory according to
their CREB activation and intrinsic excitability levels (Han
et al., 2007). Using computational modeling, it was shown
that this CREB-dependent excitability in cooperation with the
process of synaptic tagging and capture leads to clustered
potentiation of synapses in dendrites (Kastellakis et al., 2016).
When multiple memories are stored in the same circuit,
co-clustering of related memories occurs, along with neuronal
co-allocation (Figures 3C,D), and thus synapse clustering might
provide a substrate for linking memories into memory episodes
(Figures 3A–D). In addition, branch-specific learning rules

which depend on the elicitation of dendritic spikes (and thus
on the clustering of synapses) can induce competition between
different dendritic branches, allowing neurons to bind different
memory features in different branches (Legenstein and Maass,
2011), thus strongly enhancing the processing capabilities of
individual neurons (Poirazi and Mel, 2001).

Overall, clustering interacts with learning and memory in
ways that extend beyond Hebbian learning and enable new
modes of processing. Cooperative plasticity leading to clustering
is likely to have a major contribution to learning and storage of
information. It has been thus suggested that the dendritic branch,
due to its unique electrical integration properties and its ability to
support clustered synapses, is the fundamental unit of processing
and memory allocation in the brain (Govindarajan et al., 2006;
Branco and Häusser, 2010).

SYNAPSE CLUSTERING AND
PATHOLOGIES

Could synapse clustering play a role in pathological states
and disease? Studies of synapse clustering throughout the
years have attempted to identify the ways in which the brain
exploits the functional properties of synaptic clusters. Theoretical
considerations have suggested that synapse clustering, as a
mechanism of associativity, might be disrupted in pathological
cases such as autism and schizophrenia. It was speculated for
example that over-clustering of synapses representing different
memories could lead to confusion of memories and remote
associations as seen in schizophrenia, while under-clustering
might reduce the relatedness between memories and knowledge
domains, evident in autism (Kastellakis et al., 2015).

Recent studies have shed light on the relationship between
abnormal dendritic clustering of synapses and their putative
relationship to pathological states. Ash et al. (2018) found
that repetitive motor learning in a mouse model of MECP2-
duplication syndrome (which is a high-penetrance form of
syndromic autism) increased the stabilization of dendritic spines
following learning. This result is the reverse of what was
earlier speculated, but nevertheless highlights a connection
between clustering and autism. The ERK signaling pathway
was found to be hyperactive after learning, leading to an
increase in the number of clustered synapses being formed, and
predicted enhanced motor learning. This increased clustering
could thus be implicated in behaviors that are reminiscent
of savant-like behaviors which are associated with autism
(Ash et al., 2018). In a study of the effect of an early-life
intervention on adulthood behavior, Skilbeck et al. (2018)
assessed the relationship between early-life anxiety and the
clustering of GABAa receptors. They found that animals which
showed increased anxiety-type behavior in an elevated-plus
maze experiment also showed reduced colocalization of GABAA
a2 subunits relative to control animals, suggesting that early-life
environment may lead to long-term changes in adulthood
behavior via its effect in the clustering of GABAa receptors.
Thus reduced GABAA receptor synapse clustering may underlie
enhanced anxiety (Skilbeck et al., 2018). Finally, in a mouse
model of Huntington’s disease, Murmu et al. (2013) found that
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FIGURE 3 | Clustering in memory. Computational modeling suggests that two memories that overlap temporally and thus have the ability to share proteins and
resources via cooperative plasticity and synaptic tagging, are co-allocated in overlapping neuronal populations. (A) Increase in the size of memory engram (neuronal
populations active during recall) of the first memory when paired with a second one as a function of the interval between the two memories (x-axis). LTP cooperativity
enables enhanced allocation of the memory for the first 2 h. Panel (B) as in (A), but for the second encoded memory. The increased excitability of the neurons
encoding the first memory enables enhanced allocation of the second memory for up to 5 h. (C) The two memories being encoded are allocated in overlapping
populations of neurons, and the overlap varies both as a function of the interval between memories (x-axis) and dependent on whether protein synthesis is limited to
a single branch, or the entire neuron, or both (color coding). (D) In addition to overlapping populations, memories are also encoded in overlapping dendrites, i.e., they
create clusters together, dependent on time and locus of protein synthesis similarly to (C). (E) Imaging of retrosplenial cortex dendrites shows that pre-training
synaptic turnover in a stretch of dendrite correlates with the performance of contextual fear memory after a learning task. (F) The learning task resulted in a higher
incidence of clustered synapses post-training compared to controls. ∗∗p < 0.01. (G) Increased clustering of synapses gained post-training was found to correlate
with behavioral performance. Panels (A–D) adapted from Kastellakis et al. (2016), with permission. Panels (E–G) adapted from Frank et al. (2018), with permission.

the density and the stability of dendritic spines were reduced
compared to controls, even though the spine formation rate
was overall increased. This may indicate that the dynamics
of dendritic spines, which directly affect synapse clustering,
may have a role in the early symptoms of Huntington’s
(Murmu et al., 2013).

Overall, these reports suggest a role for synapse cluster
disruptions in mental disease. It’s likely that developmental
mechanisms of plasticity may be of particular relevance to these
lifelong diseases, although the genetic changes associated with
pathologies may indicate that any mechanisms that lead to
clustering may be affected.

PERSPECTIVE

There is now abundant evidence that synaptic arrangements in
dendritic branches are not randomly created. Mechanisms that
favor clusters of synapses are active already in the developmental
stage, and multiple plasticities, learning and memory processes
also facilitate the formation of synaptic clusters. It is thus
evident that the brain does take advantage of the computational
power of dendrites, via synapse clustering, and exploits it to

perform various brain functions. Given the disparity of findings
regarding the effects of learning on synapse distribution and
activation properties, it is imperative to have the appropriate
tools to establish causal links between learning and spine/synapse
changes in engram studies.

Early modern studies of the memory engram used reporters
for the expression of immediate early genes such as cFos
or Arc to identify the neurons that constitute the memory
engram (Guzowski et al., 1999). These tools did not allow
a detailed mapping of the synaptic and dendritic features
of engram neurons. Newer tools employ more precise,
temporally detailed mapping of calcium transients which
are related to synaptic activity. The recently developed
photoconvertible activity reporter CaMPARI (calcium
modulated photoactivatable ratiometric indicator) allows
the temporally precise measurement of calcium levels generating
a snapshot of evoked activity such as zebrafish larvae (Fosque
et al., 2015) and has been extended to the measurement of
sub-threshold synaptic activity. Another photoconvertible
marker called SynTagMA is being developed which can precisely
mark synapses within a ∼2 s time window, allowing the
distinction of both pre-synaptically active axon terminals and
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post-synaptically active synapses (Perez-Alvarez et al., 2019).
In addition, glutamate sensitive reporters such as iGluSnFR
can be used to monitor the activity of presynaptic terminals via
fluorescence microscopy (Marvin et al., 2013). Such methods
will allow scientists to extend the study of the structure of
neural engrams beyond the neuronal and population levels,
allowing the mapping of the fine structure of memory traces in
dendritically-located synapses.

The exploration of the ways in which clustering may
contribute to computation in the brain is also an open field
of theoretical research. The findings in the field so far indicate
that dendrites are key structures in a wide range of phenomena,
and their nonlinear capabilities are optimally engaged by
synapse clustering. For example, dendritic nonlinearities increase
the storage capacity of neurons (Poirazi and Mel, 2001),
specialize dendritic feature binding (Legenstein and Maass,
2011), determine angular and spatial properties of visual cortex
neurons (Lavzin et al., 2012; Iacaruso et al., 2017), strengthen
learning and memory (Frank et al., 2018), contribute to
binding of memories in episodes (Kastellakis et al., 2016), and
generally contribute to sensory tuning (Migliore et al., 2015;
Cazé et al., 2017). The finding that dendritic nonlinearities
enable both excitatory and inhibitory neurons to act as 2-layer
integrators (Poirazi et al., 2003b; Tzilivaki et al., 2019) may

enable neurons to perform computations that are hitherto
unknown. The clustering of synapses facilitates this engagement
of nonlinearities by binding together information effectively
without requiring other resources. This field of clustered and
two-stage integration, in fact, presents a vast field for theoretical
work to explore, and it will be interesting to discover new ways in
which neurons exploit these synaptic arrangements to improve
function. Alongside theoretical studies, experimental results
keep unraveling these phenomena, adding to what is already
a vast body of experimental literature on detailed processing
at the synaptic and dendritic levels. These findings are not yet
incorporated into mainstream connectionist models of learning,
and are only beginning to be incorporated in machine learning
and deep learning models (Guergiuev et al., 2016), where we
envision new and important roles in solving challenging tasks.
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