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Abstract

Optimal superposition of protein structures or other biological molecules is crucial for

understanding their structure, function, dynamics and evolution. Here, we investigate the use of

probabilistic programming to superimpose protein structures guided by a Bayesian model. Our

model THESEUS-PP is based on the THESEUS model, a probabilistic model of protein

superposition based on rotation, translation and perturbation of an underlying, latent mean

structure. The model was implemented in the probabilistic programming language Pyro. Unlike

conventional methods that minimize the sum of the squared distances, THESEUS takes into

account correlated atom positions and heteroscedasticity (ie. atom positions can feature different

variances). THESEUS performs maximum likelihood estimation using iterative expectation-

maximization. In contrast, THESEUS-PP allows automated maximum a-posteriori (MAP)

estimation using suitable priors over rotation, translation, variances and latent mean structure. The

results indicate that probabilistic programming is a powerful new paradigm for the formulation of

Bayesian probabilistic models concerning biomolecular structure. Specifically, we envision the use

of the THESEUS-PP model as a suitable error model or likelihood in Bayesian protein structure

prediction using deep probabilistic programming.
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I. Introduction

In order to compare biomolecular structures, it is typically necessary to superimpose them

onto each other in an optimal way. The standard method minimizes the sum of the squared

distances (root mean square deviation, RMSD) between the matching atom pairs. This can

be easily accomplished by shifting the centre of mass of the two proteins to the origin and

obtaining the optimal rotation using singular value decomposition [1] or quaternion algebra

[2], [3]. These methods however typically assume that all atoms have equal variance

(heteroscedasticity) and are uncorrelated. This is potentially problematic, for example in the

case of proteins with flexible loops or flexible terminal regions, which correspond to atoms

positions with high variance. Here we present a Bayesian model that is based on the

previously reported THESEUS model [4], [5]. The THESEUS model is a probabilistic

model of protein superposition that allows for regions with low and high variance,

corresponding respectively to conserved and variable regions [4], [5]. THESEUS assumes

that the structures which are to be superimposed are translated, rotated and perturbed

observations of an underlying latent, mean structure M.

In contrast to the THESEUS model which features maximum likelihood parameter

estimation using iterative expectation maximization, we formulate a Bayesian model

(THESEUS-PP) and perform maximum a-posteriori parameter estimation. We provide

suitable prior distributions over the rotation, the translations, the variances and the latent,

mean model. We implement the entire model in the probabilistic programming language

Pyro [6], and make use of its automated inference features.

The results indicate that deep probabilistic programming readily allows the implementation,

estimation and deployment of advanced non-Euclidean models relevant to structural

bioinformatics. Specifically, we envision that THESEUS-PP can be adapted for use as a

likelihood function in Bayesian protein structure prediction using deep probabilistic

programming, due to its support for heteroscedasticity.

II. Methods

A. Overall model

According to the THESEUS model, each protein structure Xi is a noisy observation of a

rotated and translated latent, mean structure M,

Xi = RiM + ti + ϵi, (1)

where Ri is a rotation matrix, ti is a three-dimensional translation and ϵi is the error. Another

way of representing the model is seeing Xi as distributed according to a matrix-normal

distribution with mean M and covariance matrices U and V - one concerning the rows and

the other the columns.

The matrix-normal distribution can be considered as an extension of the standard

multivariate normal distribution from vector-valued to matrix-valued random variables.

Consider a random variable X distributed according to a matrix-normal distribution with
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mean M, which in our case is an N×3 matrix where N is the number of atoms. In this case,

the matrix-normal distribution is further characterized by an N × N row covariance matrix U
and a 3 × 3 column covariance V. Then, X ℳ𝒩(M, U, V) will be distributed according to

X M + UQ V , (2)

where Q is an N × 3 matrix with elements distributed according to the standard normal

distribution.

To ensure identifiability, one (arbitrary) protein X1 is assumed to be a noisy observation of

the translated - but not rotated - mean structure M:

X1 ℳ𝒩 M + t1, U, V . (3)

The other protein X2 is assumed to be a noisy observation of the rotated as well as translated

mean structure M:

X2 ℳ𝒩 RM + t2, U, V . (4)

Thus, the model uses the same covariance matrices U and V for the matrix-normal

distributions of both X1 and X2.

B. Bayesian posterior

The graphical model of THESEUS-PP is shown in Figure 1. The corresponding Bayesian

posterior distribution is

p R, t1, t2, M, U X1, X2 ∝
p X1, X2 M, R, t1, t2, U p(M)P t1 p t2 P(R)P(U) =
p X1 M + t1, U, I3 p X2 RM + t2, U, I3 P(M)
p t1 p t2 p(R)p(U),

(5)

where I3 is the three-dimensional identity matrix. Below, we specify how each of the priors

and the likelihood function is formulated and implemented.

C. Prior for the mean structure M

Recall that according to the THESEUS-PP model, the atoms of the structures to be

superimposed are noisy observations of a mean structure, M = {m0, …, mN−1}, where N is

the number of atoms considered in the superposition. Typically, only Cα atoms are

considered and in that case, N corresponds to the number of amino acids. Hence, we need to

formulate a prior distribution over the latent, mean structure M. We use an uninformative

prior for M. Each element of M is sampled from a univariate normal distribution with mean

0 and variance σM. We set σM to the maximum distance of a Cα atom to the center of its

structure. Finally, M is translated so its center-of-mass lies at the origin.
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D. Prior over the rotation R

In the general case, we have no a priori information on the optimal rotation. Hence, we use a

uniform prior over the space of rotations. There are several ways to construct such a uniform

prior. We have chosen a method that makes use of quaternions [7]. Quaternions are the 4-

dimensional extensions of the better known 2-dimensional complex numbers. Unit

quaternions form a convenient way to represent rotation matrices. For our goal, the overall

idea is to sample uniformly from the space of unit quaternions. Subsequently, the sampled

unit quaternions are transformed into the corresponding rotation matrices, which establishes

a uniform prior over rotations.

A unit quaternion q = (w, x, y, z) is sampled in the following way. First, three independent

random variables are sampled from the unit interval,

u0, u1, u2 U(0, 1) . (6)

Then, four auxiliary deterministic variables (θ1, θ2, r1, r2) are calculated from u1, u2, u3,

θ1 = 2πu1, (4a)

θ2 = 2πu2 (4b)

r1 = 1 − u0, (4c)

r2 = u0 . (4d)

The unit quaternion q is then obtained in the following way,

q = (w, x, y, z) = r2 cos θ2, r1 sin θ1, r1 cos θ1, r2 sin θ2 . (7)

Finally, the unit quaternion q is transformed into its corresponding rotation matrix R as

follows,

R =
w2 + x2 − y2 − z2 2(xy − wz) 2(xz + wy)

2(xy + wz) w2 − x2 + y2 − z2 2(yz − wx)
2(xz − wy) 2(yz + wx) w2 − x2 − y2 + z2

. (8)

E. Prior over the translations t1 and t2

For the translations, we use a standard trivariate normal distribution,
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t1, t2 𝒩3 0, I3 . (9)

where I3 is the identity matrix. This prior assumes that X1, X2 and M are centered at the

origin before the translations are applied (see below).

F. Prior over U

The matrix-normal distribution has two covariance matrices, one concerning the rows (U)

and another concerning the columns (V). V can be set to the identity matrix I3. The N
diagonal elements of U are sampled from the half-normal distribution with standard

deviation set to 0.01,

σi 𝒩+(0.01) .

G. Likelihood

In our case, the matrix-normal likelihood can be formulated as a product of univariate

normal distributions. Below, we have used trivariate Gaussian distributions with diagonal

covariance matrices for ease of notation. The likelihood can thus be written as

p X1, X2 M, t1, t2, R, U

= p X1 M, t1, U p X2 M, t2, R, U

= ∏
i = 1

N
𝒩3 X1, i Mi + t1, σiI3

× 𝒩3 X2, i RMi + t2, σiI3 ,

(10)

where the product runs over the matrix rows that contain the x, y, z coordinates of X1, X2

and the rotated and translated latent, mean structure M.
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H. Algorithm

I. Initialization

Convergence of the MAP estimation can be greatly improved by selecting suitable starting

values for certain variables and by transforming the two structures in a suitable way. First,

we superimpose the two structures using conventional least-squares superposition.

Therefore, the starting rotation can be initialized close to the identity matrix (ie., no

rotation). This is done by setting the vector u to (0.9,0.1,0.9).

Optimization can be further enhanced by initializing the mean structure M to the average of

the two input structures X1 and X2.

J. Maximum a-posteriori optimization

We performed MAP estimation using Pyro’s AutoDelta guide. For optimization, we used

AdagradRMSProp [8], [9] with the default parameters for the learning rate, momentum and

step size modulator. For some proteins, optimization sometimes fails to converge due to

numerical instabilities (data not shown). We are investigating means to reparameterise the

model in order to avoid this.

Convergence was detected using Earlystop from Pytorch’s Ignite library (version 0.2.0) [10].

This method evaluates the stabilization of the error loss and stops the optimization according

to the value of the patience parameter. The patience value was set to 100.

III. Materials

Proteins

The algorithm was tested on several proteins from the RCSB protein database [11] that were

obtained from Nuclear Magnetic Resonance (NMR) experiments. Such structures typically

contain several models of the same protein. These models represent the structural dynamics

of the protein in an aqueous medium and thus typically contain both conserved and variable
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regions. This makes them challenging targets for conventional RMSD superposition. We

used the following structures: 1ADZ, 1AHL, 1AK7, 2KHI and 2LKL.

IV. Results

The algorithm was executed 10 times on each protein (see Table I).

The resulting superimposed structures are shown in Figure 2. For comparison, conventional

RMSD superpositions, obtained using Biopython [12], are shown on the left. THESEUS-PP

superpositions are shown on the right. Note how the former fail to adequately distinguish

regions with high from regions with low variance, resulting in poor matching of conserved

regions.

V. Conclusion

Probabilistic programming is a powerful, emerging paradigm for probabilistic protein

structure analysis, prediction and design. Here, we present a Bayesian model for protein

structure superposition implemented in the deep probabilistic programming language Pyro

and building on the previously reported THESEUS maximum likelihood model. MAP

estimates of its parameters are readily obtained using Pyro’s automated inference engine.

Recently, end-to-end protein protein structure prediction using deep learning methods has

become possible [14]. We envision that Bayesian protein structure prediction will soon be

possible using a deep probabilistic programming approach, which will lead to protein

structure predictions with associated statistical uncertainties. In order to achieve this goal,

suitable error models and likelihood functions need to be developed and incorporated in

these models. The THESEUS-PP model can potentially serve as such an error model, by

interpreting M as the predicted structure and a single rotated and translated X as the

observed protein structure. During training of the probabilistic model, regions in M that are

wrongly predicted can be assigned high variance, while correctly predicted regions can be

assigned low variance. Thus, it can be expected that an error model based on THESEUS-PP

will make estimation of these models easier, as the error function can more readily

distinguish between partly correct and entirely wrong predictions, which is notoriously

difficult for RMSD-based methods [15].

Contributions and Acknowledgements

Implemented algorithm in Pyro: LSM. Contributed code: ASA, AM. Wrote article: LSM, TH, ASA. Prototyped
algorithm in pyMC3: TH, WB, BNR. Performed experiments: LSM. Designed experiments: TH, DT. LSM and
ASA acknowledge funding from the Independent Research Fund Denmark (DFF-FTP) and Innovationsfonden,
respectively.

References

[1]. Kabsch W, “A discussion of the solution for the best rotation to relate two sets of vectors,” Acta
Cryst. A, vol. 34, pp. 827–828, 1978.

[2]. Horn B, “Closed-form solution of absolute orientation using unit quaternions,” J. Opt. Soc. Am. A,
vol. 4, pp. 629–642, 1987.

Moreta et al. Page 7

Proc IEEE Symp Comput Intell Bioinforma Comput Biol. Author manuscript; available in PMC 2021 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



[3]. Coutsias E, Seok C, and Dill K, “Using quaternions to calculate rmsd,” J. Comp. Chem, vol. 25,
pp. 1849–1857, 2004. [PubMed: 15376254]

[4]. Theobald DL and Wuttke DS, “Empirical Bayes hierarchical models for regularizing maximum
likelihood estimation in the matrix Gaussian Procrustes problem,” PNAS, vol. 103, pp. 18521–
18527, 2006. [PubMed: 17130458]

[5]. Theobald DL and Steindel PA, “Optimal simultaneous superpositioning of multiple structures with
missing data,” Bioinformatics, vol. 28, pp. 1972–1979, 2012. [PubMed: 22543369]

[6]. Bingham E, Chen JP, Jankowiak M, Obermeyer F, Pradhan N, Karaletsos T, Singh R, Szerlip P,
Horsfall P, and Goodman ND, “Pyro: Deep Universal Probabilistic Programming,” Journal of
Machine Learning Research, 2018.

[7]. Perez-Sala X, Igual L, Escalera S, and Angulo C, “Uniform sampling of rotations for discrete and
continuous learning of 2D shape models,” in Robotic Vision: Technologies for Machine Learning
and Vision Applications. IGI Global, 2013, pp. 23–42.

[8]. Duchi J, Hazan E, and Singer Y, “Adaptive subgradient methods for online learning and stochastic
optimization,” Journal of Machine Learning Research, vol. 12, no. 7, pp. 2121–2159, 2011.

[9]. Graves A, “Generating sequences with recurrent neural networks,” arXiv preprint arXiv:
1308.0850, 2013.

[10]. Paszke A, Gross S, Chintala S, Chanan G, Yang E, DeVito Z, Lin Z, Desmaison A, Antiga L, and
Lerer A, “Automatic differentiation in pytorch,” in NIPS-W, 2017.

[11]. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, Weissig H, Shindyalov IN, and Bourne
PE, “The protein data bank,” Nucleic acids research, vol. 28, no. 1, pp. 235–242, 2000. [PubMed:
10592235]

[12]. Cock PJ, Antao T, Chang JT, Chapman BA, Cox CJ, Dalke A, Friedberg I, Hamelryck T, Kauff F,
Wilczynski B et al. , “Biopython: freely available python tools for computational molecular
biology and bioinformatics,” Bioinformatics, vol. 25, no. 11, pp. 1422–1423, 2009. [PubMed:
19304878]

[13]. Schrödinger LLC, “The PyMOL molecular graphics system, version 1.8,” 11 2015.

[14]. AlQuraishi M, “End-to-end differentiable learning of protein structure,” Available at SSRN
3239970, 2018.

[15]. Kufareva I and Abagyan R, “Methods of protein structure comparison,” in Homology Modeling.
Springer, 2011, pp. 231–257.

Moreta et al. Page 8

Proc IEEE Symp Comput Intell Bioinforma Comput Biol. Author manuscript; available in PMC 2021 October 14.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1:
The THESEUS-PP model as a Bayesian graphical model. M is the latent, mean structure,

which is an N-by-3 coordinate matrix, where N is the number of atoms. t1 and t2 are the

translations. q is a unit quaternion calculated from three random variables u0:2 sampled from

the unit interval and R is the corresponding rotation matrix. U is the among-row variance

matrix of a matrix-normal distribution; X1 and X2 are N-by-3 coordinate matrices

representing the proteins to be superimposed. Circles denote random variables; squares

denote deterministic transformations of random variables. Shaded circles denote observed

variables. Capital and small letters represent matrices and vectors respectively.
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Fig. 2:
Protein pairs obtained with conventional RMSD superimposition (left) and with THESEUS-

PP (right).The protein in green is rotated (X2). The images are generated with PyMOL [13].
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Fig. 3:
Graphs showing the pairwise distances (in Å) between the Cα coordinates of the structure

pairs. The blue and orange lines represent RMSD and THESEUS-PP superposition,

respectively.
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TABLE I:

Results of applying THESEUS-PP to the test structures. First column: PDB identifier. Second column: the

number of Cα atoms used in the superposition. Third column: the model identifiers. Fourth column: mean

convergence time and standard deviation. Last column: Number of iterations.

PBD ID Length (Amino Acids) Protein Models Average Computational Time (seconds) Iterations

1ADZ 71 0 and 1 3.3 ± 0.95 663 ±121

1AHL 49 0 and 2 3.75± 0.42 626 ±59

1AK7 174 0 and 1 4.2± 0.35 626 ±109

2KHI 95 0 and 1 8.95±9.59 952±1121

2LKL 81 0 and 8 8.05± 7.13 1403±1354
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