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Natural populations of pathogens and their hosts are engaged in an arms race in which the pathogens diversify to escape host
immunity while the hosts evolve novel immunity. This co-evolutionary process poses a fundamental challenge to the development
of broadly effective vaccines and diagnostics against a diversifying pathogen. Based on surveys of natural allele frequencies and
experimental immunization of mice, we show high antigenic specificities of natural variants of the outer surface protein C (OspC), a
dominant antigen of a Lyme Disease-causing bacterium (Borrelia burgdorferi). To overcome the challenge of OspC antigenic
diversity to clinical development of preventive measures, we implemented a number of evolution-informed strategies to broaden
OspC antigenic reactivity. In particular, the centroid algorithm—a genetic algorithm to generate sequences that minimize amino-
acid differences with natural variants—generated synthetic OspC analogs with the greatest promise as diagnostic and vaccine
candidates against diverse Lyme pathogen strains co-existing in the Northeast United States. Mechanistically, we propose a model
of maximum antigen diversification (MAD) mediated by amino-acid variations distributed across the hypervariable regions on the
OspC molecule. Under the MAD hypothesis, evolutionary centroids display broad cross-reactivity by occupying the central void in
the antigenic space excavated by diversifying natural variants. In contrast to vaccine designs based on concatenated epitopes, the
evolutionary algorithms generate analogs of natural antigens and are automated. The novel centroid algorithm and the
evolutionary antigen designs based on consensus and ancestral sequences have broad implications for combating diversifying
pathogens driven by pathogen–host co-evolution.
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INTRODUCTION
Antigen diversification driven by host–pathogen co-evolution
Negative-frequency-dependent selection (NFDS) is an evolutionary
mechanism that favors rare phenotypes over common ones,
promoting biological novelty [1–3]. Driven by NFDS, antigenic
variation is a molecular strategy widely shared among viral, bacterial,
and eukaryotic pathogens to evade host immune defense [4–6].
Consequently, the power of NFDS in driving pathogen diversity
becomes a fundamental challenge for developing broadly effective
diagnostics and vaccines against fast-evolving microbial pathogens
[7–9]. Although bacterial pathogens do not evolve as rapidly as
viral pathogens, development of broadly effective diagnostics and
vaccines is nonetheless hampered by a large number of cell-surface
antigens as well as by the vast allelic diversity segregating at
individual antigen loci in natural bacterial populations [5].
Here we hypothesize that, besides the structural and functional

constraints to the relentless and seemingly random sequence
diversification of microbial surface antigens, evolutionary rules
govern antigen diversification as well. Specifically, we propose and
test the hypothesis of maximum antigenic diversification (MAD)

that co-existing antigen variants in a microbial population are
obligatorily distinct from one other in antigenicity. The MAD
hypothesis is a corollary of the strain theory of pathogen–host co-
evolution, which posits that host immunity drives pathogen
populations into distinct genotypes (“strains”) separated from one
another by large genetic distances [3, 6]. Under the strain model,
co-existing pathogen strains occupy high-fitness peaks on an
antigenic landscape shaped by host immunity where any off-peak
antigen variants (e.g., recombinants) are at a selective disadvan-
tage and would be eliminated by the host immunity [3]. This
evolutionary rule may be exploited to tip the balance of the
host–pathogen co-evolution for the benefit of the host. For
example, the precarious coexistence of pathogen strains could be
destabilized and the pathogen population be eliminated if the
host immunological landscape is remolded by, e.g., an introduc-
tion of novel antigen variants as vaccines.

Antigenic variations in Lyme disease pathogens
For over three decades, Lyme disease has been the most prevalent
vector-borne disease in the United States and Europe [10]. It is
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caused by spirochetes of the Borrelia burgdorferi sensu lato (Bbsl
hereafter) species complex, also known as a new bacterial genus
Borreliella [11, 12]. A single species, B. burgdorferi sensu stricto (B.
burgdorferi hereafter), transmitted by Ixodes scapularis ticks in the
Northeast and Midwest and I. pacificus in the West, causes the
majority of Lyme disease cases in the US. Genes encoding cell-
surface lipoproteins are overrepresented in the ~1.5 Mbp genome
of B. burgdorferi, totaling 4.9% of the chromosomal genes and
14.5% of the plasmid-encoded genes, in contrast to ~2.0%
lipoprotein-encoding genes in other bacterial pathogens such
as Helicobacter pylori and Treponema pallidum [13]. Genome
comparisons further revealed that lipoprotein-encoding genes
are the most variable loci within the genome, consistent with
their roles in evading vector and host immunity [14]. Specifically,
B. burgdorferi modulates cell-surface lipoprotein composition
when migrating between the tick vector and the mammalian
host. For example, the expression of the outer surface protein
A (OspA) is downregulated within a mammalian host while the
expression of the outer surface protein C (OspC) is upregulated
during host invasion and, subsequently, the spirochete cells
generate and express genetic variants at the vls (variable
membrane protein-like sequences) locus to enable persistent
infection of the host [15–17].
Driven by diverse forms of natural selection and with distinct

cellular functions, Bbsl surface antigens differ in the rate and
pattern of sequence evolution [14, 18–20]. For example, DNA
sequences encoding OspA vary little among strains of the same
Bbsl species while differing greatly among the Bbsl species [21].
Genes encoding OspC display high sequence variability within as
well as between the Bbsl species as a result of diversifying
selection [22–25]. The silent cassettes at the vls locus vary greatly
between-species, within-species, as well as during the course of
infection as a result of host adaptive immunity [17, 26–30].
Among the large repertoire of genes encoding cell-surface

lipoproteins in Bbsl, ospC plays an outsized role in evading host
immunity and establishing infection. First, ospC is required for the
initial invasion into the host, suggesting its role in defense against
host innate rather than adaptive immunity [31, 32]. Host cellular
and molecular targets of OspC remain to be identified, although it
has been shown that ospC expression was associated with
the anti-phagocytosis and plasminogen-binding activities of the
spirochete [33, 34].
Second, OspC is the immunodominant and serotype-determinant

antigen of Bbsl strains [24, 35]. Experimental immunization of mice
with recombinant OspC variants elicited strain-specific protective
immunity against strains expressing homologous but not hetero-
logous OspC variants [36–39]. Further, experimental immunization of
mice using whole sera from infected mice showed that polyclonal
antibodies binding OspC were the main components of strain-
specific immunity [39]. Field-based studies further supported NFDS
acting on the ospC locus being the main evolutionary mechanism
maintaining genomic diversity in natural B. burgdorferi populations
[22, 40–42].
Third, sequence variations at ospC are in nearly complete

linkage disequilibrium with genomic lineages in North America,
suggesting that the within-population B. burgdorferi strain
diversification is driven by ospC variability [40, 43]. Simulations
based on principles of population genetics showed that the nearly
one-to-one correspondence between the major ospC alleles and
the co-existing B. burgdorferi lineages was consistent with a history
of within-population genome diversification driven by NFDS
targeting the ospC locus [40]. Additional evidence supporting
the ospC-driven diversification of B. burgdorferi strains includes the
high recombination rate at ospC and the uniform distributions of
ospC alleles [23, 42]. While it remains a possibility that sequence
variation at ospC is associated with host diversity in this generalist
parasite [25], the “multiple-niche” hypothesis appears to
be inconsistent with results of field studies of B. burgdorferi

populations in North America and B. afzelii populations in Europe
as well as with results of experimental investigations [44, 45].

Quest for broadly cross-reactive OspC molecules
Immuno-dominance of OspC makes it a valuable target for anti-
Lyme diagnostics and vaccines, yet its clinical potentials are
limited by its sequence hyper-variability. Thus far, strategies to
overcome OspC diversity included identification of conserved
epitopes or variable epitopes distinct among natural variants
[46–48]. However, conserved sequences and domains on the
OspC molecule were ineffective targets of vaccination [46, 49].
In an high-throughput investigation, key OspC epitopes were
mapped to the hypervariable C-terminal region with the use of
protein arrays and sera from mice and humans [47]. A minimum
set of OspC variants had been identified as candidates of
broadly effective diagnostics on the basis of quantifying the
antigenic breadth of OspC variants with the use of sera from
immunized mice as well as sera from naturally infected hosts
[48]. A concatenation of eight OspC epitopes associated with
distinct natural variants were the base of a broadly immuno-
genic vaccine for canine use [46, 50].
The MAD hypothesis suggests an alternative and novel strategy

to overcome the limitation of OspC sequence diversity to the
development of OspC-based diagnostics and vaccines. First, on
the basis of frequency distributions of antigen variants in nature
and experimental immunization of mice, here we tested MAD
among the 16 OspC variants co-existing in natural populations of
the Lyme disease pathogens in the Northeast United States
[40, 51]. Second, we used evolutionary algorithms to design
analogs of natural OspC molecules with minimized sequence
differences to the 16 natural variants. We cloned and purified
these synthetic OspC molecules and tested their antigenic
breadths using sera from artificially and naturally infected hosts.
Third, we explored molecular mechanisms underlying the broad
antigenicity of evolutionary antigens with a mathematic model
and computer simulations. One of our evolution-based designs—
the consensus algorithm—was similar to the COBRA approach
used to design broadly reactive vaccines against the influenza
virus [8]. The root algorithm—another evolution-informed algo-
rithm implemented in the present study—has been used to
design vaccine candidates against diverse strains of the human
immunodeficiency virus type I (HIV-1) [52]. Critically, these
evolution-based strategies are automated and able to generate
synthetic analogs that assume the structure, function, and
epitope configurations similar to those of the native antigens
while displaying broader antigenicity.

MATERIALS AND METHODS
Co-occurrences of OspC variants in field-collected Ixodes ticks
and a test of OspC specificity
We tested the immunological distinction of B. burgdorferi strains based on
their co-occurrences in individual Ixodes scapularis ticks. Deep high-
throughput sequencing of individual nymphal ticks, which had fed a single
blood meal as larvae, revealed that multiple B. burgdorferi strains within a
single tick were caused mainly by the mixed infection of the host rather
than by a history of feeding on multiple hosts [23, 53]. As such, we
hypothesized that immunologically distinct strains tended to co-infect a
single tick while immunologically similar strains tended to be found in
different ticks. We tested the hypothesis with a previously published data
set that recorded the presence and absence of 20 Lyme pathogen strains
within n= 119 I. scapularis ticks collected from New York State during 2015
and 2016 [54] (Supplementary Information Data S1). While the data set
consisted of mostly adult ticks with only 25 nymphal ticks, there were no
significant differences in the level of B. burgdorferi strain diversity carried
by single ticks among the nymphal, adult male, and adult female ticks [23].
In other words, the individual infected nymphal ticks carried B. burgdorferi
strains as diverse as the adult ticks despite an additional blood meal the
adult ticks have taken. In a separate study using high-throughput
sequencing of infected nymphal ticks from the same region, the authors
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have similarly concluded that reservoir hosts were commonly infected by
diverse B. burgdorferi strains [53]. Here, we quantified the over- or under-
abundance of a pair of strains (i and j) as the fold change of the observed
over the expected counts: FC ijð Þ ¼ log2fObs ijð Þ

exp ijð Þg. Statistical significance of
the relative abundance was obtained from a null distribution generated
by permuting the occurrences of a pair of strains among infected ticks
1000 times while keeping the total occurrence constant. Significantly over-
or underrepresented pairs of B. burgdorferi strains co-infecting single
I. scapularis ticks would suggest an absence or presence, respectively, of
immune cross-protection for the strain pair.
Approximately 20 OspC variants commonly coexist in B. burgdorferi

populations in the Northeast US [22, 23, 48]. We aligned the protein
sequences of 16 common natural OspC variants (named as “A” through
“N”, “T”, and “U”) with the programmuscle [55] (Supplementary Information
Text S1). Pairwise sequence differences among the OspC variants were
calculated with the alignment utility bioaln from the BpWrapper software
suite, which was based on BioPerl [56, 57].

Evolutionary algorithms for designing broadly reactive
synthetic OspC
Protein sequences analogous to natural OspC variants were optimized for
broad reactivity using three evolutionary algorithms (Fig. 1). By generating
OspC analogs close to the root of a molecular phylogeny with natural OspC
variants, these evolutionary algorithms aimed to reduce the sequence
difference between an evolutionary analog with the natural variants to be
approximately half of the difference among the natural variants
themselves. The initial input for all three algorithms was the aligned
amino-acid sequences of 16 OspC variants (Supplementary Information
Text S1). First, we inferred the hypothetical ancestral sequence at the mid-
point root of the phylogeny of the natural OspC variants with RAxML [58]
(the “Root Algorithm”). Second, we obtained a consensus sequence
consisting of 20% majority residues at aligned sequence positions of the
natural OspC variants with the consensus method implemented in the Bio::
SimpleAlign module of the BioPerl library [57] (the “Consensus Algorithm”).
Third, we used a genetic algorithm to generate sequences with minimal

distances to natural OspC variants (the “Centroid Algorithm”). Briefly, we
extracted amino acids at variable positions from 16 aligned natural OspC
sequences. An initial seed population of random antigen sequences (n=
10) were generated through sampling the unique amino acids present at
each variable site with uniform probabilities. For each randomly generated
sequence i, we calculated its differences (dij, j= “A” through “U”) to the 16
natural variants. We defined the fitness of this sequence as the maximum
value among its differences to all 16 natural sequences: wi=max(dij). This

fitness measured its overall sequence similarity to the natural variants—the
lower the wi the higher its overall similarity to the natural variants. The top
ten most similar antigen sequences (“elites”) in each generation were
retained and others were discarded. Each elite sequence was then allowed
to “reproduce” 10 times with mutations at randomly selected ten variable
sites, resulting in ten mutated “gametes”. The above process was repeated
(e.g., for 5000 generations) to progressively lower the wi values, after which
the final output included ten elite centroids that were the most similar to
all 16 natural OspC variants. The centroid algorithm was implemented with
the BioPerl library in Perl [57] and the DEAP package in Python [59]. The
top four optimized centroid sequences were cloned, overexpressed, and
purified for immunological assays of antigenic breadth.

Gene synthesis, protein overexpression, and protein
purification
DNA sequences encoding the natural and synthetic OspC variants were
codon-optimized, synthesized, and cloned into the pET24 plasmid vector,
which was then used to transform the Escherichia coli BL21 cells. All DNA
work was performed by a commercial service (GeneImmune Biotechnol-
ogy Corp., Rockville, MD, USA). We designed the OspC constructs by
excluding the first 18 residues encompassing the signal peptide and by
adding a 10 × Histidine-tag on the N-terminus. These modifications were
necessary for overexpression of OspC proteins in E.coli and to facilitate
OspC purification [60].
For each E. coli strain containing a cloned ospC gene, a single colony was

selected to inoculate 4ml Luria-Bertani (LB) broth (Thermo Fisher Scientific,
Waltham, MA, USA) containing vector-specific selective antibiotics (25 μg/
ml for Kanamycin or 50 μg/ml for Ampicillin). The seeded culture was
incubated overnight at 37 °C with vigorous shaking (250 rpm). A portion of
the overnight culture was transferred into 50ml fresh pre-warmed LB
broth containing 0.4% glucose and the selective antibiotics. The culture
was incubated at 37 °C with vigorous shaking until reaching exponential
growth indicated by an OD600 of ~0.8 as measured by the NanoDrop
Spectrophotometer (Thermo Fisher Scientific, Waltham, MA, USA). Expres-
sion of the cloned ospC was induced by adding isopropyl β-d-1-
thiogalactopyranoside (IPTG) to a final concentration of 0.25–0.5 mM and
by incubation overnight at 25 °C. Cells were collected by refrigerated
centrifugation at 4 °C and 7200 rpm for 15min, resuspended in a lysis
buffer containing 0.2 mg/ml lysozyme, 20mM Tris-HCl (pH 8.0), 250mM
NaCl, and 1mM dithiothreitol (DTT). After incubation for 1 h at 4 °C, cells
were further lysed by sonication until the solution become translucent. The
lysate was centrifuged in refrigeration at 12,000 rpm for 20min and the
supernatant was withdrawn.

Fig. 1 Evolutionary algorithms for the design of broadly reactive OspC antigens. The centroid algorithm used a genetic algorithm to search
for antigen sequences with minimized differences to the natural OspC variants (“centroids”). The root algorithm inferred an antigen sequence
representing the mid-point root of a phylogenetic tree of the natural OspC variants (“root”). The consensus algorithm generated an antigen
sequence consisting of majority amino-acid residues at individual positions of an alignment of the natural OspC sequences (“consense”).
These evolutionary algorithms produced OspC analogs with approximately half the sequence differences to the natural variants than the
distances among the natural variants themselves.
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The recombinant proteins were purified using nickel sepharose beads
(Ni-NTA, Thermo Fisher Scientific, Waltham, MA, USA). The lysate super-
natant from the 50ml culture was mixed with 300 μl Ni-NTA beads and
incubated overnight at 4 °C in the lysis buffer supplemented with 5mM
imidazole. The lysate-bead mixture was then loaded into a chromato-
graphy column and washed with 12 times the bed volume of the lysis
buffer containing 25mM imidazole. The purified protein was eluted with 6
times the bed volume of the lysis buffer containing 500mM imidazole. The
elution was dialyzed to remove imidazole in phosphate-buffered saline
(PBS, pH 7.4) containing 1mM DTT and 20% glycerol.
The amount and purity of recombinant proteins were examined using the

sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)
containing 12% gel following the standard protocol. The PageRuler Prestained
10–180 kDa Protein Ladder (Thermo Fisher Scientific, Waltham, MA, USA) was
used to mark molecular weights. The gel was stained in 0.08% Coomassie
Blue and de-stained in 45% methanol and 10% acetic acid. Concentration of
the final purified protein solution was quantified using the Pierce Bradford
Protein Assay Kit (Thermo Fisher Scientific, Waltham, MA, USA).

Sera from naturally infected hosts and immunized mice
The majority of human serum samples were provided by the Centers for
Disease Control and Prevention (CDC) (Table 1). The human sera originated
from patients diagnosed with early to late Lyme disease or from healthy
individuals in endemic and non-endemic regions in the USA [61]. The CDC
sera panel was previously screened using the standard two-tiered testing
(STTT) for the presence of antibodies against B. burgdorferi, including IgM,
IgG, or both antibodies against OspC (the 23 kD band) [62]. The CDC sera
panel was custom compiled for the present study. Ten serum samples from
Lyme disease patients were originally collected by the Stony Brook
University Health Science Center, NY, USA. Ten serum samples were
obtained from the natural reservoir of B. burgdorferi, the white-footed
mouse (Peromyscus leucopus) from Milbrook, NY, USA. The latter human
and mouse sera were screened for exposure to B. burgdorferi using the C6
ELISA (Immunetics, Boston, MA, USA).
Sixteen recombinant OspC were previously cloned from B. burgdorferi

strains into the pET9c plasmid [48]. The proteins were expressed in E. coli
BL21 (DE3) pLysS and purified under native conditions by ion exchange
chromatography using Q-Sepharose Fast Flow (GE Healthcare, Sweden) as
described previously [63]. C3H/HeJ mice (Mus musculus) and white-footed
mice (P. leucopus) were immunized with 10–20 μg of each of the 16
individual purified natural recombinant OspC proteins. Briefly, mice
received a dose of recombinant protein on Day 1 and Day 14, and on
Day 28 they were euthanized and blood collected by heart puncture.
Animal experimentation followed the protocols approved by the Animal
Care and Use Committee of University of Tennessee Health Science Center.

Immunological assays
Immunoblot assays of OspC variant-specific sera were performed using a
MiniSlot/MiniBlotter 45 system (Immunetics, Boston, MA, USA). Briefly, a
PVDF membrane (Millipore, Billeirca, MS, USA) was mounted on the
MiniSlot and 25 μg of each purified protein was loaded individually into its
parallel channels. The proteins were immobilized onto the PVDF
membrane after the excess solution was removed by vacuum aspiration,
resulting in a deposit of horizontal parallel stripes of antigens. The
membrane was released from the MiniSlot and blocked in 10% skim milk
(Difco, Sparks, MD, USA) for 2 h at room temperature. After blocking the
membrane was rotated by 90 degrees and placed in the MiniBlotter 45.
Diluted mouse serum (1:100 to 1:1000 in 3% of milk in TBS buffer with 0.5%
Tween 20, 150 μl) was deposited in the individual vertical lanes of the
Miniblotter and was incubated for 1 h at room temperature. The
membrane was washed three times with TBS containing 0.5% Tween 20
and was incubated with goat anti-mouse IgG conjugated with alkaline
phosphatase (1:2000) (Kirkegaard & Perry Laboratories [KPL], Gaithersburg,
MD, USA) for 1 h at room temperature. The BCIP/NBT Phosphatase
Substrate (KPL) was used to visualize the signal. Serum of non-immunized
mice and the bovine serum albumin were used as the negative serum
control and the non-OspC antigen control, respectively. Binding intensity
values were digitalized with ImageJ [64].
Sera from naturally infected hosts were tested for reactivity with the

purified recombinant OspC proteins (rOspCs) through enzyme-linked
immunosorbent assay (ELISA). Specifically, a 96-well MICROLON 600 plate
(USA Scientific, Inc., Ocala, FL, USA) was loaded in each well with 100 μl PBS
containing 10 μg/ml of a rOspC and incubated overnight at 4 °C. The
coated plate was washed three times using PBS containing 0.1% Tween20

(PBS-T buffer) and blocked with 200 μl PBS-T buffer containing 5% milk for
1 h at 37 °C. After washing three times with the PBS-T buffer, 100 μl serum
sample diluted in PBS by a factor between 1:100 to 1:1000 was added to
each well and incubated for 1 h at 37 °C. After washing three times with
the PBS-T buffer, 100 μl diluted horseradish peroxidase (HRP)-conjugated
secondary antibodies was added to each well. We used the Goat Anti-
Human IgG/IgM (H+ L) (Abcam, Cambridge, UK) diluted by a factor of
1:50,000 for assays of human sera and the Goat Anti-Peromyscus leucopus
IgG (H+ L) (SeraCare Life Sciences, MA, USA) diluted by a factor of 1:1000
for assays of P. leucopus sera. After incubation for 1 h at 37 °C and washing
with PBS-T buffer, 100 μl TMB ELISA Substrate Solution (Invitrogen
eBioscience) was added. The enzyme reaction proceeded for 15–30min
at room temperature and was terminated with 1 M sulfuric acid. Binding
intensities were measured at the 450 nm wavelength using a SpectraMax
i3 microplate reader (Molecular Devices, LLC, CA, USA).

Statistical analysis of OspC cross-reactivity
We tested antigenic specificity of natural OspC variants by performing a re-
analysis of a data set generated from a previously published study [48]. The
data set consisted of replicated ELISA readings of the reactivity between
the 16 recombinant OspC variants with the antisera (n= 15) of C3H/HeJ
mice (Mus musculus) artificially immunized with the purified OspC variants
(Supplementary Information Data S2). Sera from uninfected mice were
used as the negative control.
To quantify the antigenicity of OspC variants with variant-specific mouse

sera, we first transformed the raw OD450 readings and the digitalized
binding intensities into normalized z-scores: zrs ¼ xrs �Mean xsð Þ

SD xsð Þ , where xrs is
the binding value (OD450 reading or binding intensity) of the recombinant
OspC r with the serum s while Mean (xs) and SD(xs) represent, respectively,
the mean and the standard deviation of OD450 readings of all recombinant
OspC variants with respect to the serum s. The rescaling was necessary to
account for the systematic differences among the variant-specific sera in
non-specific, background bindings due to e.g., the varying amount of total
antibodies in a particular mouse serum. For example, the OD450 readings of
variants—regardless homologous or heterologous antigens—with the
variant K-specific serum were consistently higher than other sera (OD450 >
1.0) in the original study [48] (Fig. 1 therein). Normalization with the
z-scores made it possible to compare the reactivity of an OspC variant
across the serum samples by reducing serum-specific background noise.
Furthermore, a score of z <−2.0 or z > 2.0 indicated a statistically
significant (with p = 0.05) deviation from the mean reactivity (z= 0) of
an OspC variant with the variant-specific sera. Normalization of ELISA
readings with z-scores had been used to reduce serum-specific back-
ground noises in a clinical diagnostic test [65].
To quantify the antigenicity of OspC variants with the naturally

infected human and mouse sera, we first displayed the raw OD450

readings with bar graphs. To render the binding values comparable
among the serum samples, we then transformed the OD450 values with
respect to sera into z-scores as described above. The median value for
a variant was a measure of its antigenic breadth, with a relatively
high median indicating a relatively broad antigenicity. In addition, the
transformed binding scores were visualized with heatmaps, which
further identified hierarchical clusters of OspC variants and sera
according to the similarities in binding levels. The R package pheatmap
was used to generate the heatmaps.
To summarize the antigenic breadth of an OspC variant across the serum

samples, we designed a novel measure of total antigen reactivity. The
antigenic reaction characteristic (ARC) of an OspC variant was defined as a
curve of cumulative binding values (with scaled OD450 readings) over the
cumulative number of serum samples. A highly specific antigen variant
would show as a low-lying ARC curve because of the consistently low (z <
0, below-average) binding values, with the exception of the high (z > 0,
above-average) binding values with the homologous anti-sera. A non-
reactive antigen (e.g., a negative control) would generate all negative
scores and show as a low-lying, monotonically decreasing curve. A broadly
reactive antigen variant, in contrast, would show as an elevated ARC curve
indicating consistently high (z > 0) bindings with sera. As such, the area
under an ARC curve (AUC) corresponds to a higher cross-reactivity (or
lower specificity) of an OspC variant. The ARC curve is inspired by the
receiver operating characteristic curve, which quantifies the specificity of a
classification scheme or a diagnostic test by plotting the cumulative
number of true positives against the cumulative number of false positives
[66]. Statistical significance of an ARC curve (or an AUC) could be evaluated
by comparing it with a distribution of ARC curves (or AUC values)
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Table 1. Serum samples.

Label Host Source Description STTT Interpretationb C6 ELISAc

EIA IgM 23 kD band IgG 23
kD band

S01 Human CDC EMa convalescence + + + NAd

S03 Human CDC EM convalescent + + + NA

S04 Human CDC Non-endemic control − + − NA

S05 Human CDC Non-endemic control − − − NA

S10 Human CDC Neurological Lyme + + + NA

S11 Human CDC EM convalescent + + + NA

S14 Human CDC Fibromyalgia (control) − − − NA

S16 Human CDC Severe periodontitis (control) − − − NA

S18 Human CDC EM convalescent + + + NA

S21 Human CDC Endemic control − + − NA

S22 Human CDC Neurological Lyme + + + NA

S30 Human CDC EM acute − + − NA

T01 Human CDC EM + + + NA

T03 Human CDC Lyme arthritis + + + NA

T04 Human CDC EM Eque − − NA

T05 Human CDC Lyme arthritis + + + NA

T06 Human CDC EM + + + NA

T07 Human CDC EM Equ + − NA

T08 Human CDC EM + + + NA

T09 Human CDC EM − − + NA

T10 Human CDC EM − − − NA

T11 Human CDC EM + + + NA

T12 Human CDC Lyme arthritis + − + NA

T13 Human CDC Neurological Lyme + + + NA

T14 Human CDC EM − + + NA

T15 Human CDC Lyme arthritis + + + NA

T16 Human CDC EM + + + NA

T17 Human CDC EM + + − NA

T18 Human CDC Neurological Lyme + + + NA

T19 Human CDC Cardiac Lyme + + + NA

T20 Human CDC EM + + + NA

T21 Human CDC Neurological Lyme − + + NA

T22 Human CDC EM + + − NA

T23 Human CDC EM − − + NA

T24 Human CDC EM + + + NA

T25 Human CDC EM + + + NA

T26 Human CDC EM − + − NA

T27 Human CDC EM + − + NA

T29 Human CDC EM + + + NA

T30 Human CDC Neurological Lyme + + + NA

T31 Human CDC EM − − − NA

T32 Human CDC Cardiac Lyme + + + NA

H01 Human Stony Brook Late Lyme NA NA NA 0.924

H04 Human Stony Brook Late Lyme NA NA NA 1.947

H07 Human Stony Brook Late Lyme NA NA NA 0.555

H08 Human Stony Brook Late Lyme NA NA NA 0.260

H09 Human Stony Brook Late Lyme NA NA NA 0.013

H10 Human Stony Brook Late Lyme NA NA NA 0.491

P01 P. leucopus Millbrook, NY Field reservoir NA NA NA 0.592
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generated with random permutations of the scaled OD450 readings among
the same set of serum samples.

A binary model and computer simulations of maximum
antigen separation
To explore immunological and molecular mechanisms underlying the
broad antigenicity of evolutionary centroids, we construct a mathematical
model and computationally simulated maximum antigen diversification
(MAD) and evolutionary centroids. Following the multiple-epitope exten-
sion of the Gupta et al. model [3], we represented antigen variants in a
pathogen population as binary strings.
In generating binary strings, let p be the probability of the binary state 1

(and 1− p the probability of the binary state 0). Without loss of generality, we
may assume that p ≤ 0.5 since, otherwise, switching the roles of 0 s and 1 s
preserves all distances (we use the Hamming distance) and changes p to 1−
p. Following the convention of using zeroes to represent ancestral states in
evolutionary analysis, we designate the zero string (the string with all bits set
to 0) as a “centroid”. Mathematically, this choice of the centroid is general
because flipping all bits in a given position preserves all distances. Two
random binary strings of length n are expected to differ in 2p (1− p)n bits.
Similarly, a random binary string of length n is expected to differ in pn bits
from the centroid. While this behavior is only in expectation, when n is large
we can achieve it with high probability. Define distance as the Hamming
distance normalized by the length n. Given a set of randomly generated
binary strings, let D be the minimum distance among all strings, and d the
maximum distance of any string to the centroid. If the set of strings is
reasonably small and the length of strings is long, standard probability theory
tells us that, with high probability, D will be close to 2p (1− p) and d will be
close to p, resulting in D= 2d (1− d). We conjecture that this curve imposes a
theoretical bound when given a large enough set of strings. To create a
population of maximally separated (a large D) strings with minimal distances
(a small d) to the centroid, one would seek to maximize the ratio D/d for a
given value of p. Here, d, which approaches the frequency of derived states p,
is a measure of sequence divergence from the centroid. Thus, the maximized
D/d represents the maximal possible sequence divergence among the
evolved strings at a given level of evolutionary divergence. Without
constraining on d (as in a separate algorithm shown below), the strings
would diverge without regard to any biologically realistic constraints
including the time since the evolutionary origin and functional and structural
conservation. We used a genetic algorithm to validate the theoretical
boundary with n= 100 bits and N= 10 strings. Distances optimized with the
genetic algorithm (GA package in R [67]) were compared with empirical
results based on the natural OspC variants as well as with results of randomly
generated binary strings without D/d maximization.
In a separate experiment, we used a genetic algorithm to search for a

sample of maximally separated antigen variants to represent a MAD

population, without consideration of a centroid. The searching was
performed using the GA package in R [67] to maximize D (as defined
above)fit ¼ min di;j

� �
. We then searched for centroid variants, using

a separate genetic algorithm to minimize d=max (di,j= 1:10)
fit ¼ max di;j¼ 1:10

� �
, where i is an artificial centroid variant and j is

one of the ten simulated antigen variants. A centroid allele is chosen to
minimize d. Evolutionary analogs were validated with a neighbor-
joining tree based on pairwise Hamming distances. An R markdown of
the simulation protocol is included as Supplementary Information
Text S2.
We note the similarity between the simulated maximally diversified

antigens and well-separated binary codewords under the Hamming
distance. We further note that the problem of finding centroids given
a set of strings is known as the Closest String or the Hamming
Centroid problem in computer science. While coding theory provides
various techniques for generating well-separated codewords, and many
algorithms for finding centroids exist [68, 69], we approached both
problems in one stochastic framework based on genetic algorithms as
described above.

RESULTS
Lack of immune cross-protection among B. burgdorferi strains
in nature
In a previous study, B. burgdorferi strain diversity was quantified
with high-throughput sequencing of the ospC locus at the level
of single I. scapularis ticks [54]. Consistent with earlier results
based on DNA cloning and DNA-DNA hybridization, the results
reaffirmed a largely uniform distribution of a diverse set of B.
burgdorferi strains identifiable by ~16 major-group ospC alleles
in the highly endemic regions of Lyme disease in the Northeast
US [22, 42]. Using the same data set (Supplementary Information
Data S1), we tested if frequencies of pairs of B. burgdorferi strains
co-infecting a single tick were higher, lower, or equivalent
relative to the expectation of random allelic association. With a
sample of n= 119 infected I. scapularis ticks, we found that the
majority of strain pairs were overrepresented relative to random
expectations and no pair was significantly underrepresented in
infected ticks (Fig. 2). In particular, strain pairs containing the
OspC variants F and J were the most overrepresented. To
account for the possible contribution of the multiple blood
meals of the adult ticks to the observed overrepresentation of
mixed infections in single ticks, we repeated the permutation
test using only the 25 nymphal ticks. All strain pairs were

Table 1 continued

Label Host Source Description STTT Interpretationb C6 ELISAc

EIA IgM 23 kD band IgG 23
kD band

P02 P. leucopus Millbrook, NY Field reservoir NA NA NA 0.266

P03 P. leucopus Millbrook, NY Field reservoir NA NA NA 3.480

P04 P. leucopus Millbrook, NY Field reservoir NA NA NA 0.749

P05 P. leucopus Millbrook, NY Field reservoir NA NA NA 0.910

P06 P. leucopus Millbrook, NY Field reservoir NA NA NA 0.501

P07 P. leucopus Millbrook, NY Field reservoir NA NA NA 0.256

P08 P. leucopus Millbrook, NY Field reservoir NA NA NA 3.046

P09 P. leucopus Millbrook, NY Field reservoir NA NA NA 0.518

P10 P. leucopus Millbrook, NY Field reservoir NA NA NA 0.286
aEM erythema migrans, an early-stage Lyme disease.
bSTTT Interpretation: results of the standard two-tiered tests provided by CDC. EIA interpretation based on the VIDAS Lyme lgM and lgG polyvalent assay by
bioMerieux, Inc, with the following cutoff values: negative <0.75, equivocal >0.75 to <1.00, and positive >1.00. lgM and lgG immunoblotting assays by MarDx
Diagnostics, Inc.
cC6 ELISA: OD450 readings from ELISA using the C6 peptide.
dNA not available.
eEqu equivocal.
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overrepresented, eight of which significantly so (results not
shown). Since the B. burgdorferi strain diversity in individual ticks
are driven mainly by the pathogen diversity in the host, the
predominance of overrepresentation of mixed strain pairs
supported immunological distinctness of OspC variants and a
lack of immunological cross-protection against superinfection of
the reservoir hosts [22, 23, 53].

ELISA testing of antigenic specificity of OspC variants with
variant-specific sera
In a previous study performed in one of our labs, C3H mice were
immunized with the 16 recombinant OspC natural variants [47].
These variant-specific sera were used to test the cross-reactivity of
the OspC variants by ELISA. The authors identified five OspC
variants (B, E, F, I, and K) that were most broadly reactive with the
variant-specific sera, consistent with results using naturally
infected sera from human patients, dogs, and P. leucopus mice
[47]. Here we re-analyzed the ELISA data set (Supplementary
Information Data S2) by correcting for serum-to-serum variation
with the use of normalized z-scores (Fig. 3). The OD450 readings
showed stronger reactivity of homologous than heterologous
bindings but large serum-specific variability (Fig. 3A). Some
variant-specific sera (e.g., sK, for K-specific serum) showed
consistently higher readings than others, reflecting experiment-
specific factors such as a strong immune response of an animal.
Without normalization to remove such experiment-specific back-
ground noise, the antigenicity of purified recombinant OspC
displayed large variability and thus lacked statistical power for
comparison (Fig. 3B). Indeed, the raw readings of homologous
bindings were generally lower than the readings of heterologous
bindings for the OspC variants. Normalization with respect to sera
removed serum-specific background without altering the reactiv-
ity rankings or variance for each variant-specific serum (Fig. 3C).
Critically, normalization restored the expected stronger reactivity
of homologous than heterologous bindings while greatly reducing
the reactivity variance for individual OspC variants (Fig. 3D). Thus,
antigenicity of OspC variants could be compared with greater
statistical confidence, such as the top cross-reactivity of rE (for
recombinant E variant), rK, rI, rF, and rB variants, in increasing
order of cross-reactivity with a median value of z > 0.

Normalization did not nullify but increased statistical confidence
of the conclusion of the original study, which identified the same
set of variants among the top cross-reactive variants [48].
The serum-normalized ELISA readings showed that, with two

exceptions, rOspCs reacted significantly (i.e., with z ~ 2.0, two
standard deviations above the mean) with homologous sera,
indicating high antigenic specificity of rOspCs (Fig. 4, bar plot).
The two exceptions included the variant F, which reacted
significantly with both the F- and the B-specific sera, and the
variant J, which reacted more strongly with the M-specific serum
than with the J-specific serum. The high antigenic specificity of
rOspCs is alternatively visualized with a heat map, which shows a
strong diagonal line indicating the highest reactivity of rOspCs with
homologous sera (Fig. 4, heat map). Note the absence of reactivity
with the L-specific serum in both the bar graph and the heat map.
This is because the strain expressing the L variant was not available
for generating the L-specific serum at the time [48]. Note also that
although heterologous bindings were generally weaker than
homologous bindings, rOspCs nonetheless reacted with hetero-
logous sera. Notice that a binding value of z= 0 represented the
average reactivity, not an absence of antigen-serum binding.
An antigen reaction characteristic (ARC) curve was a way to

summarize the overall reactivity of a rOspC with all serum samples
(Fig. 4, ARC curves). In addition, the ARC curves provided a
quantitative measure of antigen specificity and cross-reactivity,
showing the most broadly reactive antigens at the top and the
most specific antigens at the bottom. For example, the ARC curves
show B, F, K, E, and I being the most broadly reactive variants, in
agreement with the conclusion of the original study [47].

Immunoblot assays with variant-specific sera
We further tested the antigenic specificity of rOspCs with the use of
immunoblot assays and a full set of 16 variant-specific sera (the
L-specific sera included) from immunized C3H and P. leucopus mice
(Fig. 5, top). The raw immunoblot images showed strong specific
reactions of rOspC with homologous sera (diagonal) and weak
reactions with heterologous sera (off-diagonal). As in the ELISA
analysis, we corrected for serum-to-serum variation by normalizing
binding intensities with respect to sera (Supplementary Information
Data S3). Consistent with ELISA results, the re-scaled intensities

Fig. 2 Overrepresentation of multiple B. burgdorferi strains infecting single ticks. Each point represents a pair of OspC variants detected in
a total of 119 infected I. scapularis ticks by deep sequencing [23]. The co-occurrence of an OspC pair was quantified by the ratio of the
observed to the expected counts (x-axis; log2 scale) and by the statistical significance (y-axis; p value, log10 scale). Most OspC allelic pairs were
more abundant than expected by chance (i.e., skewed to the right with log2 ratio > 0).
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showed the strongest bindings between rOspCs with homologous
sera (Fig. 5, heat map). However, the ARC curves showed a lack of
consistency in the topmost cross-reactive rOspC variants between
the immunoblot using the C3H mice (rH and rI at the top) and the
immunoblot using the P. leucopus mice (rT and rJ at the top) (Fig. 5,
ARC curves). Further, the rOspC rankings of the immunological
breadth as quantified by the ARC curves in both immunoblots were
different from the ranking from the ELISA experiment using the C3H
mice (rB and rF at the top, Fig. 4, ARC curves).
To conclude, testing on the basis of ELISA and immunoblots

and with the use of OspC variant-specific sera from two mouse
species all showed the strongest reactions of OspC variants with
homologous sera. Reactions of OspC variants with heterologous
sera, however, were weaker and inconsistent between experi-
ments and between the two mouse species.

Centroids reacted broadly with naturally infected human and
mouse sera
We designed six evolutionary analogs (Supplementary Informa-
tion Text S1) expected to show broad antigenic cross-reactivity
with the 16 natural OspC variants with the use of three
evolution-based algorithms (Fig. 1). The root analog (“Root”)
is defined as the maximum-likelihood sequence of the
hypothetic phylogenetic root of the 16 natural OspC variants.

The consensus sequence (“Consense”) consisted of majority
amino-acid residues at individual alignment positions. The
centroid analogs (“Centroid”) were computationally derived
sequences that were minimized for sequence differences with
the 16 natural variants. Whereas the root and consensus
algorithms each generated a single OspC analog, the centroid
algorithm generated ten optimized sequences from each run. To
increase the diversity of candidate sequences, the algorithm was
ran with repetition and the most optimized sequence was
chosen form each run. We chose four centroids among a dozen
candidates for further experimentation on the basis of their
distinct phylogenetic positions.
Effectively, the algorithms drastically cut the sequence

differences of the evolutionary analogs with the natural OspC
variants (e.g., d= 0.182 ± 0.024 for the consense) to approxi-
mately half of the sequence differences among the natural
variants themselves (d= 0.260 ± 0.033). Based on immunological
models suggesting a tight correlation between sequence and
antigenic distances [70], we expected a similar level of reduction
in the antigenic distances of each evolutionary analog to the
natural OspC variants. Phylogenetic analysis of these evolutionary
analogs validated their expected central positions among
the OspC sequence diversity (Fig. 6C). Sequence differences of
the evolutionary centroids with the 16 natural variants were more

Fig. 3 Removal of serum-specific background noise with normalization. A Raw OD450 readings (y-axis) from a previously published ELISA of
the binding between 16 purified recombinant OspC antigens with 15 OspC variant-specific mouse sera (x-axis) [48]. Homologous bindings
(solid dots) were between an antigen variant and a serum from a C3H mouse immunized with the same recombinant variant. Heterologous
bindings (open dots) were between an antigen variant and a serum from a mouse immunized with a different variant. ELISA readings varied
significantly among the sera (F= 51.46, p < 2.2e−16, by an ANOVA). B OD450 readings with respect to the 15 recombinant OspC variants (x-
axis), ordered by the medians. Without correcting for the serum-by-serum variability, the OspC variants did not vary significantly in reactivity
with the variant-specific sera (F= 1.04, p= 0.42). C Normalized reactivity (z-score, y-axis) with respect to the variant-specific sera (x-axis).
Serum-specific variability was removed (F= 0, p= 1). D Normalized reactivity (z-score, y-axis) with respect to the OspC variants (x-axis). After
normalization, the OspC variants showed significant variability in reactivity with the variant-specific sera (F= 6.17, p= 8.3e−11). Five OspC
variants with a median z > 0, indicating above-average reactivity, were highlighted with shaded boxes. The same five OspC variants ranked as
the most reactivity without normalization. Thus, normalization did not change the ranking but greatly improved statistical confidence and
precision for comparing the antigenicity among the antigen variants.
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uniform while the consensus analog showed a lower average
difference (Fig. 6A, B; Supplementary Information Data S4). The
root analog showed the highest average sequence difference as
well as the highest variability in sequence differences with the
natural variants (Fig. 6B).

We cloned, overexpressed, and purified the six evolutionary
analogs and the 16 natural variants as recombinant proteins
(Supplementary Information Fig. S1). Antigenicity of each rOspC
was quantified by its reactions with OspC-positive sera (Table 1)
from naturally infected human patients (n= 41) and P. leucopus

Fig. 4 ELISA of OspC variants with variant-specific sera. Fifteen sera (“sA” through “sU”) from mice, each immunized with a specific
recombinant OspC variant, were previously assayed for reactivity with the 16 OspC variants (“rA” through “rU”) using ELISA [48]. (Top) Each
panel shows binding intensities (normalized z-scores, y-axis) of an OspC variant with a panel of OspC-specific sera (x-axis). Error bars show one
standard deviation above and below the mean from two replicated assays. A value above the z= 2 line (dashes) indicates a highly significant
reaction. (Bottom left) A heat map representation of the mean z-scores. (Bottom right) Antigen reaction characteristics (ARC) curves, similar to
the receiver-operation characteristics (ROC) curves, is a measure of antigen specificity. Each curve traced the cumulative z-scores (y-axis) of an
OspC variant’s binding intensities with the sera samples, ordered by the lowest to the highest reactivity. The ARC curve rises with an above-
average binding value (z > 0) and drops with a below-average binding value (z < 0). Thus, a high-rising curve (e.g., for rB) indicated consistently
above-average reactivity with sera samples, suggesting a broadly cross-reactive antigen. Conversely, a low-lying curve (e.g., for rG) indicated
consistently below-average reactivity, suggesting a relatively specific antigen. Curves close to the zero line (the majority of variants) indicated
antigens with an average level of cross-reactivity.

L. Di et al.

455

The ISME Journal (2022) 16:447 – 464



Fig. 5 Immunoblot testing of OspC variants with variant-specific sera. (Top) Immunoblot images of OspC-specific sera (x-axis) from the C3H
mice (left) and the P. leucopus mice (right) reacting with recombinant OspC variants (y-axis). The last column (labeled with “−”) is the negative
control, showing reactions of sera from un-immunized mice. (Middle) Corresponding heatmaps. The binding intensity values on the
immunoblot images were captured by ImageJ [64]. Values were then normalized by subtracting intensities from the negative controls and
by scaling to z-scores. (Bottom) ARC curves. Some of the most (topmost) and the least (bottom-most) reactive recombinant OspC variants
were labeled.
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mice (n= 10) using ELISA (Supplementary Information Data S5).
Natural OspC variants (gray bars) reacted with the human serum
samples with visible variability, so did the root (orange bars) and
the consensus (blue bars) analogs (Supplementary Information
Fig. S2). One centroid (“CT1”) reacted poorly with the majority of
mice sera (Supplementary Information Fig. S3). In contrast, the
other three centroids (“CT2”, “CT3”, and “CT4”) reacted consistently
at high levels with all sera. The mouse sera reacted with rOspCs in
a more variant-specific manner than the human sera. For example,
the mouse sera P03, P04, P06, P08, and P09 reacted strongly with
one to four natural rOspC variants while weakly with other natural
variants (Supplementary Information Fig. S3). Although the natural
rOspC variants reacted strongly with some of the murine sera, the
three centroids reacted consistently high with all murine sera.
The antigenic breadths of the OspC variants were further

quantified with the use of heat map (Supplementary Information
Fig. S4) and the normalized z-scores (Fig. 7). In the heat map, the
OD450 readings were scaled with respect to individual sera and,
subsequently, both the sera (in columns) and the rOspCs (in rows)
were grouped according to pairwise similarities in reactivity
(Supplementary Information Fig. S4). The three centroids (CT2, CT3,

and CT4) showed as a distinct cluster that reacted with the human
and mouse sera at levels that were consistently above the average.
The boxplots of the serum-normalized z-scores confirmed

significantly broader reactivity of all evolutionary analogs relative
to the natural variants with the naturally infected P. leucopus sera,
with p= 0.031 for the root analog, p= 4.9e−03 for the consense
analog, p= 0.041 for CT1, p= 5.2e−05 for CT2, p= 1.4e−06 for
CT3, and p= 5.6e−05 for CT4 (Fig. 7 top left, boxplot). With the
use of naturally infected human sera, reactivity of CT2 (p= 9.1e
−10), CT3 (p= 2.4e−06), and CT4 (p= 1.1e−09) was significantly
higher than the natural variants. The reactivity of CT1 (p= 2.3e
−06) was significantly lower than the antigenicity of the natural
variants while the reactivity of the root (p= 0.31) and consense
(p= 0.065) analogs was not significant (Fig. 7 bottom left,
boxplot). The ARC curves summarized the strong reactions of
the three evolutionary centroids with the sera (the top three
curves) and the weak reaction of the root and consensus analogs
(Fig. 7 top and bottom right, ARC curves). The ARC curves of the
cross-reactivity of natural OspC variants with the human sera
(gray lines) showed rB as a top cross-reactive and rG as the least
cross-reactive variant, consistent with the rankings of these two

Fig. 6 Sequence differences and the binary model. A The y-axis shows the fraction of amino-acid differences out of the total number of
aligned un-gapped residues (ranging from 190 to 196 amino acids) between an evolutionary OspC analog and a natural OspC variant. The 16
natural B. burgdorferi OspC variants were listed alphabetically on the x-axis. The dashed lines indicate the averages. B Boxplot shows the
fraction of sequence differences out of the total number of variable sites (115 alignment sites, gaps included) for the evolutionary analogs to
the 16 natural variants (“consense”, “centroid”, and “root”), as well as the sequence differences between pairs of the natural variants themselves
(“native”). Solid lines in the middle of the boxes represent the medians. C A maximum-likelihood tree of the 16 natural OspC variants common
in the Northeast US and the six evolutionary analogs, including the mid-point root sequence (“Root”), a consensus sequence (“Consense”), and
four centroids (“Centroid”). All branches are supported by a bootstrap value of 0.8 or above. D A binary model of antigen divergence. A
genetic algorithm was used to find 10 binary strings of length 100 and their centroid with a goal to maximize D/d, where D and d are the
distances among the 10 strings and from the strings to the centroid, respectively (see Methods). Observe that D/d cannot exceed 2 by
triangular inequality. The strings are generated with a probability of “1” equal to p ≤ 0.5 and their centroid is initialized to a string of 0 s. The
values of D and d from populations of randomly generated strings (“Random”) for various values of p in [0, 0.5] are shown. Runs of the genetic
algorithm on these strings show that the resulting (d, D) matched very well the boundary of the theoretical curve given by D= 2d (1− d) (see
Methods). The corresponding point (D= 0.462 and d= 0.415) for OspC is also shown, suggesting that the OspC variants are undergoing a
similar diversifying selection towards maximum sequence separation. Note that the distance D for OspC was obtained as the average distance
rather than the minimum distance due to the presence of sequences that were too close in the phylogeny (e.g., a difference of 0.281 between
the H and J variants), which artificially lowers the minimum distance.
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variants in the ARC curve based on ELISA with variant-specific sera
(Fig. 4 bottom right, ARC curves). We conclude from the ELISA
testing that the evolutionary centroids with computationally
optimized sequence differences tended to react more broadly
with naturally infected human and mouse sera than natural OspC
variants.

Evolutionary analogs are structurally similar to native OspC
variants
The CT1 centroid was more cross-reactive than the natural variants
with the mouse sera but, unlike the CT2, CT3, and CT4, less cross-
reactive than many natural variants with the human sera (Fig. 7, top
and bottom right, ARC curves). We had expected CT1 to be the most
cross-reactive among the four centroids because it had the lowest

variance in sequence differences to the natural variants (Fig. 6A). It
appeared that low sequence differences with the natural variants
were an essential but not sufficient predictor of broad OspC cross-
reactivity. To investigate structural factors contributing to the
antigenic breadth of OspC variants, we obtained a structural
alignment of the evolutionary analogs with a solved OspC structure
(PDB ID: 1F1M) [71] (Supplementary Information Fig. S5). Measure-
ments of structural variability showed the high structural similarity of
the evolutionary analogs with the natural OspC variants as well as
among the evolutionary analogs themselves (Supplementary
Information Data S6). The structural alignment provided a basis for
further comparative analysis to identify the amino-acid residues
associated with the variability in antigenicity among the natural and
synthetic OspC variants.

Fig. 7 Reactivity of synthetic analogs with naturally infected human and mouse sera. (Top left) Reactivity (z-score, y-axis) of natural OspC
variants (n= 16) and evolutionary analogs (n= 6) (x-axis) with sera from naturally infected P. leucopus mice (n= 10). All six evolutionary
analogs showed significantly higher (with t tests) reactivity with the sera of the reservoir host species than the reactivity of the natural variants
as a group. (Top right) Antigen reaction characteristics (ARC) curves showed consistently high reactivity of the six evolutionary analogs,
indicating their broader antigenicity relative to the natural OspC variants in reacting with the sera of the reservoir hosts of B. burgdorferi.
(Bottom left and right) Corresponding graphs with sera from naturally infected human patients (n= 41). Three centroids (CT2, CT3, and CT4)
showed significantly higher (with t tests) reactivity than the reactivity of the natural variants as a group. Reactivity of the other three
evolutionary analogs (CT1, Consense, and Root) was significantly lower than or not significantly different from the reactivity of the natural
antigen variants.
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DISCUSSION
High antigenic specificities of natural OspC variants
Previous field-based studies have established an overabundance
of ticks infected by a mixture of Lyme pathogen strains identified
by their ospC alleles [23, 45]. In the present study, we further
tested immunological distinctness of diverse B. burgdorferi strains
co-existing in the Northeast US using field-collected I. scapularis
ticks. Composition of B. burgdorferi strains in individual infected
ticks especially in nymphs—having fed on a single blood meal
from a single host—faithfully reflects the spirochete composition
in reservoir hosts [23, 53]. As such, we expected that the frequency
of mixed infection by a pair of strains to be lower than expected
by chance if the cross-protection of reservoir hosts against
superinfection by multiple strains was common in nature. The
present statistical analysis of coinfection rates reaffirmed an
overabundance of pairs of B. burgdorferi strains carrying distinct
OspC variants (Fig. 2). In conclusion, reservoir hosts of Lyme
pathogens tend to be infected by multiple strains, indicating a
lack of cross-protective immunity in reservoir hosts. By extension,
we conclude the immunological distinctness of B. burgdorferi
strains carrying different ospC alleles in nature.
Experimental infection in laboratories using B. afzelii, a Lyme

pathogen common in Europe and Asia, showed that mice
immunized with one recombinant OspC variant protected the
host from infection by a strain carrying the homologous OspC
variant but not by the strain carrying a heterologous OspC variant
[37]. These strains, however, differed in genomic background
besides the ospC sequences. Immunological mechanisms by
which the host serum neutralizes spirochetes carrying a homo-
logous but not a heterologous ospC allele was elucidated using
genetic manipulations and immunodeficient mice, firmly estab-
lishing the causal role of the OspC molecule in eliciting strain-
specific protective humoral immunity in B. burgdorferi hosts [39].
Sequences that are conserved among OspC variants, e.g., the C7
and C10 domains, are unlikely to be the targets of NFDS and
indeed do not elicit protective immunity [46, 49]. Instead,
immunodominant epitopes have been mapped to the highly
variable regions including the C-terminus domains [47, 72].
Furthermore, conformational epitopes and structural integrity of
the OspC molecules are required to trigger protective immunity
[60, 73, 74].
By immunizing the C3H mice and the reservoir species P.

leucopus with recombinant OspC proteins and quantifying
antigenic reactions using ELISA and immunoblots, a previous
study [48] and the present work demonstrated the high antigenic
specificities of natural OspC variants with the homologous sera,
and the much diminished reactivity of OspC variants with the
heterologous sera (Figs. 4, 5).
To summarize these field-based and lab-based studies, we use

the term MAD to describe the immunological distinction of natural
OspC variants and their dominant role in maintaining B.
burgdorferi diversity in nature. Evidence of antigenic separation
among natural OspC variants emerged first from population
genetic surveys of ospC sequence variability and allele frequencies
in natural B. burgdorferi populations, which showed strong
balancing selection driving genetic diversity at the ospC locus
mediated by ecological mechanisms including immune escape,
host species specialization, or both [22, 25, 42]. Subsequent whole-
genome sequencing revealed frequent recombination among co-
existing strains and ospC being a recombination hotspot as well as
the most polymorphic single-copy gene in the B. burgdorferi
genome [40, 75]. We showed by forward-evolution simulation that
the combined forces of homologous recombination and negative-
frequency-dependent selection were sufficient to explain the
seemly paradoxical pattern of the high recombination rate at ospC
and the sequence hyper-variability at the same locus [40].
An epidemiological model offers a more intuitive understand-

ing of the paradox of sustained linkage disequilibrium in the

presence of genetic recombination at an antigen locus [3]. Using a
token antigen consisting of two bi-allelic epitope sites (e.g., A1
and A2 at site A, B1 and B2 at site B), Gupta et al. predicted
complete linkage disequilibrium resulting in a population consist-
ing of only A1B1 and A2B2 haplotypes without the crossover A1B2
and A2B1 haplotypes, if it could be assumed that the host
antibodies neutralize A1 and A2 (as well as B1 and B2) specifically
without cross-reactivity (i.e., anti-A1 not binding A2 and vice
versa). This is because, in such a system the A1B1-genotyped
microbes would survive the host producing antibodies against A2
and B2, the A2B2-genotyped microbes would survive the host
producing antibodies against A1 and B1, but the A1B2- or A2B1-
genotyped microbes would not survive either host. This simple
epidemiological model thus predicts maximum antigenic diver-
gence (two bits of difference between A1B1 and A2B2) when the
host immunity is highly allele-specific. This model, known as the
strain theory, has been further refined and used to understand the
stable coexistence and the temporal persistence of diverse strains
in natural pathogen populations including the influenza A (H3N2)
virus and malaria [6, 76].

Mechanism of maximum antigen diversification: a
mathematical model
To explore immunological and molecular mechanisms underlying
the broad antigenicity of evolutionary centroids, we proposed a
mathematical model in which antigen sequences in a pathogen
population were represented by binary strings of 1 s and 0 s (see
Methods). Although there are potentially 20 amino-acid states at
each alignment site, the binary representation of antigen
sequences is justified on the basis of sequence variability within
pathogen populations which consists predominantly of single-
nucleotide changes. We subsequently simulated MAD and
evolutionary centroids using genetic algorithms (simulation code
available as Supplementary Information Text S2). Simulating OspC
sequence evolution with genetic algorithm, which generates
diverse binary strings through genetic mechanisms including
random mutation and recombination, is justified on the basis that
the ospC locus is a recombination hotspot on the circular plasmid
cp26 in B. burgdorferi [14, 40, 77]. Note that in general genetic
algorithms attain local maximal divergence but not a global
maximum.
The binary model revealed a theoretical bound D= 2d (1− d) at

a particular evolutionary distance p, where D is the minimum
sequence distance among the binary strings, d is the maximum
distance of these strings to a centroid (represented by a string of
0 s, i.e., all ancestral states, at the root), and p is the probability of 1
(i.e., a derived state) (Fig. 6D). In this formulation, p= d, leading to
D= 2p(1− p). As the population evolves, p increases and results in
increasing sequence diversity among the strings (D) as well as
increasing distances to the centroid (d), as shown by the random
points in Fig. 6D. When the sequences are under selection for
diversification from one another, the D value deviates far above
the random points and is maximized to D= 0.5 at p= 0.5. Indeed,
the natural OspC variants are separated from one another at an
average sequence difference of D= 0.462 in fraction of variable
sites (not counting the constant sites), in agreement with the
maximum sequence separation driven by diversifying selection
(Fig. 6B). Presence of recombination, more than mutation, is a key
force driving the maximal and approximately uniform sequence
divergence among the OspC variants. Simulated sequence
divergence without recombination resulted in lower and more
dispersed pairwise sequence differences (Supplementary Informa-
tion Text S2).
Furthermore, the binary model indicated that the genetic

algorithms we designed was effective in generating centroids
close to the theoretical bounds (Fig. 6D). With a maximum
distance of d = 0.415, the binary model suggests that OspC
centroids with smaller distances to the natural variants are unlikely
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to be discovered given the length of variable site (~100 amino
acids) and this set of 16 natural variants. In summary, the binary
model elucidates a theoretical boundary of OspC sequence
variability within the B. burgdorferi populations as well as a
theoretical limit in sequence distances of possible OspC centroids.
In a token model with the use of ten 20-bit strings, we

simulated a population of maximally diverged antigens (Table 2)
and validated the central positions of the consensus and centroid
variants with a neighbor-joining tree based on pairwise Hamming
distances (Fig. 8 top right, tree). Simulation results were further
validated by tabulating pairwise Hamming distances into a
distance matrix, which showed a narrow range of distances (6 to
9) for the centroid, and a wider range of distances (4 to 11) for the
consensus, and large distances (6 to 15) between simulated
natural variants (Table 2). We obtained z-scores by normalizing the
sequence similarities with respect to individual simulated natural
variants. As such, we were able to compare and show a high
resemblance between the simulate results and experimental
results using the immunized mice (Figs. 2, 3, 8). For example,
both the simulated and experiment-derived results showed
highly specific bindings (z > 2.0) between homologous variants
(Figs. 4, 5, 8). Both the simulated and experiment-derived results
showed the broad antigenicity of evolutionary analogs with
heat map and ARC curves (Supplementary Information Fig. S4,
Figs. 7, 8, corresponding heatmaps and ARC curves). Importantly,
the simulated MAD population, mirroring experimental results,
revealed that the broad antigenicity of evolutionary analogs was a
result of consistently above-average (z > 0) reactivity even as their
cross-reactions with any particular natural antigens remained
uniformly lower than the strongest reactions between homo-
logous reactions (z < 1) (Fig. 8 top left, bar plots).
However, the centroid algorithm did not succeed uniformly,

suggesting that sequence similarities alone do not guarantee
broad antigenicity. One of the centroids (“CT1”) showed low
reactivity with the human sera relative to the other three
centroids despite being similar in the distribution of sequence
distances and a lower variance. Structural integrity and fine-
grained epitope similarity must contribute to serum reactivity as
well, despite an overall high structural similarity of the centroids

with the native variants (Supplementary Information Fig. S5).
Validation of structural similarity of evolutionary analogs to the
natural OspC variants requires experimental interrogation with
e.g., circular dichroism (CD) and nuclear magnetic resonance
spectroscopy [46]. Computational and experimental structural
analyses are needed to identify the structural determinants of
variability in antigenicity among the OspC variants.

Implications to diagnostic and vaccine development
A new class of broad-spectrum diagnostics and vaccines could
be designed by countering the evolutionary trend of maximum
antigenic divergence in local B. burgdorferi populations. In
diagnosis, the standard two-tiered testing (STTT) is based on EIA
and immunoblots and lacks sensitivity for patients who develop
acute erythema migrans, an early-stage Lyme disease [62, 78].
The newly recommended modified two-tiered testing (MTTT)
protocol consisted of two EIAs without immunoblot and
improved the sensitivity of detecting early Lyme disease cases
[79, 80]. The use of multiple OspC variants may further improve
diagnostic sensitivity with their broad reactivity with diverse B.
burgdorferi strains [48]. With a similar ability to react with diverse
B. burgdorferi strains and with a single antigen, the centroid
antigens are novel diagnostic candidates if they pass specificity
tests [61].
Currently there is no human-use vaccine against Lyme

pathogens on the US market [81–83]. The design of currently
available OspC/OspA-based vaccines for canine use was based on
identification of immunodominant epitopes in individual OspC
variants and concatenating them into linear multivalent super-
antigens [46, 72, 84]. A multivalent vaccine consisting of as many
as eight OspC-type specific epitopes has been shown to be
immunogenic [49]. Because of the large number of OspC variants
co-circulating in a local endemic area (e.g., ~20 in the Northeast
US), it is unclear the efficacy of chimeric vaccines to elicit broadly
protective immunity in humans [50, 85]. Critically, studies have
shown that immune protection of OspC-based vaccines required
the presence of native OspC structure including dimerization,
suggesting that much of the neutralizing antibodies targeted
structural rather than linear epitopes [73, 74].

Table 2. Simulated maximally diverged variants and evolutionary analogsa.

Variants Epitope sequencesb (20-bit strings) Hamming distancesc

A01 A02 A03 A04 A05 A06 A07 A08 A09 A10 CS CT

A01 01000101110010010010 0.70 0.40 0.70 0.55 0.55 0.55 0.55 0.60 0.65 0.50 0.45

A02 11011000011101100100 14 0.40 0.30 0.55 0.55 0.35 0.45 0.50 0.45 0.30 0.45

A03 11000100010111110001 8 8 0.40 0.75 0.55 0.55 0.65 0.60 0.35 0.40 0.45

A04 11010010011100111101 14 6 8 0.55 0.45 0.35 0.35 0.50 0.45 0.20 0.35

A05 00001011100100101110 11 11 15 11 0.50 0.40 0.40 0.35 0.60 0.45 0.40

A06 10011101001100011011 11 11 11 9 10 0.60 0.50 0.75 0.50 0.55 0.40

A07 11000010101100000100 11 7 11 7 8 12 0.50 0.45 0.50 0.25 0.30

A08 00110000111100111110 11 9 13 7 8 10 10 0.45 0.50 0.25 0.40

A09 10100011110001101100 12 10 12 10 7 15 9 9 0.55 0.40 0.45

A10 11101000101111111001 13 9 7 9 12 10 10 10 11 0.35 0.30

Consensed 11000000111100111100 10 6 8 4 9 11 5 5 8 7 0.15

Centroidd 11000001101100111000 9 9 9 7 8 8 6 8 9 6 3
aBoth the maximally divergent variants (A01 through A10) and the evolutionary analogs (“Consense”/”CS” and “Centroid”/”CT”) were generated using genetic
algorithms (analysis shown in Fig. 8; code shown in Supplementary Information S4 R Markdown).
bEach string represents an antigen consisting of 20 epitopes with two possible states (0 and 1). Substrings identical to those in the Centroid are underlined to
highlight the interleaved nature of antigen similarities.
cHamming distances: pairwise string differences (lower triangle) and length-adjusted relative distances (upper triangle).
dDistances of the consense and centroid analogs are given in italic to indicate their relatively low distances to the simulated natural variants. Note that
distances of the centroid are more uniform than those of the consense.
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In the current study, we described three evolutionary algo-
rithms, proposed a theoretical model, and presented the initial
proof-of-concept results demonstrating the broad antigenicity of
the evolutionary centroids. The broader antigenicity of the
centroids relative to the natural OspC variants makes the centroids
promising candidates for improved diagnostics for Lyme disease.
For vaccine development, it is further necessary to quantify the
immunogenicity and test the protective efficacy of the centroids
after immunization of mice with the synthetic OspC variants.
Reactivity of the centroid-specific antibodies would then be tested

against diverse B. burgdorferi strains through, e.g., immunofluor-
escence assays of cells present in field-collected ticks. Indeed,
experiments are under way in our labs to generate centroid-
specific antibodies, measure their immunogenicity and bacterial
neutralization capability, and evaluate vaccine efficacy by
challenging centroid-immunized mice with infected ticks carrying
diverse B. burgdorferi strains. If validated, the OspC centroids
would constitute a novel class of Lyme disease vaccines for
humans and animals. If used as reservoir-targeted vaccines [86],
the centroid antigens have the potential to reduce spirochete

Fig. 8 Simulated antigen divergence and evolutionary analogs. The simulated population initially contained ten antigen variants, each
represented by a 20-bit long randomly generated binary string. Each bit represented a variable antigen site. Using a genetic algorithm
(Supplementary Information Text S2), we created a simulated population consisting of alleles “A01” through “A10” with maximally divergent
sequences (Table 2). Subsequently, a consensus sequence (“Consense”) was created from majority bits at individual positions. The centroid
sequence (“Centroid”) was generated by minimizing maximum sequence differences to the natural variants using a second round of genetic
algorithm. Antigenic reactivity of a simulated variant i to a simulated variant j-specific serum was assumed to be proportional to the sequence
similarity between the two variants. Levels of antigenic activity were normalized to z-scores with respect to each simulated variant-specific
serum. (Top left) Each panel shows levels of reactivity (x-axis) of a simulated variant to simulated variant-specific sera (y-axis). (Top right) A
neighbor-joining tree of simulated variants based on pairwise Hamming distances. (Bottom left) A heat map representation of the levels of
antigenic activity between the simulated variants (y-axis) and the simulated variant-specific sera (x-axis). (Bottom right) Each line shows
cumulative z-scores (y-axis) of a simulated natural variant (cyan), an evolutionary analog (red), or a natural variant after one round of
permutation of z-scores among the simulated natural variants (gray).
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loads in natural reservoir hosts by eliciting immunity against all
Lyme pathogenic strains.
Vaccines based on centroid antigens would be similar to the

COBRA (Computationally Optimized Broadly Reactive Antigen)
vaccines against influenza viruses and the vaccine candidates
against HIV-1 viruses based on the “center-of-tree” ancestral
sequences [8, 52]. All three approaches are based on principles of
antigen evolution and use automated computational design.
While the COBRA design is based on consensus sequences and
the center-of-tree algorithm infers ancestral sequences, the
centroid design uses genetic algorithms to minimize sequence
differences to the natural antigen variants. In the present study,
the centroid algorithm was more effective than the consensus and
root algorithms in broadening OspC cross-reactivity (Fig. 7). To
date, the centroid algorithm did not enforce any structural
constraints on the OspC molecule beyond the primary sequences.
Additional functional and structural constraints to OspC diversi-
fication certainly exist. Indeed, the synthetic OspC centroids were
less soluble than native variants under laboratory conditions,
suggesting reduced structural stability of the synthetic OspC
analogs. One approach of identifying additional constrains to
OspC evolution is to develop a computational classifier by fine-
tuning the pretrained universal protein models with a large
number of sequences of natural OspC variants [87, 88]. Such an
OspC-specific classifier should help identify centroids with
improved functional and structural integrity while maintaining
broad antigenicity.
Stable coexistence of antigen variants like OspC variants in B.

burgdorferi is widespread in natural pathogen populations. The
Dengue viral populations consist of four antigenically distinct
serotypes associated with sequence variations of the envelop
protein [89]. The influenza B viral populations contain two
evolutionary lineages associated with sequence variations of
hemagglutinin [90]. The malaria parasite populations are struc-
tured into antigenic groups associated with genetic variations of
the var genes encoding an erythrocyte membrane protein [6]. If
these pathogen strains indeed represent ecological niches shaped
by host immunity [3, 91], evolutionary centroids would be a novel
and effective strategy against a broad range of microbial
pathogens.
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