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Abstract
Objectives Based on germline and somatic mutation profiles, pheochromocytomas and paragangliomas (PPGLs) can be classi-
fied into different clusters. We investigated the use of [18F]FDG-PET/CT radiomics, SUVmax and biochemical profile for the
identification of the genetic clusters of PPGLs.
Methods In this single-centre cohort, 40 PPGLs (13 cluster 1, 18 cluster 2, 9 sporadic) were delineated using a 41% adaptive
threshold of SUVpeak ([

18F]FDG-PET) and manually (low-dose CT; ldCT). Using PyRadiomics, 211 radiomic features were
extracted. Stratified 5-fold cross-validation for the identification of the genetic cluster was performed using multinomial logistic
regression with dimensionality reduction incorporated per fold. Classification performances of biochemistry, SUVmax and
PET(/CT) radiomic models were compared and presented as mean (multiclass) test AUCs over the five folds. Results were
validated using a sham experiment, randomly shuffling the outcome labels.
Results The model with biochemistry only could identify the genetic cluster (multiclass AUC 0.60). The three-factor PET model
had the best classification performance (multiclass AUC 0.88). A simplified model with only SUVmax performed almost
similarly. Addition of ldCT features and biochemistry decreased the classification performances. All sham AUCs were approx-
imately 0.50.
Conclusion PET radiomics achieves a better identification of PPGLs compared to biochemistry, SUVmax, ldCT radiomics and
combined approaches, especially for the differentiation of sporadic PPGLs. Nevertheless, a model with SUVmax alone might be
preferred clinically, weighing model performances against laborious radiomic analysis. The limited added value of radiomics to
the overall classification performance for PPGL should be validated in a larger external cohort.
Key Points
• Radiomics derived from [18F]FDG-PET/CT has the potential to improve the identification of the genetic clusters of pheochro-
mocytomas and paragangliomas.

• A simplified model with SUVmax only might be preferred clinically, weighing model performances against the laborious
radiomic analysis.

• Cluster 1 and 2 PPGLs generally present distinctive characteristics that can be captured using [18F]FDG-PET imaging.
Sporadic PPGLs appear more heterogeneous, frequently resembling cluster 2 PPGLs and occasionally resembling cluster 1
PPGLs.

Keywords Pheochromocytomas .Mutation . [18F]FDG-PET/CT . Logistic regression . AUC

* Wyanne A. Noortman
w.a.noortman@lumc.nl

1 Department of Radiology, Section of Nuclear Medicine, Leiden
University Medical Center, Leiden, the Netherlands

2 TechMed Centre, University of Twente, Enschede, the Netherlands

European Radiology (2022) 32:7227–7236
https://doi.org/10.1007/s00330-022-09034-5

IMAGING INFORMATICS AND ARTIFICIAL INTELLIGENCE

# The Author(s) 2022

3 Department of Medical Imaging, Radboud University Medical
Center, Nijmegen, the Netherlands

4 Division of Endocrinology, Department of Internal Medicine,
Radboud University Medical Center, Nijmegen, the Netherlands

http://crossmark.crossref.org/dialog/?doi=10.1007/s00330-022-09034-5&domain=pdf
http://orcid.org/0000-0003-0450-951X
https://orcid.org/0000-0001-5762-6766
https://orcid.org/0000-0003-1817-2743
https://orcid.org/0000-0001-6544-4567
https://orcid.org/0000-0002-3809-0182
https://orcid.org/0000-0002-9672-8500
https://orcid.org/0000-0002-1208-5748
https://orcid.org/0000-0003-2859-2119
mailto:w.a.noortman@lumc.nl


Abbreviations
[18F]FDG 2-[18F]fluoro-2-deoxy-D-glucose
AUC Area under the receiver operating

characteristic curve
CT Computed tomography
EANM European Association of Nuclear

Medicine
GLCM Grey-level cooccurrence matrix
IBSI Image Biomarker Standardisation

Initiative
KMO Kaiser-Meier-Olkin
ldCT Low-dose computed tomography
MAX Myc-associated factor X
NF1 Neurofibromatosis type 1
PPGL Pheochromocytoma and

paraganglioma
RET Rearranged during transfection
SDHA/B/C/D/AF2 Succinate dehydrogenase subunits

A, B, C, D and assembly factor 2
SUV Standardised uptake value
TMEM127 Transmembrane protein 127
VHL Von Hippel-Lindau
VOI volume of interest

Introduction

Pheochromocytomas and paragangliomas (PPGLs) are rare
catecholamine-producing neuroendocrine tumours arising
from the chromaffin cells in the adrenal medulla and extra-
adrenal sympathetic ganglia [1]. In around 40% of patients,
PPGLs are part of hereditary syndromes caused by germline
mutations [2]. Germline mutations in at least a dozen PPGL
susceptibility genes with relevant prevalence have been iden-
tified, including VHL (von Hippel-Lindau), SDHA/B/C/D/
AF2 (succinate dehydrogenase subunits A, B, C, D and assem-
bly factor 2), RET (rearranged during transfection), NF1 (neu-
rofibromatosis type 1), MAX (myc-associated factor X) and
TMEM127 (transmembrane protein 127) [3–5]. Moreover, in
30–40% of sporadic PPGLs, somatic mutations are identified
[5]. Based on both germline and somatic mutations, PPGLs
can be classified into two clusters: cluster 1 PPGLs,
characterised by increased expression of genes involved in hyp-
oxia (i.e. SDHx/VHL), and cluster 2, associated with kinase
signalling (i.e. RET/NF1) [6, 7]. The characterisation of the
genetic cluster is of interest, because the underlying mutations
directly impact the clinical presentation of PPGLs. The preva-
lence of malignancy generally varies between 10 and 17%, but
reaches even 40% in patients with SDHB mutations [8].

Genetic differences result in phenotypic differences with re-
gard to cellular metabolism, which can be observed in the up-
take of 2-[18F]fluoro-2-deoxy-D-glucose ([18F]FDG) by posi-
tron emission tomography (PET), with relatively high

standardised uptake values (SUV) detected in cluster 1 PPGLs
[9, 10]. Previous research in a part of this cohort showed that the
maximum SUV (SUVmax) could distinguish hereditary cluster
1 and 2 PPGLs with an area under the receiver operating char-
acteristic curve (AUC) of 0.91 (95% CI: 0.80–1.00) [11]. In
addition to the traditional quantitative PET features such as
the SUVmax, radiomics allows quantification of tracer uptake
heterogeneity and other imaging features [12, 13]. Radiomics,
the extraction of large amounts of quantitative features from
medical imaging, aims to find stable and clinically relevant
image-derived biomarkers that provide a non-invasive way of
quantifying and monitoring disease characteristics in clinical
practice [14]. Literature on radiomics in PPGLs is scarce, but
includes a computed tomography (CT) approach for the differ-
entiation between pheochromocytomas and lipid-poor adenoma
[15], an approach on T2 weighted fat-saturated magnetic reso-
nance imaging for the differentiation of paragangliomas from
other neck masses [16] and a PET approach studying charac-
terisation of the genetic cluster in pheochromocytomas [17].

This study investigated the potential utility of radiomic
features derived from PET and low-dose CT for the charac-
terisation of the genetic cluster of PPGLs.

Materials and methods

Patient population

Patients with PPGL with known mutation status and who un-
derwent a [18F]FDG-PET/CT scan in the Radboud University
Medical Center between 2011 and 2018 were retrospectively
included. A selection of these patients has previously been
studied [10, 11, 18]. This retrospective database study has been
reviewed and approved by the Commission on Medical
Research Involving Human Subjects Region Arnhem-
Nijmegen, the Netherlands. Informed consent was waived be-
cause of the retrospective nature of the study. Patients that
objected to the use of their anonymised data were excluded.

All patients underwent genetic testing for germline muta-
tions in known susceptibility genes (SDHA/B/C/D/AF2,
RET, VHL, TMEM127 and MAX) using standard clinical
diagnostic procedures. In case no germline mutation was
found, somatic mutations were obtained from post-operative
histology. The classes cluster 1 and 2 contain both germline
and somatic mutations. The class sporadic contains sporadic
PPGLs without known mutations found in germline and tu-
mour tissue associated with cluster 1 or 2. The biochemical
diagnosis was based upon the collection of plasma-free
metanephrines (metanephrine, normetanephrine and 3-
methoxytyramine; metabolites of the catecholamines adrena-
line, noradrenaline and dopamine, respectively) and assayed
using high-performance liquid chromatography or liquid
chromatography–mass spectrometry [19]. Patients were
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excluded when no [18F]FDG-PET/CT scan was acquired (N =
40) and when patients without a germline mutation were not
tested for a somatic mutation (N = 33).

Data acquisition and image reconstruction

PET/CT images were acquired in accordance with the
European Association of Nuclear Medicine (EANM) guide-
lines version 1.0 for tumour PET imaging [20] using a
Biograph 40 mCT (Siemens Healthineers). Patients fasted
for at least 6 h and serum glucose levels were below 8.0
mmol/L. Image acquisition was started 60 (55–75) minutes
after intravenous administration of [18F]FDG. The recon-
structed voxel sizes were 3.18 × 3.18 × 3.00 mm3 for PET
and ranged from 0.64 × 0.64 × 3 mm3 to 1.27 × 1.27 × 3 mm3

for non-contrast-enhanced low-dose (ld) CT images.
Additional details on data acquisition, image reconstruc-

tion, radiomic analysis and the statistical analysis can be found
in Online Resource 1: the Image Biomarker Standardisation
Initiative (IBSI) Supplementary File 1 [21], which also in-
cludes the TRIPOD statement (transparent reporting of a mul-
tivariable prediction model for individual prognosis or diag-
nosis, version October 1, 2020) [22].

Quantitative image analysis

Volume of interest (VOI) delineation

VOI delineation was performed in 3DSlicer version 4.11
(www.slicer.org) [23] and in-house built software implemented
in Python 3.7 (Python Software Foundation). Boxing was

applied to exclude surrounding [18F]FDG-avid tissues like the
kidneys or catecholamine-stimulated brown adipose tissue.
Since [18F]FDG uptake of PPGLs can be rather low and het-
erogeneous, PPGLs were delineated using an isocontour that
applies an adaptive threshold of 41% of the SUVpeak, obtained
using a sphere of 12 mm diameter [24], corrected for local
background (Fig. 1, more details in Supplementary File 1)
[25]. This method demonstrated the best agreement between
delineated tumour sizes and pathological tumour sizes [26]
and allowed the inclusion of most of the vital tumour volume,
while minimising the need for boxing. Regions of central ne-
crosis, which were not included by the adaptive threshold algo-
rithm, were not manually added to the VOI, since in PPGL, the
classification performance of the radiomic model is not affected
by the addition of areas of central necrosis [18]. LdCT images
were delineated manually. Lesions were excluded when edges
could not be distinguished from intense brown adipose tissue
activation (N = 2) [27] or when the minimal size recommenda-
tion of 64 voxels per VOI was not met (N = 1) [28].

Image processing

LdCT voxels were interpolated to isotropic voxels (1.5 × 1.5 ×
1.5 mm3) using B-spline interpolation, with grids aligned by
the input origin. PET images were not interpolated, since the
voxels were almost isotropic (3.18 × 3.18 × 3.00 mm3).

Radiomic feature extraction

Radiomic feature extraction was performed in PyRadiomics
3.0 in Python 3.7 (Python Software Foundation) [29]. For

Fig. 1 [18F]FDG-PET/CT scan of patient with a sporadic pheochromocytoma in the right adrenal. The blue area denotes the volume of interest, SUVmax

= 7.16 g/mL, SUVmean = 4.76 g/mL, metabolic tumour volume = 25.97 cm3
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both PET and ldCT images, 105 radiomic features were ex-
tracted: 18 first-order features, 14 shape features and 73 tex-
ture features (Supplementary File 1). In addition, the total
lesion glycolysis, the product of the mean SUV and the met-
abolic tumour volume, was calculated. A fixed bin size of 0.5
g/mL and 25 Hounsfield units was applied for PET and CT
images, respectively.

Statistical analysis

Stratified five-fold multinomial logistic regression for the
identification of the genetic clusters of PPGLs was performed
in R version 3.6.0 (R Foundation for Statistical Computing).
Heatmaps were generated using Orange Data Mining version
3.30.2 (University of Ljubljana) [30]. The dataset was split
into five equal-sized folds, stratified for the genetic clusters.
Each subgroup consecutively served as a test set and the re-
maining four-fifths of patients served as the training set. Per
fold, dimensionality reduction of the radiomic feature set in
the training set was performed using redundancy filtering and
factor analysis in FMradio (Factor Modelling for Radiomics
Data) R-package version 1.1.1 (Fig. 2) [31]. One feature was
selected for every ten subjects in the training set [14]. Features
were scaled (centred around 0, variance of 1) to avoid that
features with the largest scale would dominate the analysis.
Redundancy filtering on the Spearman correlation matrix (ρ =
0.95) of the scaled features was performed. Factor analysis
was performed on the redundancy filtered correlation matrix
using an orthogonal rotation, so that the first factor explained
the largest possible variance in the dataset and succeeding
factors explained the largest variance in orthogonal directions.
The sampling adequacy of the model was determined by the
Kaiser-Meier-Olkin measure (KMO, ≥ 0.9) [31]. The factor
definitions were determined based on the underlying clusters
of features in the different folds. Models were trained for the
SUVmax, PET(/CT) factors and imaging variables combined
with the biochemical profile. Catecholamines are included as
separate dichotomous variables (e.g. adrenergic: yes/no). In
addition, the best-performing factor-based model was approx-
imated by a feature-based model using the features underlying
the factors, to advance the reproducibility of the radiomic
model. The imaging factors and features and the biochemical
profile were used as independent variables in multinomial
logistic regression. Classification performances were present-
ed as mean multiclass AUCs and mean AUCs between clus-
ters as determined over the five folds for the test sets [32]. A
sham experiment was conducted to validate the findings [33].
The outcome labels were randomly shuffled for 100 iterations
and mean AUCs were calculated. Randomisation of the out-
come labels preserves the distributions and multicollinearity
of the radiomic features and the prevalence of the outcome,
but it uncouples their potential relation.

Results

Forty PPGLs in 38 patients were analysed, including thirteen
cluster 1, eighteen cluster 2 and nine sporadic PPGLs
(Table 1).

The biochemical profile alone could identify the genetic
clusters with a mean multiclass AUC of 0.60 (Table 2). The
SUVmax alone reached a multiclass AUC of 0.85, with a per-
fect AUC for distinguishing cluster 1 from cluster 2 PPGLs of
1.00 (Fig. 3). The model with three PET factors showed a
slightly improved classification performance with a multiclass
AUC of 0.88. The three-factor PET model also showed the
highest test AUCs for distinguishing sporadic PPGLs from
both cluster 1 and 2 PPGLs (Fig. 3). The (multiclass) AUCs
for the model with three PET/CT factors were lower
(multiclass AUC: 0.81). The addition of the biochemical pro-
file to the imaging model (SUVmax, three PET factors or three
PET/CT factors) increased the (multiclass) AUCs in the train-
ing sets but decreased the (multiclass) AUCs in the test sets

Fig. 2 Schematic overview of statistical analysis, consisting of stratified
5-fold cross-validation with dimensionality reduction incorporated in the
folds. Per fold, scaling was performed (centred around 0, variance of 1),
followed by redundancy filtering of the Spearman correlation matrix (ρ =
0.95) and factor analysis using an orthogonal rotation. The factor defini-
tions were determined based on the underlying clusters of features in the
different folds
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(Fig. 4). Cluster 1 and 2 PPGLs can be separated with AUCs
close to 1.00, cluster 1 and sporadic PPGLs can be distin-
guished with AUCs around 0.9 and cluster 2 and sporadic
PPGLs can be distinguished with AUCs around 0.7. In the
sham experiment, no model yielded a (multiclass) AUC dif-
ferent from 0.5 (range: 0.48–0.52).

For the PET and PET/CT model, dimensionality reduction
retained three factors in every training set (i.e. 32 lesions in all
training sets, Table 3). The PET/CT factors corresponded best
to the SUVmax, ldCT tumour diameter (3D) and ldCT entropy.
The retained factors in the PET model corresponded best to
SUVmax, tumour diameter (3D) and grey-level cooccurrence

matrix (GLCM) cluster shade. For reproducibility and
explainability of the model, these three features were incorpo-
rated in a feature-based model, approximating the factor-
based model. The feature-based model shows a lower perfor-
mance than the factor-based model with multiclass AUCs of
0.86 and 0.88 and AUCs for the discrimination of cluster 2
and sporadic PPGLs of 0.63 and 0.72 for the feature-based
and factor-based model, respectively (Table 3).

Based on both the PET factors and PET features, cluster 1
PPGLs can be distinguished best from the other clusters (Fig. 5,
Fig. 6). Cluster 1 PPGLs show higher means for all features
compared to cluster 2 and sporadic PPGLs. Sporadic PPGLs
showed imaging characteristics similar to cluster 2 and, to a
lesser extent, cluster 1 PPGLs, complicating the differentiation.

Discussion

In this study, we assessed the added value of radiomic features
derived from PET and non-contrast-enhanced ldCT for the
characterisation of the genetic cluster of PPGLs. In our previ-
ous research, we showed that the SUVmax alone could already
distinguish hereditary cluster 1 and 2 PPGLs with an AUC of
0.91 (95% CI: 0.80–1.00) [11]. This study focused on the
identification of both hereditary and somatic cluster 1 and
cluster 2 PPGLs, and sporadic PPGLs in a cross-validated
radiomic approach. Our findings demonstrate that SUVmax

alone already distinguishes cluster 1 and 2 PPGLs with high
certainty, but the distinction of clusters 1 and 2 from sporadic
PPGLs can be improved moderately by PET radiomics.

Interpretation of the radiomic factors could provide insight
into the semantics or tumour phenotype as captured by a PET
scan. The first PET factor corresponded to first-order entropy,
specifying the randomness in imaging values. Cluster 1

Table 1 Clinical characteristics of 40 PPGLs (38 patients). SUV
standardised uptake value

Characteristic Value

Age (years), median (range) 50 (23–89)

Sex (M/F) 17/21

Tumour location

• Pheochromocytoma
• Paraganglioma

34
6

Genetic cluster

• Cluster 1 (germline/somatic)
• Cluster 2 (germline/somatic)
• Sporadic

10/3
10/8
9

Biochemical profilea

• Adrenergic
• Noradrenergic
• Dopaminergic

17
24
6

SUVmax (g/mL), median (range) 4.75 (1.67–36.01)

Metabolic tumour volume (cm3), median (range) 29.07 (2.28–253.86)

a Combinations of biochemical profiles occur

Table 2 Mean (multiclass) AUCs, averaged over 5 folds, between clus-
ters of PPGLs for models based on the biochemical profile, the SUVmax,
the three PET factors, the three PET/CT factors, the three PET features

and the imaging variables combined with the biochemical profile, for the
training and the test set. The highest mean (multiclass) AUCs in the test
set are marked in bold

Multiclass AUC AUC cluster 1 vs cluster 2 AUC cluster 1 vs sporadic AUC cluster 2 vs sporadic

Training Test Training Test Training Test Training Test

Biochemical profile 0.77 0.60 0.90 0.83 0.75 0.55 0.66 0.41

SUVmax 0.85 0.85 0.98 1.00 0.90 0.88 0.67 0.68

+ biochemical profile 0.88 0.81 0.99 0.99 0.90 0.84 0.75 0.60

PET 3 factors 0.91 0.88 0.99 0.98 0.93 0.93 0.79 0.72

+ biochemical profile 0.97 0.84 0.99 0.95 0.99 0.90 0.92 0.67

PET/CT 3 factors 0.88 0.81 1.00 0.98 0.92 0.85 0.71 0.59

+ biochemical profile 0.93 0.79 1.00 0.95 0.94 0.83 0.85 0.59

PET 3 features 0.89 0.86 0.99 1.00 0.96 0.95 0.71 0.63

+ biochemical profile 0.94 0.81 1.00 0.98 0.98 0.94 0.84 0.51

AUC area under the receiver operating characteristic curves
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PPGLs show higher mean entropy than cluster 2 and sporadic
PPGLs. Entropy is strongly correlated with SUVmax.
Genotype-related changes in energy metabolism have been
studied using dynamic [18F]FDG-PET/CT scanning [11].
The glucose metabolic rate, phosphorylation rate, vascular
blood fraction and SUVmax were all significantly higher in
cluster 1 than in cluster 2 and/or sporadic PPGLs. This might
be associated with increased expression of hexokinase, which
indicates an increase in aerobic glycolysis. The second factor
corresponded to the 3D tumour diameter. Cluster 1 PPGLs are
typically larger than cluster 2 and, to a lesser extent, sporadic
PPGLs. The third factor corresponded to GLCM cluster
shade, a feature that measures the skewness of the
cooccurrence matrix, thereby characterising the tendency of
voxel clusters with similar grey levels. A higher cluster shade
implies less clustering and therefore more heterogeneous up-
take patterns. Cluster 1 PPGLs show higher cluster shade
values than sporadic and cluster 2 PPGLs.

In accordance with the findings of Eisenhofer et al [34], our
study showed that the biochemical profile alone could distin-
guish cluster 1 and 2 PPGLs. However, the biochemical pro-
file could not identify sporadic PPGLs with high certainty.
Also, the addition of biochemistry to the imaging models
did not improve the classification performance, both showing
difficulties differentiating sporadic PPGLs. The training set
AUCs were increased, compared to a decrease in the test sets.
This indicates overfitting of the models, which can be attrib-
uted to the total number of six variables in the combined
model, disregarding the criterion of 1 variable per 10 subjects
in this small dataset [14]. Also, the addition of ldCT features in
dimensionality reduction did not improve the performance of
the model. This might indicate that the image quality of the
ldCT images was insufficient or the images did not contain
characteristics suitable for the differentiation of PPGLs.
Differently, the addition of the 105 ldCT features almost dou-
bled the total number of features in the dataset, thereby

Fig. 3 ROC curves for the SUVmax (green, solid) and PET three-factor
model (blue, dashed) between clusters (cluster 1 vs 2, cluster 1 vs spo-
radic, cluster 2 vs sporadic) as determined by stratified five-fold

multinomial logistic regression and the multiclass AUC described by
Hand and Till [32]. ROC: receiver operating characteristic, AUC: area
under the ROC curve

Fig. 4 ROC curves for the biochemical profile alone (grey, solid), PET
three-factor model (blue, dashed) and the PET model combined with the
biochemical profile (orange, dotted) between clusters (cluster 1 vs 2,
cluster 1 vs sporadic, cluster 2 vs sporadic) as determined by stratified

five-fold multinomial logistic regression and the multiclass AUC de-
scribed by Hand and Till [32]. ROC: receiver operating characteristic,
AUC: area under the ROC curve
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enlarging the feature space and adding new information, con-
tributing to different factors.

The PET factor model was the best-performing model, but
differences with the SUVmax model were small. Therefore, a
simplified model with only the SUVmax might be preferred in
terms of clinical usability, weighing model performances and
the laborious radiomic analysis. Nevertheless, the distinction
of sporadic PPGLs from both cluster 1 and 2 PPGLs might be
moderately improved by a radiomic model. Cluster 1 and 2
PPGLs generally present distinctive characteristics that can be
captured using [18F]FDG-PET imaging. Some of these char-
acteristics can even be assessed visually, like [18F]FDG up-
take and tumour size. Sporadic PPGLs, however, appear more
heterogeneous, frequently resembling cluster 2 PPGLs and
occasionally resembling cluster 1 PPGLs.

Radiomic research in PPGLs on [18F]FDG-PET/CT is limit-
ed. Ansquer et al [17] published an article on radiomics in 52
pheochromocytomas with results more or less similar to ours.
They also report a higher SUVmax in cluster 1 pheochromocyto-
mas than in cluster 2 and pheochromocytomas without germline
mutation. In addition, a model with the features metabolic tu-
mour volume and two texture features could identify germline
mutation status with an AUC of 0.95. It is challenging to directly
compare these results to ours. Ansquer et al [17] included only
pheochromocytomas, which were not tested for somatic muta-
tions, i.e. their sporadic group might have included patients with
somatic cluster 1 and 2mutations, while somaticmutationsmight
have impacted the [18F]FDG uptake as well. In addition, super-
vised feature selection was performed on the complete dataset,
selecting the features with the best association with the outcome

Table 3 Results of dimensionality reduction and classification performance of PET and PET/CT radiomic models

PET PET/CT

KMO, median (range)a 0.96 (0.96–0.96) 0.97 (0.97–0.98)

Cumulative variance all factors, median (range)a 0.57 (0.56–0.59) 0.42 (0.40–0.43)

Retained factorsb 1. Entropy (first order, also closely related to SUVmax, ρ = 0.91)
2. Tumour diameter (3D)
3. Cluster shade (GLCM)

1. SUVmax

2. Tumour diameter (3D) on ldCT
3. Entropy on ldCT

KMO Kaiser-Meier Olkin measure, GLCM grey-level cooccurrence matrix, ldCT low-dose CT
a The KMO and the cumulative variance of all factors are expressed as median and range of all 5-folds
b One factor was retained per ten subjects in the training set

Fig. 5 Heatmap of the three PET radiomic features (first-order entropy,
maximum 3D diameter, GLCM cluster shade) on the y-axis and the
PPGLs on the x-axis, clustered by the PPGLs. Cluster 1, cluster 2 and

sporadic PPGLs are represented in blue, red and green, respectively.
Features were scaled (centred around 0, variance of 1) to avoid that
features with the largest scale would dominate the analysis
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measure, and in the final step, 4-fold cross-validation was per-
formed using these selected features. Besides radiomics, proton
(1H) nuclear magnetic resonance spectroscopy has been investi-
gated for the identification of genetic clusters of paraganglioma,
and the detection of succinate was found to be a highly specific
and sensitive hallmark of SDHx mutations [35].

Our study has several strengths and limitations. A
strength is that PET/CT images were acquired and re-
constructed in accordance with EANM guidelines [20].
The use of these EARL-compliant reconstructions leads
to a larger number of reliable, repeatable and reproduc-
ible radiomic features [36]. Likewise, radiomic feature
extraction was performed and reported conforming to
the IBSI recommendations and guidelines, and the
TRIPOD statement [21, 22]. Also, unsupervised feature
selection, or dimensionality reduction, was performed.
In contrast to a supervised approach, dimensionality re-
duction is not based on the discriminative value of a
feature for outcome, but takes into account the interac-
tion of features among themselves and multicollinearity,
through which it prevents overfitting of the model [37].
Additionally, dimensionality reduction was incorporated
on the training sets per fold instead of on the dataset as
a whole, preserving independent test sets. Furthermore,
we chose a factor-based over a feature-based approach
for the generalisability of our model. Factor analysis
was performed incorporated in the folds and instead of
selecting features corresponding to the factors, the fac-
tors were used as model input. Patterns in correspond-
ing features were compared between folds. In a feature-

based approach, insight into these patterns would be
limited due to the selection of different features in every
fold. In this way, the factor-based approach might ad-
vance the generalizability and interpretability of the
model and it might provide insight in the semantics or
underlying tumour biology of the factors [38]. For the
mathematical explainability and reproducibility in the
setting of external validation, the PET factor-based
model was approximated by a feature-based model.
Lastly, we performed a sham experiment to validate
our findings [33].

The main limitation of the study is the small sample size.
Sample size calculation for radiomics is practically infeasible,
as the required number of patients depends on, among other
things, the strength of the biological signal, the homogeneity
of the data and the complexity of the mathematical model
[28]. Orlhac et al [28] state that the minimal sample size is
around 70 lesions, in the case of a biological signal that is well
reflected by the radiomic features investigated in a cross-
validation approach. Our population was smaller than the rec-
ommended 70 patients but was unique in terms of patient
population. To make the best use of this unique PPGL cohort,
we have performed stratified 5-fold cross-validationwith strict
dimensionality reduction that prevented multicollinearity and
retained only one factor for every ten patients in the training
set, thereby reducing the overfitting of the model [14].

In conclusion, PET radiomics achieves a better identification
of PPGLs compared to biochemistry, SUVmax and/or ldCT
radiomics, especially for the differentiation of sporadic PPGLs.
However, a model with only SUVmax might be preferred,

Fig. 6 Box plots of selected radiomic features (entropy, maximum 3D diameter and GLCM cluster shade) for cluster 1 (green), cluster 2 (orange) and
sporadic (blue) PPGLs
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weighing model performances against the laborious radiomic
analysis. Radiomics could only mildly improve the overall clin-
ical classification performance for PPGL, warranting external
validation in a larger cohort to validate our findings.

Supplementary Information The online version contains supplementary
material available at https://doi.org/10.1007/s00330-022-09034-5.
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