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Computer-aided biochemical programming of
synthetic microreactors as diagnostic devices
Alexis Courbet1,2,*,†,‡ , Patrick Amar1,3 , François Fages4, Eric Renard2,5 & Franck Molina1

Abstract

Biological systems have evolved efficient sensing and decision-
making mechanisms to maximize fitness in changing molecular
environments. Synthetic biologists have exploited these capabili-
ties to engineer control on information and energy processing in
living cells. While engineered organisms pose important technolog-
ical and ethical challenges, de novo assembly of non-living
biomolecular devices could offer promising avenues toward vari-
ous real-world applications. However, assembling biochemical
parts into functional information processing systems has remained
challenging due to extensive multidimensional parameter spaces
that must be sampled comprehensively in order to identify robust,
specification compliant molecular implementations. We introduce
a systematic methodology based on automated computational
design and microfluidics enabling the programming of synthetic
cell-like microreactors embedding biochemical logic circuits, or
protosensors, to perform accurate biosensing and biocomputing
operations in vitro according to temporal logic specifications. We
show that proof-of-concept protosensors integrating diagnostic
algorithms detect specific patterns of biomarkers in human clinical
samples. Protosensors may enable novel approaches to medicine
and represent a step toward autonomous micromachines capable
of precise interfacing of human physiology or other complex
biological environments, ecosystems, or industrial bioprocesses.
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Introduction

From nanoscale biomolecular machines to complex organisms,

biological systems have evolved to sense, solve logical problems, and

respond to their biochemical environment in optimized ways (Jacob

& Monod, 1961). For more than decades, their unique information

processing capabilities have fascinated both fundamental and engi-

neering sciences (Feynman, 1960; Conrad, 1985; Bray, 1995). The

field of synthetic biology has devoted considerable attention to

expanding these biochemical mechanisms into scalable synthetic

systems integrating modular biosensing and biocomputing with the

hope to advance biotechnologies (Benenson et al, 2004; Benenson,

2012; Church et al, 2014; Pardee et al, 2014; Katz, 2015; Van Roekel

et al, 2015a; Pardee et al, 2016). Indeed, biomolecular machines

capable of dynamic probing and decision-making in situ could offer

new ways to interface biology (Slomovic et al, 2015; Courbet et al,

2016) as well as unprecedented versatility in analytical and biomedi-

cal applications. For instance, synthetic cell-based devices can be

designed and employed as programmable bioanalytical tools to detect

molecular cues for diagnostic purposes (Courbet et al, 2015; Danino

et al, 2015) or smart therapeutics (Ye & Fussenegger, 2014; Perez-

Pinera et al, 2016; Roybal et al, 2016; Xie et al, 2016).

While considerable success has been seen in the engineering of

control circuits from standardized and composable genetic parts

assembled into living cells (Canton et al, 2008; Shetty et al, 2008;

Smolke, 2009), genetically modified organisms have intrinsic limits

imposed by the cellular machinery and pose ethical, ecological, and

industrial challenges (Chugh, 2013). Instead of repurposing living

organisms, biomolecules can be used to build cell-free biochemical

circuit-based solutions for information processing (Benenson, 2012).

Following success with in vitro reconstitution of natural biochemical

circuits (Nakajima, 2005), a variety of devices have been designed

where biochemical programs are hard-coded within circuits’ topol-

ogy and kinetic parameters ruling the interactions between compo-

nents, in order to perform useful biomolecular logic: digital/analog

circuits (Ashkenasy & Ghadiri, 2004; Niazov et al, 2006; Katz &

Privman, 2010; Rialle et al, 2010; Qian & Winfree, 2011; Orbach

et al, 2012; Sarpeshkar, 2014; Genot et al, 2016), oscillators
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(Semenov et al, 2015), switches and memories (Kim et al, 2006;

Padirac et al, 2012), noise filters (Tyson & Novák, 2010), neural

networks (Qian et al, 2011), or universal Turing machines (Arkin &

Ross, 1994) solving hard computational problems (Adleman, 1994;

Faulhammer et al, 2000; Stojanovic et al, 2014). Biochemical signal

processing has thus been explored, and metabolic cascades of enzy-

matic reactions or DNA strand displacement mechanisms have been

successfully designed by hand and assembled in vitro to yield vari-

ous useful devices (Sarpeshkar, 2010; Katz, 2012). However,

systematically designing arbitrary sequences of logic operations

using a variety of biochemical substrates with respect to time-depen-

dent specifications, a strategy we refer to as biochemical program-

ming, has remained challenging. The main reason that has so far

prevented the programming of biochemical systems is the exponen-

tial growth of the parameter space that consequently cannot be

naively sampled to identify robust design implementations.

In the same way as electronic design automation enabled the

growth in size and capacity of electronic devices (i.e. Moore’s law),

automated design frameworks are required to build biochemical

control circuits de novo (Chandran et al, 2011; Chiang et al, 2014).

Although progress in design automation of synthetic gene circuits

has been made (Marchisio & Stelling, 2011; Van Roekel et al, 2015b;

Delépine et al, 2016; Nielsen et al, 2016), to date no clear engineer-

ing principles or methodologies exist to design cell-free synthetic

reaction-based logic systems according to specifications, while using

a variety of reactive biochemical species of different nature. Further-

more, in the same way natural cells rely on membrane compartmen-

talization and localization of metabolons to support complex

operations to be performed, microarchitectures are required within

which biochemical circuitry can be insulated to allow spatial segre-

gation, parallelization of processes, and multiplexed signal process-

ing (Elani et al, 2014). Elegant approaches to synthetic cell-like

microreactors containing cascaded circuits of enzymes or nucleic

acids, often referred to as protocells, have shown recapitulation of

complex behavior found in natural cells such as communication,

information processing, metabolism, and reproduction (Noireaux &

Libchaber, 2004; Caschera & Noireaux, 2014; Sun et al, 2015;

Adamala et al, 2016; Küchler et al, 2016; Qiao et al, 2016).

However, these approaches have so far remained unsuitable for

scale-up and for potential use as functional devices, for the reason

that the behavior and robustness of manually constructed entities

could not be efficiently designed, sufficiently controlled, and main-

tained (Miller & Gulbis, 2015).

Here, we propose to automate the programming of membrane-

insulated synthetic biochemical circuits through computer-aided

design and demonstrate that this strategy can be efficiently applied to

build biosensing devices that solve bioanalytical problems at the

microscale. In our approach, programming a biochemical circuit to

exhibit a user-defined dynamic behavior amounts to identifying

suitable reactions of kinetically favorable species for processing a

signal from input substrates to output product molecules, together

with their respective concentrations at which the robustness is

maximized. Starting from previously established software suites for

modeling and simulating large-scale biochemical systems with low

computational requirements (i.e. BIOCHAM, BioNetCAD, and HSIM)

(Mazière et al, 2004; Maziere et al, 2007; Amar et al, 2008; Rizk et al,

2009, 2011; Peres et al, 2010; Rialle et al, 2010; Peres et al, 2013;

Amar & Paulevé, 2015), we scale up the capabilities of computer-aided

design of biochemical logic circuits through the integration of auto-

mated implementation relying on a library of parts mined from natural

biochemical networks, combined with model checking, sensitivity,

and robustness analysis (Koeppl, 2011; Rizk et al, 2009, 2011). This

enables to automate the search for biochemical circuit solutions to

defined logic specifications while providing quantitative in silico

assessment. Furthermore, we propose to exploit the advantages of

digital microfluidic technologies that offer precise control over assem-

bly mechanisms, compartment size and stoichiometry of content,

high-throughput generation, and amenability to automation (Miller &

Gulbis, 2015). We develop a directed self-assembly microfluidic

method that allows us to accurately build picoliter scale cell-like reac-

tors in which biochemical circuits can be insulated within synthetic

phospholipidic membranes with respect to in silicomodels.

Using this complete workflow, we show for the first time how to

program and assemble in vitro discrete synthetic biochemical

microreactors that behave according to arbitrary sensing and logic

specifications (Fig 1). We coin the term protosensors, which we

define as minimal cell-like biosensing–biocomputing microreactors

that can be biochemically programmed with a wide range of biomo-

lecules or synthetic machinery, into smart and autonomously func-

tioning micromachine (Courbet et al, 2017). To our knowledge, our

study is the first report of computer-automated design of synthetic

cell-like information processing systems.

As a valuable proof-of-concept, we apply our framework to the

biodetection of human pathologies. We demonstrate the capabilities

of protosensor biochemical programming by implementing a diag-

nostic algorithm designed to discriminate between all acute meta-

bolic complications of diabetes and achieve differential diagnosis.

We further demonstrate the capabilities of this novel diagnostic

approach in clinical context and propose that computer-aided

biochemical programming of protosensors could provide versatile

microscale solutions to complex analytical questions.

Results

Operation principles and architecture of protosensors

Our first goal was to identify a universal and robust macromolecular

architecture capable of supporting the modular implementation of

in vitro biosensing/biocomputing processes in the form of synthetic

biochemical circuits. This architecture should be capable of (i)

stably encapsulating and protecting arbitrary biochemical circuits

irrelevant of their biomolecular composition, (ii) discretizing space

through the definition of an insulated interior containing the

synthetic circuit, and an exterior consisting of the medium to oper-

ate in (e.g. a clinical sample), (iii) allowing signal transduction

through selective mass transfer of molecular signals (i.e. biomarker

inputs), and (iv) supporting accurate construction through thermo-

dynamically favorable self-assembling mechanisms. The protosen-

sor architecture we propose in this study consists of synthetic

vesicles made of phospholipid bilayer membranes rendered perme-

able to small organic molecules through self-incorporation of

a-hemolysin transmembrane protein pores.

While nucleic acids have so far been favored due to the advan-

tage of Watson–Crick base pairing-dependent programmability

(Padirac et al, 2013), we decide to rely on proteins that are versatile
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computational elements offering a wide panel of kinetics and func-

tionality (Bray, 1995). Similarly to natural cells, in this architecture

we propose the biochemical work necessary to support signal sens-

ing, processing, and output generation originates from redox reac-

tions. Potential biochemical energy is either stored in encapsulated

electrons donors or originates from energy-rich molecular inputs

(e.g. glucose). Interestingly, enzyme-gated electron transfer displays

useful thermodynamic similarities with current flow in electronics

and behaves as elementary biomolecular transistors wired through

binding kinetics determining logic, signal amplification, and

memory (Eyring et al, 1981; Mehta et al, 2015). Proteins of specific

functionality also offer the advantage to be identified through

mining of databases of natural biochemical networks, and synthetic

biochemical circuits can be easily designed to integrate catalytic

activities that depend on specific molecular biomarkers, enabling

the coupling of biosensing with decision-making algorithms in situ.

Here, biochemical information processing under the digital domain

to implement decision-making algorithms requires the definition of

thresholds for concentration parameters, where a signal at a node of

a biochemical circuit is encoded as the continuous valuation or

absence of a particular species.

A robust architecture would thus allow us to use a systematic

design framework, which is detailed in Fig 1. As a proof-of-concept

for the diagnosis of specific human pathologies through the

biodetection of patterns of biomarkers in clinical samples, we chose

to implement a clinically useful algorithm enabling to classify acute

metabolic complications of diabetes, namely diabetic ketoacidosis,

hyperglycemic hyperosmolar state, hypoglycemia, and lactic acido-

sis, which are known to be associated with a high medical and

socioeconomic burden and with important mortality and morbidity

(Fig 2A and B).

Computer-aided biochemical programming of useful algorithms
in synthetic biochemical circuits: from in silico design to
in vitro implementation

Programming formal models of biosensing/biocomputing problems

amounts to identifying precise biochemical implementations satisfy-

ing Boolean logic, molecular input/output, dynamic range, and

kinetic specifications within a multidimensional design space.

Therefore, a primary key step was to develop a systematic in silico

framework supporting design automation of synthetic biochemical

logic circuits. For this purpose, we developed a computational tool,

NetGate, a part of the Silicell Maker software suite, which enables

us to mine curated metabolic network databases for biochemical

parts, devices, and circuits performing specific Boolean functions,

and automates the search for more complex biochemical algorithms

(Bouffard et al, 2015). In this context, we define mining as the
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Figure 1. General computer-aided design methodology for the programming of synthetic protosensors.

A specific biotechnological problem, such as assaying for the presence of pathological biomarkers in a clinical sample, can be solved by an appropriate set of combined

biosensing/biocomputing operations performed by biochemical species. An abstract Boolean function can be formalized along with a set of kinetic specifications,

corresponding to the logic to perform on molecular components in situ to solve an analytical and decision problem. Desired Boolean functions can be hard-coded within a

biochemical reaction circuit by finding appropriate biomolecular implementations, a process we refer to as biochemical programming. We introduce a systematic

methodology based on automated computational design and microfluidics enabling the programming of synthetic cell-like microreactors using programmed biochemical

logic circuits, or protosensors, to perform accurate and robust biosensing and biocomputing operations in vitro according to predefined temporal logic specifications. In order

to navigate the multidimensional design space comprehensively, we developed computational tools used to automate the search for synthetic biochemical circuit solutions

to formal abstractions. Biochemical circuits are then be experimentally insulated within synthetic membranes to yield autonomous, microscale, discrete protosensors

behaving according to specifications.
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automated implementation of a formal logic function by a set of

biochemical reactive species extracted from natural metabolic

networks. Since we aim at programming biochemical logic circuits

using multiple reactions taking place simultaneously in a microreac-

tor, we reason that mining for molecular species within the same

metabolic context in vivo would minimize possible failure modes.
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Briefly, NetGate defines biochemical logic gates by their truth table,

the set of molecular species representing input substrates, output

products, and enzyme. NetGate takes as inputs a SBML file describ-

ing an input metabolic network and a list of truth tables correspond-

ing to Boolean functions that are to be searched in the metabolic

network. Additional details about this process can be found in

Appendix, while an in-depth description of the algorithm behind

NetGate can be found in Bouffard et al Second, we developed and

refined HSIM (hyperstructure simulator) (Amar et al, 2008; Rialle

et al, 2010; Amar & Paulevé, 2015), a flexible hybrid SSA and entity

centered based stochastic and ODEs simulator, which enables fast

and accurate model prediction incorporating common biochemical

parameters, chemical reactivity (concentrations, Km, Kcat, molecule

size, motion, diffusion), and spatial features of microscale structures

for realistic physics-based simulation of three-dimensional complex

environments. In order to model the selective permeation of small

molecules’ inputs through the a-hemolysin pores of the protosen-

sors membrane, we implemented in HSIM Fick’s equations of diffu-

sion (see Appendix for details). In this study, we use HSIM to

perform assessment of kinetically and functionally suitable logic

devices circuits and verify the behavior of protosensors. The soft-

ware environment BIOCHAM (Calzone et al, 2006; Soliman, 2012)

(Biochemical Abstract Machine) then provides model checking,

automated exploration of a multidimensional design space, and

optimization of experimental parameters according to temporal logic

specifications. Specifically, BIOCHAM supports sensitivity and

robustness analysis of the biochemical parameters (e.g. enzyme

concentrations) that have to be finely tuned with respect to each

other to maximize robustness with respect to specific temporal logic

behaviors (Fig 1).

To generate the synthetic biochemical circuits described in this

study, we performed an organism agnostic search of all the sets of

natural metabolic networks of the BRENDA database with overlap-

ping enzymes, substrates, or products related to the inputs and

outputs of the circuits we aimed at designing. SBML files of these

networks were then downloaded and merged into a large SBML

network (Appendix Fig S1 and Code EV1). This large network was

used as input and mined using the program NetGate to identify 775

biochemical logic gates solutions of <2 reactions. The program

NetBuild was then used to find unique biochemical implementations

satisfying the Boolean logic specifications of protosensors that could

execute the particular acute diabetes diagnostic algorithm (Fig 2C,

Appendix Figs S1 and S2). The medical algorithm is distributed

through three distinct and orthogonal protosensors, each processing

two biomarkers as inputs, which were named for convenience

GluONe (Glucose and Acetone as inputs, Code EV2), LacOH (Lactate

and Ethanol as inputs, Code EV3), and GluNOx (Glucose and Nitric

oxides as inputs, Code EV4). The biochemical implementation for

these three systems required 6, 5, and 4 different biochemical enti-

ties, comprising 4, 3, and 2 different enzymes, respectively.

Biomolecular signal processing occurring in these circuits leads to

the synthesis of the following measurable output signals molecules:

NADH (output 1, 340 nm absorbance), Resorufin (output 2, 571–

600 nm fluorescence), ABTS (output 3, 420 nm absorbance), and

DAF (output 4, 488–515 nm fluorescence). The Boolean formalism

and truth tables corresponding to the medical algorithm, as well as

the biochemical implementation, are depicted in Fig 2C (Detailed in

Appendix Fig S2), and SBML models of the synthetic circuits can be

found in SI.

Feeding HSIM with biochemical knowledge extracted from the

BRENDA database, stochastic simulations were then performed to

evaluate the behavior of the three circuits (See Appendix Table S1

and S2, Appendix Figs S2 and S3 for more detail). As a first step, we

studied models of non-encapsulated synthetic circuits, where initial

conditions (i.e. species concentrations) were determined empirically

and non-optimized. Predictions of the evolution of these three

biochemical circuits after induction with variable concentrations of

input biomarkers are represented as computed molecular output

signals heat maps (Fig 3A). The relation between computed molecu-

lar concentrations and experimental measured signal was calibrated

beforehand (See Appendix and Appendix Fig S4). In silico models

showed that the de novo biochemical circuits behaved according to

Boolean logic specifications with large signal fold change and near-

digital responses. In addition, switching thresholds were found to

match useful clinical sensitivity for biomarker inputs (i.e. pathologi-

cal thresholds: ketones > 17 lM (~10 mg/dl); glucose > 1.39 mM

(~25 mg/dl); lactate > 10 lM; EtOH > 17.4 mM (~80 mg/dl)); NOx

> 1,000 lM).

Investigation of the experimental behavior of the synthetic

circuits prior to encapsulation was then carried out. We proceeded

to in vitro implementation in the test tube of the previously simu-

lated models with the same initial conditions using recombinant

enzymes and synthetic metabolites at room temperature. Multiple

behavior mapping experiments consisting in varying input signals

were performed and the generated output signals were measured.

This allowed us to get a fine understanding of the functioning and

◀ Figure 2. Architecture and operational principle of protosensors for medical diagnosis.

A Arising from a clinical need to detect pathologies associated with specific patterns of biomarkers in clinical samples, medical diagnosis can be abstracted to a
computational process formalized using Boolean logic in vitro and programmed into synthetic biochemical circuits. These de novo circuits can be programmed and
optimized in silico, assembled from naturally occurring building blocks, and insulated in synthetic containers in vitro to yield diagnostic devices, or protosensors.
Protosensors are capable of detecting patterns of specific biomarkers in human clinical samples and integrate these signals in a medical decision algorithm. If a
pathological pattern of biomarker is detected, protosensors generate specific colorimetric outputs. Different types of protosensors corresponding to different clinical
questions can be used at the same time to enable multiplexed detection of pathological biomarkers, subsequent logic processing, and achieve differential diagnosis of
pathologies in clinical samples.

B Proof-of-concept diagnostic algorithm used in this study and programmed into protosensors circuitry to achieve differential diagnosis of diabetes acute complications
and screening for diabetes. Diabetes-associated acute complications, namely diabetic ketoacidosis, hyperglycemia hyperosmolar state, hypoglycemia, and lactic
acidosis, are clinical emergencies that represent a major healthcare burden associated with severe mortality, morbidity, and frequent complications. Here, we propose
a diagnostic algorithm enabling differential diagnosis of these complications, as well as a proof-of-concept screening assay, from markers present in urines.

C Logical abstraction and in silico-automated implementation of synthetic biochemical circuits for medical diagnosis. Top: formal Boolean description depicted using
basic logic gates symbols, and theoretical truth tables for three models recapitulating the medical algorithm, bottom: biochemical circuit solutions found after
automated in silico search for implementation. SBML models of the synthetic circuits can be found in Appendix.
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detailed experimental characterization of logic operations (Fig 3B,

Appendix Figs S5 and S6). As expected, kinetic and endpoint measure-

ment showed very good agreement with HSIM predictions, which

confirmed the capability of our models to capture relevant biochemi-

cal reactivities that condition the behavior of these systems. In addi-

tion, the circuits behaved in accordance with Boolean logic

specifications with temporal requirements of < 60 min to reach near

steady state. Outputs 2, 3, and 4 delivered a human-readable output

signal as expected. Considering signal-to-noise ratio (SNR) as a quan-

titative measure of biocomputing efficacy (Beal, 2015), we found that

these synthetic biochemical circuits showed appropriate performance

in processing molecular signals according to specified Boolean logic,

with calculated SNRs for outputs 1, 2, 3, and 4 of ~20, 34, 14, 26 dB,

respectively.

Protosensor insulation of synthetic biochemical circuits through
microfluidic-directed self-assembly

Ensuring picoliter scale control on biochemical parameters is

required to achieve programmable protosensors with specified

temporal logic properties (Weitz et al, 2014). We first investigated

the use of previously described phospholipid vesicle fabrication

(Pautot et al, 2003; Noireaux & Libchaber, 2004; Stachowiak et al,

2008; Akbarzadeh et al, 2013), which appeared incapable of accom-

modating precise stoichiometry of various biochemical entities, suf-

fered from either low throughput and poor encapsulation yields.

Therefore, we relied on the development of a method that would

simultaneously support (i) membrane unilamellarity, (ii) encapsula-

tion efficiency and stoichiometry, (iii) monodispersity, and (iv)

increased stability/resistance to osmotic stress.

For this purpose, we developed a custom microfluidic platform

and designed PDMS-based microfluidic chips in order to achieve

directed self-assembly of a synthetic phospholipid (DPPC) into cali-

brated, custom-sized membrane bilayers encapsulating low copy

number of biochemical species. Briefly, this strategy relied on flow-

focusing droplet generation channel geometries that generate water-

in-oil-in-water double-emulsion templates (W–O–W: biochemical

circuit in PBS—DPPC in oleic acid—aqueous storage buffer with a

low concentration of methanol). After double-emulsion templates

formation, DPPC phospholipid membranes are precisely directed to

self-assemble during a controlled solvent extraction process of the

oil phase by methanol present in buffer (Fig 4A, experimental

details can be found in Appendix and Appendix Figs S7–S10). This

microfluidic design also integrates a device known as the staggered

herringbone mixer (SHM) (Williams et al, 2008) to enable efficient

passive and chaotic mixing of multiple upstream channels under

Stokes flow regime. We reasoned that laminar concentration gradi-

ents could prevent critical mixing of biochemical parts, precise

stoichiometry, and efficient encapsulation. We hypothesized that

synthetic biochemical circuits immediately homogenized before

assembly could standardize the encapsulation mechanism and

reduce its dependency on the nature of insulated materials. More-

over, this design allowed for fine-tuning on stoichiometry via

control on the input flow rates, which proved practical to test dif-

ferent parameters for straightforward prototyping of protosensors.

We used an ultrafast camera to achieve real-time monitoring and

visually inspect the fabrication process, which allowed to estimate

around ~1,500 Hz the mean frequency of protosensor generation at

these flow rates (Appendix Fig S10 and Movie EV1). A strong depen-

dence of protosensors generation yields on flow rates was found,

which we kept at 1/0.4/0.4 ll/min (storage buffer/DPPC in oil/

biochemical circuit in PBS, respectively) to achieve best assembly

efficiency. We then analyzed the size dispersion of protosensors

using light transmission, confocal, and environmental scanning

electron microscopy (Fig 4B, Appendix Figs S8 and S9). Monodis-

persed protosensors with average size parameter of 10 lm and an

apparent inverse Gaussian distribution were observed. Interestingly,

biochemical circuit insulation did not appear to influence the size

distribution of protosensors, which supports the decoupling of the

insulation process from the complexity of the biochemical content.

Moreover, no evolution of sizes was recorded after 3 months, which

demonstrated the absence of fusion events between protosensors. In

order to assess the capability of protosensors to encapsulate protein

species without leakage, which is a prerequisite to achieve rational

design of biochemical information processing, we assayed encapsu-

lation stability using confocal microscopy. To this end, an irrelevant

protein bearing a fluorescent label was encapsulated within proto-

sensors, and the evolution of internal fluorescence was monitored

over the course of 3 months. The internal fluorescence was found to

remain stable, which demonstrated no measurable protein leakage

through the protosensor membrane hemolysin pores in our storage

conditions. In addition, using phospholipid bilayer specific dye,

DiIC18, which undergoes drastic increase in fluorescence quantum

yield when specifically incorporated into bilayers (Gullapalli et al,

2008), the complete extraction of oleic acid from the double emul-

sion and a well-structured arrangement of the bilayer could be visu-

alized (Fig 4C). We next sought to assess the encapsulation of

biological enzymatic parts inside protosensors. Two relevant

enzymes were insulated within protosensors: alcohol oxidase and

glucose-1-dehydrogenase, and UPLC-ESI mass spectrometry analysis

was performed on the protosensors. We found that we could

retrieve the molecular signatures of the enzymes in the interior of

◀ Figure 3. In silico models and experimental assessment of programmed synthetic biochemical circuits.

A Computed heat maps depicting the in silico transfer function of non-optimized implementations of synthetic biochemical circuits recapitulating the medical
algorithm of interest. We used stochastic HSIM simulation to compute the concentration at 60 min, and therefore the absorption (Out1 and Out3) or fluorescence
(Out2 and Out4) of outputs after induction with varying input concentrations. Concentration parameters were determined empirically, and kinetic parameters were
extracted from BRENDA database. The mathematical relation between concentration of outputs and related absorption or fluorescence was calibrated beforehand
(Appendix Fig S4). Heat maps were generated by plotting the mean of five simulations trajectories for each point.

B In vitro biochemical circuits implementations and experimental measurements of truth tables with photograph of tubes at 60 min showing human-readable outputs
(left), and kinetic behavior compared to HSIM predictions (right). The concentrations of inputs used to induce the circuits were 1 mM acetone, 1 mM glucose, 20 mM
ethanol, 0.5 mM lactate, 5 mM glucose, and 5 mM NOx. The experiments were carried out at 25°C, and the truth table reflects the values obtained at 60 min. All
experiments were performed in triplicate wells for each condition and repeated three times on different weeks and different batches, reported is the mean with error
bars showing SD. From top to bottom, two-sided Student’s t-test of induced versus highest non-induced condition P = 1.01286E-06, P = 1.08059E-07, P = 1.2022E-
04, P = 3.3309E-04, P = 4.27901E-05.
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protosensors, as compared with positive controls (Appendix Fig

S11). Taken together, these findings show that this setup proved

capable of generating stable, modular protosensors with high effi-

ciency, and user-defined finely tunable content.

Biochemical programming of diagnostic protosensors: from
in silico optimization to digital signal processing, multiplexing
logic, and analytical evaluation

We then proceeded to in silico optimization of the three medical

protosensors implementations before in vitro assembly and experi-

mental assessment. More specifically, the initial state concentration

parameters of the species constituting the insulated synthetic circuit

needed to be optimized to account for temporal logic in accordance

with the medical algorithm of interest. Additionally, selective

membrane permeability parameters were incorporated in our

models, describing passive diffusion of molecular inputs through

hemolysin membrane pores (see Appendix for details). The concen-

tration of hemolysin is expected to play a major role in the protosen-

sors response, since it impacts the diffusion kinetics and therefore

the kinetics of the whole protosensors responses. In this study, we

fixed the concentration of hemolysin to an arbitrary value for which

biochemical circuits are optimized by computing the concentration

parameters that satisfy chosen temporal logic specifications. We

defined temporal logic specifications satisfying clinical

requirements, that is obtaining biosensing sensitivities at pathologi-

cal thresholds, achieve specified signal processing operations and

obtain a measurable output signal in < 10 min for the three systems

(See Appendix for details). Feeding synthetic circuits with non-opti-

mized concentration parameters in BIOCHAM, sensitivity analysis

was first performed on the models to determine which concentra-

tion parameters had the most important influence on protosensors

behavior. Central to this approach is the notion of satisfaction

degree of temporal logic formulae. This continuous measure of LTL

(R) Formulae can be computed to serve as a fitness function in order

to find biochemical kinetic parameter values satisfying a set of

biological properties formalized in temporal logic (Rizk et al, 2008,

2009), thereby evaluating numerically the adequateness of a model

relative to temporal logic specifications. The satisfaction degree is

normalized such that it ranges between 0 and 1, with a satisfaction

degree equal to 1 when the property is true and tending toward 0

when the system is far from satisfying the expected property.

For each protosensor models, validity domains were computed to

extract concentration thresholds (N and R) at steady state (T) satisfy-

ing temporal logic specifications. We first performed sensitivity anal-

ysis on concentration parameters with a specified logic formula

corresponding to the desired systems specifications. This permitted

us to identify the two most sensitive concentration parameters of the

systems. Comprehensive 2D sensitivity landscape maps of configura-

tions satisfying specifications relative to these two dependencies

B
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Figure 4. Experimental construction of protosensors using microfluidics.

A Left: Double-emulsion templating microfluidic device architecture and operation. This method relies on the generation of W/O/W double emulsions. Buffer: 10% v/v
methanol, 15% w/v glycerol, 3% w/v pluronic F68 in PBS (1 ll/min) Oil+PL: DPPC dissolved in oleic acid (0.4 ll/min) Biochemical circuit buffer: enzymes and
metabolites in PBS (0.4 ll/min). Right: microscopic validation of protosensor generation on chip (top, scale bar = 20 lm), bright field optical validation of
protosensors isolated for subsequent analysis (bottom, scale bar = 10 lm).

B Size dispersion and stability of protosensors generated with the microfluidic method, after encapsulating PBS (left) and GluNOx network (right).
C Months-long stability of encapsulation of protein components within the synthetic membrane. AlexaFluor-488-labeled IgG where encapsulated in the DPPC

membranes using the microfluidic setup and fluorescence vesicles was then monitored by confocal microscopy for 3 months. At each time point, individual vesicles
were isolated from the same solution and observed under confocal microscopy, and representative fluorescence properties are here depicted. Yellow: membrane
fluorescence as labeled with phospholipid dye DiIC18. Blue: AlexaFluor-488-labeled IgG fluorescence.
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were then computed in order to visualize the available biochemical

design space (Fig 5A, Appendix Fig S12). For each system, precise

parameter spaces boundaries satisfying temporal logic could thus be

identified. GluONe protosensors (Code EV5) operation appeared

mostly sensitive to G1DH and ADH enzymes concentration. Interest-

ingly, the behavior of LacOH (Code EV6) and GluNOx (Code EV7)

appeared more sensitive to the initial concentrations of the metabo-

lite NAD+ than other enzymes. For all three systems, the NAD+/

NADH redox ratio can be seen as a biochemical current connecting

the two molecular inputs signals and thus has to be finely tuned to

match input thresholds and enzyme levels. Within the computed

design space, initial state concentrations could be then rationally

chosen using BIOCHAM automated parameter search (CMAES

Method), in order to optimize robustness of operation while satisfy-

ing temporal logic specifications according to each model. In addi-

tion, arbitrary implementations outside of the in silico-validated

specification landscape yielded non-functional systems as verified

in vitro (Fig 5A, Appendix Fig S12). In order to further verify proto-

sensors behavior in silico, the transfer function was mapped using

stochastic HSIM simulations. As previously, we generated heat maps

of computed output signals after induction with various concentra-

tions of biomarker inputs (Fig 5A). Boolean logic functions were

found to be respected with appropriate theoretical response fold

change, as well as near-digital response profiles. Theoretical switch-

ing thresholds for these models were also found to match useful

clinical sensitivity for biomarker inputs. We then sought to investi-

gate the behavior of protosensors experimentally in detail and

proceeded to microfluidic in vitro assembly of GluONe, LacOH and

GluNOx protosensors using computer-optimized parameters as

previously defined. We performed multiple experiments consisting

in mapping the experimental truth tables of the protosensors.

Output responses at the population level were measured while

varying input conditions (i.e. presence/absence of pathological

concentrations of input biomarkers). This allowed us to get a fine

understanding of the functioning and detailed experimental char-

acterization of logic operations (Fig 5B, Appendix Figs S13 and

S14). Clear digital-like behaviors with important fold changes were

obtained that showed exact accordance to Boolean logic specifi-

cations with temporal requirements of < 60 min. The calculated

signal-to-noise ratio showed very good performance SNRs for

outputs 1, 2, 3 and 4 of ~8, 35, 5, and 11 dB respectively.

Not only capable of recapitulating the programmed Boolean

operations, we reasoned that a validation of our model predictive

power would be to achieve the same transfer functions in vitro as

previously predicted by simulations. In a second set of experiments,

the three protosensor systems were incubated with increasing

concentrations of respective input biomarkers, and their individual

output signal response was measured using flow cytometry. We

hypothesized that this technique would give precise single (proto)

cell level measurements, thus lowering sample noise effects

(Fig 5C). When comparing these data to HSIM model simulations,

experimentally measured switching thresholds were found to show

very good agreement with predictions, along with near-digital

responses. In order to further validate the spatial and analytical digi-

tization of output signals, confocal microscopy was used to quanti-

tatively measure and precisely visualize output signals generation

within single induced protosensors (Fig 5D). Bright images with

high SNRs and important response fold changes were obtained,

strongly corroborating previous flow cytometry data. Molecular

output signals appeared well localized in the interior of protosen-

sors, although possible leakage was not quantified.

Although satisfying for analytical applications, greater back-

ground noise was found compared to non-encapsulated synthetic

biochemical circuits. We hypothesized that this was due to autofluo-

rescent species such as surfactant and phospholipids, along with

probable scattering and absorbance phenomena emerging for spher-

ical protosensor structures in solution. The rationale behind encap-

sulation was to achieve greater analytical robustness and obtain

▸Figure 5. In silico optimization and experimental validation of analytical properties of protosensors performing robust multiplexed biosensing and logic.

A Mapping satisfaction degree landscape for GluOne (top), LacOH (middle), and GluNOx (bottom) protosensors. Satisfaction degrees of temporal logic formulas at 5 min
were computed while varying the two most sensitive parameters of respective models (e.g. ADH and G1DH concentration for GluONe), for each combination of
inputs. Temporal specifications of output concentration thresholds at steady state along with validity domains are depicted below each map. Optimized
concentration parameters were then computed using CMAES method implemented in BIOCHAM. We verified experimentally the kinetic response of protosensors
implemented with specific concentration of enzymes corresponding to the colored squares on the map. We then computed the heat maps depicting output signals at
60 min using HSIM models simulations, for the three different concentration optimized systems after induction with increasing biomarker concentration. Heat maps
were generated by plotting the mean of 5 simulations trajectories for each point.

B Experimental truth tables of protosensors operating in human urines. The concentration of inputs used for induction corresponded to pathological threshold defined
as 17 lM acetone, 1.39 mM glucose, 10 lM lactate, 17.4 lM ethanol, and 1 mM NOx. The experiments were carried out at 25°C, and the truth table reflects the
values obtained at 60 min. From top to bottom, two-sided Student’s t-test of induced versus highest non-induced condition P = 3.3627 E-06, P = 1.1701 E-04,
P = 4.2909 E-06, P = 1.3397 E-05

C Experimental validation of computer prediction at the single (proto)cell level using flow cytometry. We measured the main fluorescence output of each different
protosensor logic systems 60 min after induction by the respective biomarkers at discrete inducer concentrations as indicated for each corresponding contour plot.
For LacOH, in order to get a fluorescent output signal measurable with a flow cytometer, we exchanged ABTS output with Resorufin, which both undergo analogous
reduction process. Flow cytometry data collection was carried on 10,000 individual events.

D Confocal microscopy validation of “ON” output signals responses at 60 min after induction with respective biomarkers, corresponding to concentrations indicated in
the left and right dashed box of (c). From top to bottom: GluONe (Out2), LacOH (Out3), and GluNOx (Out4). The phospholipid bilayer was stained in yellow using the
dye DiC18. For LacOH, in order to get a fluorescent output signal measurable in confocal microscopy we exchanged ABTS with Resorufin, which undergo an analogous
reduction process.

E Multiplexing Logic: Example of comparison between expected (valid analytical response according to molecular inputs present in the sample), batch mode analysis
(non-encapsulated synthetic circuits), and protosensors analysis (encapsulated synthetic circuits). PBS media were spiked with multiple biomarkers (in this case,
acetone, ethanol and nitric oxides or glucose, acetone, and lactate), and output signals were measured after 60 min.

Data information: All experiments were performed in triplicate wells for each condition and repeated three times on different weeks and different batches; all data
points are shown as mean with error bar showing SD.
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insulation to achieve programmable Boolean logic. In other words,

multiple types of protosensors in solution should facilitate design,

and be able to operate independently in a standardized way without

interacting with each other in order to achieve multiplexed analysis

of the molecular environment. To verify this assertion, we

addressed multiplexing logic capabilities experimentally. For this

purpose, different experiments were set up where we measured

output signals in media spiked with multiple biomarkers, by mixing

all three synthetic biochemical circuits at the same time in either

batch mode analysis (i.e. non-encapsulated synthetic circuits) or

protosensors mode analysis (i.e. membrane-insulated synthetic

circuits). For this experiment, arbitrary combinations of biomarkers

were chosen (Fig 5E). The measured output signals obtained were

compared to the expected output corresponding to the programmed

specifications. Mixing non-insulated synthetic biochemical circuits

were found incapable of achieving correct signal processing tasks,

most likely due to molecular interactions between the circuits’

components. On the other hand, mixing the three types of protosen-

sors did not affect biosensing and signal processing capabilities,

which were capable of performing Boolean logic and output signal

generation.

Assaying pathological clinical samples: protosensors mediated
diagnosis of diabetes

After successful validation of protosensors analytical capabilities in

spiked samples, we then sought to perform real-world assessment

for disease detection in a clinical setup. In a clinical perspective, we

first sought to address the potential effects of clinical samples, such

as urine media, on protosensor architecture and operability

(Fig 6A). We reasoned that measuring protosensor fluorescence

signal along with forward-scattered light (FSC) using flow cytometry

would give insights on protosensor stability, as FSC is correlated

with vesicular size and internal fluorescence with membrane

integrity. Induction and prolonged incubation in urine was not

found to impact stability, structure, or operability of protosensors.

In addition, no difference between operation in standard PBS buffer

and urine media was apparent (Fig 6A and Appendix Fig S15).

Taken together, these data demonstrate that protosensors support

the implementation of programmed biosensing and biomolecular

logic gated operations irrelevant of in situ context, with robust and

predictable behavior.

GluONe protosensors were then evaluated as a proof-of-concept

to detect endogenous levels of pathological diabetes-associated

biomarkers in clinical samples from patients. Although we did not

benefit from a large sample library of diabetes-related metabolic

complication to test the complete implemented diagnostic algorithm,

previously collected urine samples from treatment-naive diabetic

patients were available. We reasoned that assaying pathological

glycosuria and absence of ketonuria in these urine samples would

constitute a testbed diagnostic evaluation. We proceeded to incuba-

tion of GluONe protosensors with either diabetic urine samples or

non-diabetic control urines and as previously described measured

output signal responses (Fig 6B). Glycosuria analysis using the clini-

cal point-of-care gold standard was also concomitantly performed

(i.e. urinary dipsticks). We found high correlation between output

signals from protosensors and visual examination of dipsticks. More-

over, receiver operating characteristic (ROC) analysis of the data

showed that the assay reliably detected glycosuria in samples from

diabetic patients, with a near ~100% sensitivity and specificity, and

an area under curve of ~0.9981, which defines GluONe protosensors

as high performance diagnostic test holding comparison to gold stan-

dard. Taken together, these data demonstrate that protosensors can

discriminate between normal and diabetic patients with excellent

diagnostic accuracy. Therefore, we conclude that rational biomolecu-

lar programming of protosensors may be used to generate clinical-

grade assays to detect endogenous biomarkers of disease in patient

samples.
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Figure 6. Protosensor-mediated detection of pathological glycosuria in patient clinical samples.

A Flow cytometry evaluation of protosensors structural robustness in urines. GluONe protosensors were induced and incubated for 2 h at 25°C in human urine and
analyzed using flow cytometry while recording Resorufin fluorescence and forward-scattered light.

B Left: Dot histogram of data used for statistical analysis. Dots of the same color (white, gray, black) correspond to one repetition of the experiment, which was
performed in triplicates in different patient samples. Above each data point is depicted a photograph of a urinary dipstick measurement performed on the sample. We
then plotted a dot histogram of data comparing the non-diabetic to diabetic set. Right: Receiver operating characteristic (ROC) analysis curve depicting statistic
sensitivity versus (1-specificity). A set of 72 measurement performed in non-pathological urine were compared to 72 measurements performed in urine from diabetic
patients. The data were processed using the software SigmaPlot (Systat Software Inc.) with a computed P < 0.0001 using a Mann–Whitney–Wilcoxon test. We used
GluONe protosensors for this assay and measured Out1 signal (NADH absorbance) after 60 min at room temperature.
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Discussion

A vast landscape of problems in biology and medicine has remained

unsolved due to our inability to rationally engineer synthetic infor-

mation processing biomolecular systems. The last decades

witnessed a growing interest for the study of synthetic biological

control circuits, largely inspired by application pervasiveness of

portable, autonomous, and programmable biosensors and biocom-

puter devices. In vivo approaches have traditionally been favored

due to our increasing ability to re-engineer molecular machinery of

living organisms using a variety of new biotechnologies. However,

developing novel frameworks to rationally build de novo at the

system scale using biomolecular components could open up the

way for tremendous bioengineering and biomedical applications.

Our study builds upon previous attempts at assembling biochem-

ical circuits de novo to perform useful biomolecular logic operations.

Here, we brought rational design of in vitro synthetic biochemical

circuit closer to real-world applications by addressing some of the

previous technological limitations, namely design, programmability,

and scalability. We developed a systematic computational approach

combining automated exploration of the biochemical design space

according to time-dependent quantitative and qualitative specifi-

cations, to automated robustness assessment and optimization of

initial concentration parameters. To our knowledge, our in silico

framework is the first step ever made toward task-oriented program-

ming of synthetic biochemical circuits while providing quantitative

evaluation of functionality and analytical properties to maximize

reliability in operation. We provide evidence to support the role of

model checking as a key enabling methodology that allows for navi-

gation of the design space and biochemical implementation of logic

and specifications, which is otherwise prone to failure.

Although nucleic acids had been mostly used for this purpose for

the ease of Watson–Crick programmability (Chen et al, 2013), here

we report for the first time a systematic method to extend biochemi-

cal programming to protein catalysts and metabolites. Additionally,

we developed an accurate microfluidic-directed self-assembly

methodology capable of supporting the accurate, picoliter scale

implementation, and insulation of biochemical circuits within

synthetic membrane boundaries. Using a combination of these meth-

ods, we showed that we could synthesize in vitromicroscale devices,

protosensors, combining biosensing and biocomputing abilities,

capable of sensing their molecular environment along with

biomolecular signal processing and decision-making in user

programmable ways. We demonstrated that membrane insulation

provides a robust architecture to decouple the biochemical software

from the complex medium it operates in. In comparison with previ-

ous attempts, this approach could increase the scale and the

complexity of the circuitry that can be programmed by layering

modules and preventing deleterious molecular electron transfer

short-circuits (Agapakis & Silver, 2010). Enzymatic activities suscep-

tible to perturbations could thus be confined, programmed in

circuits, standardized, and assembled in discrete sensing and

computing units, which operation and failure modes are easier to

model in silico. Larger scale circuits could in the future be built by

programming different protosensors coordinating a common behav-

ior at the population level.

Nevertheless, computer-aided programming of protosensors may

not be as straightforward for insulated circuits of larger size. Indeed,

predictive computer models may still fail due to oversimplification

of molecular interactions and incomplete knowledge of reactivity

and physicochemical properties of species generating unpredictabil-

ity arising at the system level. Most biological parts available for the

bottom-up engineering of synthetic biochemical circuits remain

insufficiently characterized in increasing context complexity. More-

over, a lack of orthogonal parts may still limit the scaling up of

in vitro synthetic circuits. For instance, some input biomarkers may

in certain case lack biochemical sensors interfacing with signal

processing modules. In order to overcome these limits, our current

efforts focus on eliminating the remaining steps of human interven-

tion and further automate classification, standardization, and

robustness assessment of biological parts in context. This initiative is

underway through automated refinement of databases, which stores

parts, abstract modules such as sensors, switches, or Boolean logic

gates extracted from biological networks (Bouffard et al, 2015),

which we hope will lead to constant improvement in bottom-up

design capabilities. Efforts could be directed toward augmenting the

models’ depth of description from Brownian and Michaelian kinetics

to increasing molecular mechanistic (Mazière et al, 2004; Maziere

et al, 2007). Additionally, here we applied Boolean logic familiar to

electrical engineering to the biochemical substrate in order to achieve

programmable biological information processing. Nonetheless, other

modes of operation closer to natural signal processing have been

described, such as analog computation (Sarpeshkar, 2014). Future

efforts focusing on implementing hybrid analog–digital strategies in

biochemical circuits would be greatly valuable.

The current architecture relying on phospholipid bilayer

membranes may impose some intrinsic limits. Although we

assessed stability and impermeability of the membrane, which is a

prerequisite to achieve biochemical signal processing by preventing

leaking of components in and out of the protosensors, we did not

yet address the biochemical stability of the enzymes. However,

many studies have explored this experimentally and showed that

encapsulation of enzymes enhance their protection against denatu-

ration and proteases (Küchler et al, 2016).

We also have yet to explore the consequences of osmotic stress

in challenging environments that could compromise membrane

integrity and find ways to achieve fine-tuning of selective signal

transduction through the membrane. Although phospholipidic

membrane could prove useful in some specific applications, we

envision to confine their use as a proof-of-concept model of microre-

actor confinement. We envision that more robust insulation mecha-

nisms may be needed to support applications necessitating osmotic

pressure resistance. We envision that harnessing nanoscale self-

assembly mechanisms, for instance using synthetic protein nanoma-

terials such as nanocages (King et al, 2012, 2014; King & Lai, 2013;

Bale et al, 2016) or other multidimensional architectures (King &

Lai, 2013; Yeates et al, 2016), could provide valuable alternatives as

modular compartments for biosensing–biocomputing architectures.

Similarly, instead of exploiting natural catalytic activities, synthesis

of orthogonal biochemical parts could be used to design future

systems. For instance, computational protein design can be used to

design tailored enzymes with novel non-natural catalytic functions

(Siegel et al, 2010, 2015; Kiss et al, 2013; Heinisch et al, 2015;

Huang et al, 2015, 2016).

In this study, we demonstrated that protosensors are promising

tools to perform in vitro diagnostics integrating medically relevant
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algorithmic processes. Protosensors offer multiplexed detection and

sophisticated analytical capabilities with sharp near-digital response

profiles coupled to expert decision-making. As a prototype, we

showed that this technology could be successfully applied to solve

clinical problems such as the diagnosis of diabetes-related complica-

tions. Not only smartening classical in vitro diagnostics by integrat-

ing expert decision-making, protosensors could be used for cheap,

portable, and multiplexed screening of complex pathophysiology at

the point of care, which remains a limiting challenge of current diag-

nostics. In particular, we envision that the diagnostic capabilities,

programmability, and versatility of these devices could greatly bene-

fit precision medicine agendas or the management of rare or rapidly

emerging pathologies. Protosensors could support delocalized uses

and modes of detection for dynamic biomarker signatures, and thus

bear potential for the management of complex syndromes. Further-

more, we suspect this approach to biosensing, which relies on

autonomous and programmable entities, to be of interest for novel

kinds of local measurements and bioactuation since protosensors

can be addressed to specific biological structures or cells in vivo

through external receptors. These systems could be further engi-

neered into sense-act micromachines, for instance conditionally

generating actuation signals or therapeutic responses in situ, as well

as interfacing or integrated in living systems. Communication capa-

bilities could as well be integrated in design as previously proposed

(Adamala et al, 2016), potentially allowing protosensors to achieve

complex cooperative behaviors. Last, protosensors may be amen-

able to spatial patterning and ultra-high-throughput applications

through high-density chip immobilization.

This study paves the way for the systematic programming and

extended use of integrated biochemical circuits in protocellular

structures. We adapted for the first time computational methods of

engineering sciences such as model checking to bottom-up

synthetic biology, which we envision could drive interest to the

field. This approach could offer avenues to test and validate

biomolecular circuitry, and thus provide new insights on the

fundamental principles governing biological information process-

ing. These automated methods can be used to evaluate how a

biomolecular system satisfies a set of properties expressed in

temporal logic, and as such could be extended to a wide range of

applications in synthetic biology. For instance, we envision that

our tools could prove useful in metabolic engineering for de novo

pathway construction and flux optimization (Dudley et al, 2015).

In a long-term vision, we envision the establishment of bottom-up

biochemical circuit programming as a universal framework to

produce a wide array of tools for biomedical research and the

industry, from probing and interfacing biological structures, cellu-

lar reprogramming, ultra-low-power biomolecular computing, and

the rational integration of biological parts toward the synthesis of

minimal autopoietic systems.

Materials and Methods

Study design

To evaluate the robustness of our system and its functionality in

clinical samples, we used urine pools from healthy individuals as

well as urine samples from diabetic patients. Regarding collection of

clinical samples, non-pathological (control) and glycosuric (dia-

betic) urine samples were obtained from the Department of

Endocrinology of the Lapeyronie Hospital, Montpellier, France,

under the supervision of E. Renard. Individual informed consents

were obtained from the patients and control individuals and the

experiments conformed to the principles set out in the WMA Decla-

ration of Helsinki and the Department of Health and Human

Services Belmont Report. Glycosuric urine samples were collected

from 10 newly discovered, non-stabilized diabetic patients. Urine

samples were stored at �80°C before use.

Enzymes and biochemistry

All enzymes, phospholipids, and chemicals were purchased from

Sigma-Aldrich, stored at �80°C, and used in PBS at pH 7.4 at 25°C.

Concentrations used, initial conditions, experimental steps, and

detailed information can be found in Appendix.

In silico design and simulation

Computer-automated implementation of biochemical logic circuits

was performed using the Silicell Maker software suite with NetBuild

and NetGate programs (https://silicellmaker.lri.fr/, Patrick Amar),

and stochastic simulations (SSA) were performed using HSIM

(https://www.lri.fr/~pa/Hsim/, Patrick Amar). Recent improve-

ments that we brought to HSIM for the purpose of this study consist

of multisubstrate enzymatic mechanisms implementation (ordered

sequential bi–bi mechanism, Ping Pong bi–bi mechanism, and

random sequential bi–bi mechanism), automated translation of

probability from HSIM stochastic simulator to mass action rates for

BIOCHAM ODE solver, the implementation of physical models for

protosensor membrane permeability, as well as SBML support

(more information on these improvements can be found in

Appendix). Simulations were run for 60 min, with protosensors

diameters of 10 lm, and computed output values were calculated

using calibration curves giving relation between concentration and

fluorescence or absorbance values. Permeability coefficient and

other kinetic parameters were obtained from previous literature and

the BRENDA database. Sensitivity analysis and parameter search

were performed using BIOCHAM (https://lifeware.inria.fr/biocham/

). Step-by-step detailed information, computer code, and BIOCHAM

executable notebooks showing the process of biochemically

programming a protosensor can be found in Appendix and can be

executed on the online server (http://lifeware.inria.fr/biocham/on

line/). SBML models (Code EV1–EV4), and corresponding Biocham

code (Code EV5–EV7) of the synthetic circuits described in this can

be found in SI. Latest version of software executable can be found

on the link featured in this section.

Protosensors microfluidic generation

PDMS microfluidic chips were designed and prototyped using

AutoCAD software, and fabrication was carried out by the Stanford

University microfluidic foundry. The microfluidic chips were

connected with PTFE tubing to neMESYS V2 syringe pumps (Cetoni

GmbH, Germany). Microfluidic processes were imaged using a Leica

DMIL microscope mounted with a Canon 750D or a Phantom V7.3

camera. Detailed information can be found in Appendix.
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Spectrometric assays, flow cytometry, and microscopy

To test the operability of the systems, synthetic biochemical

networks and protosensors were inoculated in 100 ll total volume

of PBS with or without input biomarkers, or urine from patients

diluted at a ratio of 1:2 in PBS for a total volume of 100 ll in a 96-

well plate. Kinetic measurements or endpoint measurements after

1 h of incubation were performed at 25C with gentle 200 cpm

double orbital shaking; fluorescence and absorbance were read

using a synergy H1 plate reader (more details can be found in the

Appendix). We concomitantly tested these urines from non-stabi-

lized diabetic patients using the Siemens Multistix 8 SG reagent strip

according to the manufacturer’s protocol. Flow cytometry experi-

ments were performed on a Guava EasyCyte benchtop flow cytome-

ter (Merck) equipped with a 488-nm laser and analyzed using

FlowJo vX software. Confocal microscopy assays were performed

on a Leica SP8-UV equipped with 63× oil lens and 355-, 488-, and

561-nm lasers. All experiments were performed in triplicate wells

for each condition and repeated three times on different weeks and

different batches.

Data analysis and statistics

Experimental values are reported as means � SD. For all bar plots,

reported P-values were computed used a two-sided unpaired t-test.

All experiments were performed in triplicates. Data, statistics,

graphs, and tables were processed and generated using MATLAB

(MathWorks) and SigmaPlot (Systat Software Inc.). Flow cytometry

data collection was carried on 10,000 individual events. For receiver

operating characteristic analysis, a set of 72 measurements

performed in non-pathological urine were compared to 72 measure-

ments performed in urine containing 1% glucose.

Expanded View for this article is available online.
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