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Abstract

Background: Chip-seq experiments are becoming a standard approach for genome-wide profiling protein-DNA
interactions, such as detecting transcription factor binding sites, histone modification marks and RNA Polymerase II
occupancy. However, when comparing a ChIP sample versus a control sample, such as Input DNA, normalization
procedures have to be applied in order to remove experimental source of biases. Despite the substantial impact that
the choice of the normalization method can have on the results of a ChIP-seq data analysis, their assessment is not
fully explored in the literature. In particular, there are no diagnostic tools that show whether the applied normalization
is indeed appropriate for the data being analyzed.

Results: In this work we propose a novel diagnostic tool to examine the appropriateness of the estimated
normalization procedure. By plotting the empirical densities of log relative risks in bins of equal read count, along with
the estimated normalization constant, after logarithmic transformation, the researcher is able to assess the
appropriateness of the estimated normalization constant. We use the diagnostic plot to evaluate the appropriateness
of the estimates obtained by CisGenome, NCIS and CCAT on several real data examples. Moreover, we show the
impact that the choice of the normalization constant can have on standard tools for peak calling such as MACS or
SICER. Finally, we propose a novel procedure for controlling the FDR using sample swapping. This procedure makes
use of the estimated normalization constant in order to gain power over the naive choice of constant (used in MACS
and SICER), which is the ratio of the total number of reads in the ChIP and Input samples.

Conclusions: Linear normalization approaches aim to estimate a scale factor, r, to adjust for different sequencing
depths when comparing ChIP versus Input samples. The estimated scaling factor can easily be incorporated in many
peak caller algorithms to improve the accuracy of the peak identification. The diagnostic plot proposed in this paper
can be used to assess how adequate ChIP/Input normalization constants are, and thus it allows the user to choose the
most adequate estimate for the analysis.
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Background
Mammalian genomes are organized to form a tridimen-
sional structure called chromatin. It is a highly structured
and compact DNA-protein complex that can assume
many different conformations depending on the nuclear
context and on the biochemical modifications present
on both DNA and histone proteins [1]. Its conforma-
tion can influence cell activity, state and functionality
and can help in understanding why different types of

*Correspondence: c.angelini@iac.cnr.it
1Istituto per le Applicazioni del Calcolo “Mauro Picone”, Via Pietro Castellino,
111, 80131 Naples, Italy
Full list of author information is available at the end of the article

cells exhibit very different behaviours, although they
share the same genome. Indeed, transcription factors and
chromatin modifiers represent important players in gene
regulation, DNA replication, programming and repro-
gramming of cellular states during differentiation and
development. Epigenetic regulatory mechanisms are cru-
cial in the onset and progression of several diseases,
including cancer development [2,3], and can be altered by
the environment. Therefore, being able to precisely pro-
file all epigenetic actors can deeply help in revealing the
landscape of transcription and regulation in cells.
Since the seminal papers [4-7], chromatin immuno-

precipitation followed by massively parallel sequencing
(ChIP-seq, see [8-10] for a review) has substituted the
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use of DNA hybridization to microarray (ChIP-chip)
and has become a standard technique for identify-
ing protein-DNA interaction [11]. Several large scale
projects such as the Encyclopedia of DNA Elements
[12,13], The Cancer Genome Atlas (http://cancergenome.
nih.gov/), the Roadmap Epigenomics (http://www.
roadmapepigenomics.org), are now producing thousands
of genome-wide maps for a variety of transcription factors
and histone modifications in a large number of different
cell types and conditions, see for example [14,15]. In
ChIP-seq experiments [8-10], the DNA-binding protein is
cross-linked to DNA in vivo, then DNA fragments (usu-
ally 200-600 bp) are enriched by immuno-precipitation
using an antibody specific to the protein of interest. DNA
libraries (i.e. the collections of DNA fragments that will be
sequenced) are prepared according to the protocol of the
instrument, and finally massively sequenced to produce
several millions of short reads of about 50-100 bp.
According to most of the available computational pro-

tocols [9,16-18] short reads have to be first aligned to
the reference genome in order to identify the genomic
locations (i.e., sub-intervals of the whole genome) with
enrichment of reads (i.e., with a higher number of mapped
reads than expected by chance). Several tools have been
proposed for identifying peaks of enriched regions. The
corresponding algorithms are known as “peak caller” algo-
rithms [19-28]. Different shapes of the genome profile
require different peak callers: transcription factors can be
well described as sharp punctuate signals of few tens or
at most few hundreds base-pairs of length; histone modi-
fications appear as wide-spread and less defined domains
and can reach several hundred of kilobases of length;
RNA polymerase II binding sites are modelled like a sharp
peak with a long heavy tail toward the direction of the
transcription.
Exploring the genome-wide coverage profiles it is easy

to observe that, due to several experimental sources of
errors, the signal consists of both truly enriched regions
(i.e., the true regions of interest) and a large num-
ber of non specific/non uniform regions that behave as
“background”. Following this observation, in [20,29], the
data are modeled as a mixture of reads randomly sam-
pled from an enriched signal distribution and a back-
ground noise distribution. In order to account for different
sources of experimental biases in the background dis-
tribution, it is standard practice to sequence a control
sample either from Input DNA (i.e., DNA isolated from
cells that have been cross-linked and fragmented under
conditions similar to those of the experimental sample)
or by using a non specific antibody during the enrich-
ment (i.e., IgG) [11]. When the control sample is available,
peaks are defined as those sub-regions of the genome with
statistically significant higher number of reads than the
control/background.

A good peak detection algorithm, that balances sensi-
tivity and specificity, is obtained by choosing an appropri-
ate peak-calling algorithm and a normalization method.
The normalization is essential to make the ChIP sample
and control/Input sample comparable, since they are usu-
ally sequenced with a different number of short reads.
The most commonly used procedure for accounting for
the different depth is to scale-up the read counts (usu-
ally observed in a window w) with respect to the total
library sizes ratio. This approach is too naive, since it
does not account for the fact that only the background
component of the ChIP signal follows the same distri-
bution as that of the control signal. Therefore, more
sophisticated linear and non-linear approaches to ChIP-
seq data normalization have been proposed (see Box 6
and Table S2 in [18] for a summary, and [29-32] for
examples). However, despite the substantial impact that
the choice of the normalization method can have on the
results of a ChIP-seq data analysis [20,29], their prop-
erties are not fully explored in the literature, and there
are no diagnostic tools that show whether the applied
normalization is indeed appropriate for the data being
analyzed.
In this paper we focus on linear normalization

approaches. These approaches estimate a scale factor,
r, able to adjust for different sequencing depths. Linear
approaches have the great advantage that they can eas-
ily be incorporated in many peak caller algorithms to
improve the accuracy of the peak identification (e.g.,
[29]). Moreover, we observe that, independently from the
impact on peak calling, the direct estimate of the nor-
malization factor is of interest both for measuring the
specificity of the antibody and for comparing specific
genomic regions under different conditions. The latter
often occurs when relating epigenomic signatures with
gene expression, see [33,34].
In this work we propose a novel diagnostic plot to exam-

ine the appropriateness of the estimated normalization
constant. By plotting empirical densities of log relative
risks in bins of equal read count, along with the nor-
malization constant, after logarithmic transformation, the
researcher is able to assess the level of agreement of the
estimated normalization constant with the data. If the
agreement is not satisfactory, the user can revise the esti-
mate, either by using a different normalization method
or by changing the input parameters of the method, and
reassess. We stress that an accurate diagnosis of the nor-
malization constant is important since it can affect the
subsequent analysis dramatically: if the estimated nor-
malization constant is too large, there may be too few
discoveries due to power loss in the peak caller algorithms;
if the estimated normalization constant is too small, there
may be an increase in false positives in the peak caller
algorithm.

http://cancergenome.nih.gov/
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The paper is organized as follows. After introducing
the notation, and three common normalization methods
along with their potential limitations, we introduce our
diagnostic tool. We examine its usefulness in data-driven
simulations based on yeast, as well as on several real
mouse data examples and a real model organism example.
In order to assess the importance of the correct normal-
ization factor in inference, we examine empirically the
effect of different values for the normalization factor on
peak calling algorithms, and we examine theoretically the
effect of the normalization constant value on the false dis-
covery rate (FDR). We conclude with a summary, some
final remarks and future extensions.

Methods
Notation
Let L be the length of the genome for which the inter-
est is in identifying the locations of a given epigenetic
factor or modification. To that purpose, ChIP-seq data
for both ChIP and control/Input samples have been pro-
duced, and the reads have been uniquely aligned to the
reference genome of interest. Let Nch and Nin denote the
number of reads aligned for the ChIP and the Input sam-
ple, respectively. The total number of mapped reads is
Ntot = Nch + Nin. Let π0 be the (unobserved) fraction of
reads in the ChIP sample that are background reads. The
specificity of the antibody is larger the smaller the value of
π0. Let r be the (unobserved) ratio of background reads in
the ChIP versus control/Input sample:

r = π0Nch
Nin

(1)

The value of r represents the normalization constant of
interest. Since π0 is unknown, it has to be estimated. Note
that the naive approach that normalises the reads accord-
ing to the ratio of the two depths corresponds to setting π0
to one, which is the correct value only if all the observed
reads in the ChIP sample are background reads.
We partition of the genome of interest into Gb windows

of equal genomic length |w| = b, indexed by w = 1 · · ·Gb.
We denote byW = {1 · · ·Gb} the set of indices of all win-
dows. Let Nch(w) be the number of ChIP reads mapped
to window w and Nin(w) be the number of Input reads
mapped to window w. Let Ntot(w) = Nch(w) + Nin(w)

be the total read count in window w. The total num-
ber of reads in the ChIP and Input samples are therefore
Nch = ∑

w∈W Nch(w) and Nin = ∑
w∈W Nin(w), respec-

tively. Remark 1 below discusses the preprocessing steps
for the read counts to avoid redundancy in the window
counting.
We assume that each enriched region is a compact

interval and only a subset of the genome is affected by
the modification. These regions may be very large, as
expected for histonemodifications. The set of windowsW

is thus comprised of two subsets of indices of enriched and
background windows, denoted by W1 and W0, respec-
tively. A window w is inW1 if the ChIP signal is enriched,
and inW0 if the ChIP signal behaves like background (i.e.,
control/Input signal).

Remark 1. Since the DNA fragments undergo a PCR step
(during the sample preparation) that can result in excessive
and non-uniform amplification of the original sequences,
it is common practice to remove such artefacts after the
alignment step, retaining at most few reads per starting
position. When the sequencing depth is low, then the num-
ber of retained reads is often only one. In case of higher
coverage two or three reads are usually retained. Moreover,
to account for the fact that each sequenced read constitutes
only the 5’-end of the corresponding DNA fragments, it can
be beneficial to shift each mapped position towards their
3’-end by half of the average DNA fragment length before
computing Nch(w) and Nin(w).

Normalization approaches
The unknown ratio r in (1) is approximately equal to∑

w∈W0 Nch(w)∑
w∈W0 Nin(w)

. The key to estimating r is thus the estima-
tion of the subset W0 of background windows. Several
normalization procedures have been proposed to estimate
r, and we shall review the three methods investigated in
this paper [20,21,29].

CisGenome
In [21], the genome is first divided into windows of
length b = 100 bp and W0 is estimated by Ŵ0 =
{w : Ntot(w) ≤ t}, with t fixed at the value t = 1. The
assumption in [21] is that windows with low total count,
Ntot(w), are more likely to belong to the background. The
main drawback of this method is that the fixed window-
size does not adapt to signals with variable spread, and
that the fixed threshold t = 1 does not scale up with the
increase of sequencing depth.
CisGenome is freely available at http://www.biostat.

jhsph.edu/~hji/cisgenome/.

NCIS
The approach of [29], called NCIS, extends that of [21]
by estimating r using a data-adaptive length of the win-
dow |w| and a data-adaptive threshold t. The first step
is to define Ŵb,t

0 = {w : |w| = b and Ntot(w) ≤ t}, and
compute

r̂b,t :=
∑

w∈Ŵb,t
0
Nch(w)∑

w∈Ŵb,t
0
Nin(w)

for every window size b∈ {100 bp; 200 bp; 500 bp; 1000 bp;
2000 bp; 5000 bp; 10000 bp; 20000 bp} and for total thresh-
old t, where the t values considered are all the
possible values of total window counts. The second

http://www.biostat.jhsph.edu/~hji/cisgenome/
http://www.biostat.jhsph.edu/~hji/cisgenome/
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step is to compute for each b, r̂b = r̂b,t∗ , where
t∗ = min

{
t :, r̂b,t ≥ r̂b,t−1, |Ŵb,t

0 | ≥ f ∗ Gb
}
, where f ∈

{0.5, 0.75} is an input parameter.
The final step is to estimateW0 by Ŵ0 = Ŵb∗,t∗

0 , where
b∗ is the smallest window size with an estimated normal-
ization factor that is a local minima (i.e. with value smaller
than that computed from smaller window sizes, and at
most as large as that of the next largest window size).
This method, as the previous one, assumes that the

background windows tend to have lower counts than win-
dows in enriched regions, and therefore may result in
poor estimates if the total number of many background
windows is actually larger than for windows in enriched
regions.
NCIS is an R package available in Additional file two of

[29].

CCAT
Recognising that due to the intrinsic bias of ChIP-seq
experiments, the read counts may also be small for some
ChIP-enriched regions and may be relatively large for
some background regions, in [20] a different approach has
been taken: an iterative method based on the assumption
that reads with both positive and negative strand direction
are equally distributed in the sample.
The first step is to partition the whole genome into non-

overlapping windows of length b = 1kb and set r̂0 = Nch
Nin

.
Next, two steps are iterated until convergence:

1. Estimation of Ŵ j
0 as follows:

Ŵ j
0 = {

w : N+
ch (w) < r̂j−1N+

in (w)
}
,

where N+
ch(w) and N+

in(w) are, respectively, the ChIP
sample and Input sample reads that map on the
positive strand only for window w.

2. Updating of r̂j as

r̂j :=
∑

w∈Ŵ j
0
N−
ch(w)∑

w∈Ŵ j
0
N−
in(w)

,

where N−
ch(w) and N−

in(w) are, respectively, the ChIP
sample and Input sample reads that map on the
negative strand only for window w.

The estimator may be biased if the distribution of reads in
the positive and negative directions differ inmany regions.
CCAT is freely available at http://cmb.gis.a-star.edu.sg/

ChIPSeq/paperCCAT.htm.

The diagnostic plot
Given an estimate of r, we shall describe the diagnos-
tic plot we propose in order to verify that the estimate
of r is adequate. Our plot is relevant for bin counts that
have a Poisson distribution or a distribution that is more

dispersed than the Poisson distribution (e.g., Negative
binomial, among others). We shall start by describing our
diagnostic tool for bin counts that have a Poisson dis-
tribution, then relax this assumption and argue that the
diagnostic plot remains relevant for distributions that are
more dispersed than the Poisson distribution.
We set an integer K in the range from 100 to 1000. For

the fixed value of K , we partition the genome into (non-
equal length) non-overlapping genomic regions, called
bins, by agglomerating consecutive windows w such that
the sum of Ntot(w) within the bin is (approximately) K :
the first bin is

∑i1
w=1Ntot(w), where i1 is the value that

satisfies
∑i1−1

w=1 Ntot(w) < K ≤ ∑i1
w=1Ntot(w); the second

bin is
∑i2

w=i1+1Ntot(w), where i2 is the value that satisfies∑i2−1
w=i1+1Ntot(w) < K ≤ ∑i2

w=i1+1Ntot(w); etc. Hence,
a bin aggregates a small number of windows in regions
containing many mapped reads in total (i.e., of ChIP plus
Input data), and a large number of windows when the total
number of mapped reads in the region is low.
For the ith bin let Ñch(i) and Ñin(i) denote the number

of reads in the ChIP and Input sample, respectively, and let
Ñtot(i) be their total. Let B0 denote the set of background
bins that contain only windows from W0. For bin i ∈ B0,
let us first assume that the distribution of Ñch(i) is Poisson
with rate π0Nchp(i), and the distribution of Ñin(i) is Pois-
son with rate Ninp(i), where p(i) denotes the probability
of a read falling in background bin i. Therefore, the condi-
tional distribution of Ñch(i) given Ñtot(i) is Binomial with
Ñtot(i) trials and success probability

π0Nchp(i)
π0Nchp(i) + Ninp(i)

= r
r + 1

.

Let π = r
r+1 and π̂ = Ñch(i)

Ñtot(i)
for i ∈ B0. For a large

enough Ñtot(i), the sample logit, log π̂
1−π̂

, has approximate
mean log π

1−π
and standard deviation 1/

√
Ñtot(i)π(1 − π)

(see [35] for details). The expressions for the sample logit,
its expectation, and its variance simplify as follows:

log
π̂

1 − π̂
= log

Ñch(i)
Ñin(i)

, log
π

1 − π

= log r, 1/
√
Ñtot(i)π(1 − π)

= (r + 1)/
√
Ñtot(i)r.

The conditional distribution of the log relative risks
given Ñtot(i) is approximately normal,

log
Ñch(i)
Ñin(i)

·∼ N
(
log r,

(r + 1)2

Ñtot(i)r

)
, (2)

where N(μ, σ 2) denotes the normal distribution with
mean μ and variance σ 2, and ·∼ means “approximately
distributed as”. The approximation is better the greater
Ñtot(i). Since the bins have approximately the same total

http://cmb.gis.a-star.edu.sg/ChIPSeq/paperCCAT.htm
http://cmb.gis.a-star.edu.sg/ChIPSeq/paperCCAT.htm
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counts, it follows that for background bins, the variabil-
ity of log Ñch(i)

Ñin(i)
is similar for all i, and their expectation

is log r. Hence, the observed values log Ñch(i)
Ñin(i)

can be seen
as random samples drawn form the same distribution for
background bins. A kernel density approach [36] can be
used to estimate the density function of log Ñch(i)

Ñin(i)
. For the

background bins we expect the peak to be around log r.
Hence, to assess the performance of the estimate of r̂ we
can compare the location of log r̂ with respect to the left
peak of the estimated density.
In addition to the estimated density of all the bins, we

also plot the four densities of bins in the four quartiles
of the bin-length distribution. These additional densities
aid in identifying the density for background bins. For
example, in the top left Figure 1, which was constructed
with K = 200, the support of the bins ranged from 1 win-
dow to 199 windows. The first quartile was 61 windows,
the median was 93 windows, and the third quartile was
117 windows. Therefore, in addition to the density of all
the bins, we also plot the sub-density for bins that have
support of at most 61 windows, the sub-density for bins
that have support above 61 windows but at most 93 win-
dows, the sub-density for bins that have support above 93
but at most 117 windows, and the sub-density for bins that
have support above 117 windows. Since typically the bins
with signal have shorter support, the density of the bins
with support in the top quartile of length should describe
primarily bins from the background, and the density of
the bins with support in the first quartile of length should
describe primarily bins that contain signal. Therefore, an
adequate estimate of log r should be around the peak of
the estimated density of the log relative risks of the bins in
the top quartile in length.
In practice the read counts may have a distribution

that is more dispersed than the Poisson distribution.
We observed that this is so in the data examined in
the Results and discussion section, and this has been
well documented also by others ([23,25,27], who assumed
the distribution of reads was negative binomial). For
over-dispersed Poisson read counts, the distribution of
log Ñch(i)

Ñin(i)
is approximately normal with larger standard

deviation and slight downward bias. To illustrate this, we
performed the following simulation. We set K = 500,
r = 0.7, and p ∈ {1, 0.5, 0.25}. We simulated Ñch(i) and
Ñin(i) from a Negative Binomial distribution with rates
r·K/(1+r) andK/(1+r), respectively, and variances r·K

p(1+r)
and K

p(1+r) , and computed the mean and standard devia-

tion of log Ñch(i)
Ñin(i)

. The over dispersion in the simulation is
the inverse of p, where p = 1 corresponds to Poisson dis-
tribution. The asymptotic mean and standard deviation
for the Poisson distribution were log(0.7) = −0.3566 and

√
(1 + 0.7)2/(500 ∗ 0.7) = 0.0909. In simulations from

the two Poisson distributions the mean was −0.3573 and
the standard deviation was 0.0911. In simulations from
over-dispersed Poisson distributions, the mean and stan-
dard deviation were: −0.3580 and 0.1291 for p = 0.5 , i.e.
over-dispersion of 2; −0.3596 and 0.1831 for p = 0.25, i.e.
over-dispersion of 4. The simulation standard error was
below 0.0001 for all settings. Since the peak of background
bins is still supposed to be around log r for over-dispersed
Poisson, the diagnostic plot remains relevant, see Figure 2.
Finally, we note that the choice of total count, K , can

matter: if the selected K is too small, then the expectation
may be farther from log r since the large sample approx-
imation is too crude; if the selected K is too large then
the number of background bins may be too few. For diag-
nosing whether the actual estimate of log r is reasonable,
we therefore suggest plotting the empirical density of the
log relative risks at several values of K . In the Results and
discussion section, detailed next, we show that the qual-
itative assessment of the appropriateness of estimates, in
the variety of examples we examined, is the same for dif-
ferent K values in the range 100 to 1000. Since our set
of examples is representative of enrichment shapes that
are encountered in practice, we recommend using the
diagnostic plots with K in this range.

Results and discussion
Data driven simulations
We performed simulations in order to assess the ability
of the diagnostic plot to capture the true normalization
factor, as well as in pointing out the quality of the esti-
mated normalization factors. We considered two different
simulation schemes. They were both based on yeast data,
which is 12 × 106 bp long, about 250 times smaller than
that of the human genome.
The first simulation scheme, which we call the “Read-

add simulation”, is similar to the simulation method of
[29] setting 3. As in [29], it was based on the yeast ChIP-
seq study of [37]. The data (GEO Accession number
GSE19636) was deeply sequenced: the control sample of
segregant 1 (SEG1) had a total of 4.2 × 106 reads, and the
average fragment length was 200 bp. Thus the sequenc-
ing coverage was 200 × 4.2/12 = 70, much higher than
the typical coverage for the human genome. We split the
control sample into two halves, “ChIP” and “Input”. We
subsampled the two halves to yield 1/d of the original
library size. Next, we added reads to the “ChIP” half in
several locations, as follows. We added at 50 randomly
assigned genome locations along the yeast chromosome
reads in the range of several thousands base-pairs, with an
average increase of 0.2 reads with respect to the “Input”
in these enriched regions. In this simulation scheme, the
total number of reads was always greater for the “ChIP”
library and the true normalization score was 1.
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Figure 1 Diagnostic plots for mouse data. Diagnostic plots for six datasets, representing three different modifications, from the mouse embryonic
fibroblast cells in the study of [38]. Panel (a) refers to H3K4me3, panel (b) to H3K27me3, panels (c-e) to the three replicates of H3K36me3, finally

panel (f) to the pooled version of H3K36me3. The five densities are: the density of log Ñch(i)
Ñin(i)

in all bins (solid black curve), the density of the subset of

bins in last quartile in length (two-dashed pink), the density of the subset of bins in third quartile in length (dashed blue), the density of the subset of
bins in second quartile in length (dot-dashed green), and the density of the subset of bins in first quartile in length (dotted red). The vertical lines
show the estimated log r using CisGenome (brown line), CCAT (deepink line) and NCIS (navy line). The plot was produced with K = 200.
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Figure 2 Distributions of estimated log relative risks. The empirical density of the log relative risks for background read counts that are distributed
as Poisson (solid black); or as over-dispersed Poisson with p = 0.5 (dot-dashed pink) and with p = 0.25 (dash blue). The solid vertical line is log(r),
with r = 0.7. The peak is around log r for all three densities.

The second simulation scheme, which we call the
“By-Genes simulation”, is similar to that of [27].We down-
loaded from the Genome Browser the entire table of
yeast genome (sacCer1): 27820 partially overlapping gene
bodies having lengths ranging from 42 to 632 Kb. The
median and average lengths were 1000 bp and 5000 bp,
respectively. We selected 300 non-overlapping gene bod-
ies as enriched. We used the control sample SEG1 above,
subsampled to yield 1/d of the library size in order to
estimate the probability of input reads in non-overlapping
windows of size 100 bp. We generated the “Input” data
from these probabilities. For the “ChIP” data, in enriched
regions the probability of reads falling in the windows
had a higher probability (about twice as high). In this
simulation, the total number of reads is the same for
the “ChIP” and “Input” libraries and the true normaliza-
tion score was determined by the fraction of input reads
that fell outside the 300 enriched regions. Specifically, let
pin(1), . . . , pin(G) be the fraction of reads in windows 1
to G in the 1/d sub-sampled control sample SEG1. Then
the “Input” number of reads per window was sampled
from a multinomial distribution with N total reads, and
the vector of probabilities pin(1), . . . , pin(G). Let f0 =∑

w∈W0 pin(w) be the probability of falling in our defined
W0 (i.e., the fraction of reads outside the 300 enriched
regions out of all the reads in the 1/d sub-sampled control
sample SEG1). The “ChIP” counts per window were sam-
pled from a multinomial distribution with N total reads,
and the vector of probabilities pch(1), . . . , pch(G), where
pch(w) = λwpin(w)/(f0 + 2(1 − f0)), where λw = 2 if
w ∈ W1, and λw = 1 otherwise. Therefore, r = f0/[ f0 +
2(1 − f0)] ∗[ 1/f0]= 1/(2 − f0).
Figure 3 shows that in these data driven simulations, the

true normalization factor is indeed close to the peak of
the empirical density in the top quartile of length. There-
fore, the diagnostic plot judges the true normalization

constant to be a good value to use in the statistical
analysis. Moreover, the diagnostic plots also judges the
estimated normalization factor by CisGenome as slightly
biased upwards in settings (a) and (d), and extremely
biased downwards in setting (c), as is indeed true when
comparing the CisGenome values to the true values. Sim-
ilarly, the diagnostic plots also suggest that there is a slight
upward bias of the other estimates in some of the settings.

Real data application
The diagnostic plot on transcription factors and histone
modifications
We applied the normalization methods and diagnostic
plot on the ChIP-seq data of mouse embryonic fibroblast
cells in [38] (GEO accession number GSE36048).
ChIP-seq samples consist of three histone modifications

H3K4me3, H3K27me3 and H3K36me3 and one transcrip-
tion factor, CTCF, along with the Input sample. The his-
tone modifications are interesting in our context since
they have different shapes and levels of enrichment, with
H3K4me3 being more compact and peaked around the
transcription starting sites of active genes, andH3K27me3
and H3K36me3 more wide-spread over the gene bodies
of repressed and active genes, respectively. On the other
hand, CTCF is an example of the transcription factor that
shows a sharper andmore punctuated signal. These exper-
iments contain signals with different spatial resolutions,
and we shall apply the diagnostic plot for each of these
signal types.
The experimental sequence reads were mapped to the

mouse genome assembly mm8 using MAQ version 0.7.1,
and these alignments were converted to BED format. The
experimental data were subject to filtration, in which we
retained at most two reads starting on a single genomic
position (see Remark 1). Table 1 summarizes the library
sizes before and after the filtration step.
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Figure 3 Diagnostic plots for simulated data. Diagnostic plots for four simulated datasets, generated from the control sample of the ChIP-seq study
by [37]. Figures (a) and (b) are the results from the Read-add simulation, with down-sampling by 2 and 50, respectively. Figures (c) and (d) are the

results from the By-Genes simulation, with down-sampling by 2 and 20. The five densities are: the density of log Ñch(i)
Ñin(i)

in all bins (solid black curve),

the density of the subset of bins in last quartile in length (two-dashed pink), the density of the subset of bins in third quartile in length (dashed blue),
the density of the subset of bins in second quartile in length (dot-dashed green), and the density of the subset of bins in first quartile in length
(dotted red). The vertical lines show the estimated log r using CisGenome (brown line), CCAT (deepink line) and NCIS (navy line), as well as the true
normalization factor in gray. The plot was produced with K = 500.

The H3K36me3 modification had three replicates
labeled rep 1, rep 5 and rep 8 in Table 1. Sample
H3K36me3-pooled was assembled by pooling the three
filtered H3K36me3 replicates. All datasets showed a low
percentage of duplicated reads, so the impact of the
threshold in the filtering step (for PCR artefact removal)
was negligible.
We performed the ChIP/Input normalization factor

estimation of the data samples using the CisGenome,
NCIS and CCAT methods, using the default parameters
in their packages. The diagnostic plots in Figure 1 refer to
the histone modification samples (H3K4me3, H3K27me3
and H3K36me3) and include the estimated density and
the four sub-densities, as well as the estimated log r for the
three methods. The assessment was done with K = 200.
The diagnostic plots (for the same modifications) with

K = 50, 500, 5000 are illustrated in Additional files 1, 2
and 3, respectively. Additional file 4 shows the diagnos-
tic plot for sample CTCF (for K = 50, 100, 500 and 2000,
respectively).
The shape of the estimated density of the log relative

risks confirms that the enriched regions of H3K4me3 are
easily separated from those from the background. In fact,
the estimated density shows a well-defined peak. For the
other two modifications (H3K27me3 and H3K36me3),
enrichment is less pronounced and also more widespread,
and as a consequence the signal is not as easily separated
from the background. This is reflected in the fact that
the estimated density shows a less defined peak. However,
a comparison of the four sub-densities of the different
quartiles in length suggests that the bins in the last quar-
tile in length are background bins, and the bins in the
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Table 1 ChIP-seq and Input library sizes in themouse
embryonic fibroblast cells in the study of [38] and in theD.
melanogaster in themodENCODE 3955 dataset

Modification Library size, Library size, “-2” % of library
bp filtration, bp used

CTCF [38] 15,995,367 14,378,395 90

H3K4me3 [38] 18,466,608 17,047,383 92

H3K27me3 [38] 12,594,070 11,802,201 94

H3K36me3-1 [38] 16,675,805 14,397,781 86

H3K36me3-5 [38] 20,189,813 17,194,818 85

H3K36me3-8 [38] 19,588,306 16,700,104 85

H3K36me3-pooled [38] 56,453,924 48,292,703 86

Input [38] 19,672,479 17,099,127 87

H3K27me3 (modENCODE,
id 1820)

13, 273,869 12,946,455 97

Input (modENCODE,
id 1815)

13,425,292 13,168,039 98

H3K27me3 (modENCODE,
id 1957)

11,997,853 11,807,914 98

Input (modENCODE,
id 1961)

15,685,299 15,402,582 98

H3K27me3-pooled
(modENCODE, id 1820
and 1957)

25,081,783 24,754,369 98

Input-pooled
(modENCODE,
id 1815 and 1961)

28,827,874 28,570,621 98

Note the pooled samples where obtained by pooling filtered libraries and did
not undergo to a further filtration step.

first quartile in length contain mainly signal, for all three
modifications.
Since the density of the subset of bins that are in the

last quartile of length are background bins, the estimated
log r is reasonable if it is in the vicinity of the peak of
this curve. The diagnostic plot in Figure 1 shows that

for the six datasets, the estimator of CCAT is reason-
able. The estimate of CisGenome is diagnosed to be too
large for the datasets H3K27me3 and H3K36me3-rep 1,
and too small for the dataset H3K36me3-pooled. The esti-
mate of NCIS is diagnosed to be too small for the dataset
H3K36me3-pooled.
The diagnostic plot for CTCF, in Additional file 4, shows

that the estimates by CisGenome and NCIS (which are
very close) agree best with the data, and that the estimate
of CCAT may be slightly too small: the mode of the
empirical density of the upper quartile in length bins (in
pink) for all values of K is very close to the estimates
by CisGenome and NCIS, and slightly to the right of the
estimate by CCAT.
Table 2 shows the estimated r and π0 for each method

in each dataset. Since the dataset H3K36me3-pooled is
the pooled data from the three replicates rep 1, rep 5, and
rep 8, another estimator for π0 in the pooled data can
be obtained by a weighted average of the estimates in the
three replicates:

π̃0p = π̂01NCh1 + π̂05NCh5 + π̂08NCh8
NCh1 + NCh5 + NCh8

,

where π̂0i and NChi are the estimated fraction of nulls
and the total number of reads in the ChIP study in rep
i ∈ {1, 5, 8}. The estimate of π0 is connected to the speci-
ficity of the antibody. When the same batch of antibody is
used to enrich different replicated libraries (within analo-
gous laboratory conditions), we expect that the specificity
will be similar on different replicates, while significant dif-
ferences can be viewed as a sign of a different behaviour of
the antibody. On the other hand, when pooling different
samples, the specificity of the antibody is the linear com-
bination of the specificity within each library weighted by
the proportion of each library in the pool. The direct com-
parison of the estimates of NCIS and CisGenome from
the pooled data in row 4 of Table 2 with the estimate π̃0p

Table 2 For each dataset of [38], the estimated r and π0 from CisGenome (columns 2 and 3), fromNCIS (columns 4 and 5),
and from CCAT (columns 6 and 7)

Dataset CisGenome NCIS CCAT

r̂ π̂0 = Nin
Nch

r̂ r̂ π̂0 = Nin
Nch

r̂ r̂ π̂0 = Nin
Nch

r̂

CTCF 0.6699 0.5633 0.6657 0.5598 0.6419 0.5397

H3K4me3 0.3833 0.3845 0.3751 0.3762 0.3715 0.3726

H3K27me3 0.6163 0.8929 0.5182 0.7507 0.5187 0.7515

H3K36me3-1 0.6460 0.7672 0.5727 0.6801 0.5689 0.6757

H3K36me3-5 0.7097 0.7058 0.6802 0.676 0.6763 0.6725

H3K36me3-8 0.6987 0.7154 0.6813 0.6976 0.6499 0.6654

H3K36me3-pooled 1.3117 0.4644 1.4680 0.5198 1.8084 0.6403
π̂01NCh1+π̂05NCh5+π̂08NCh8

NCh1+NCh5+NCh8
0.7274 0.6848 0.6710

The last row shows an estimate of π0 for the pooled sample (modification H3K36me3) based on a weighted average of the three estimated π0 in the three individuals
samples.
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indicates clearly that their direct estimate is far too small.
This concurs with the finding from the diagnostic plot,
that the estimates of NCIS and CisGenome are too small
for the dataset H3K36me3-pooled, and deviate from the
expected value inferred from those obtained using single
replicates.

Effect of the coverage depth
It is known that very disperse histone modifications such
as H3K27me3 require very high coverage to be identified,
and the coverage in the dataset of [38] was low. There-
fore, in addition to the examination of H3K27me3 in the
data of [38], we examined it in a study on D. melanogaster
from modENCODE Project[39] (Model Organism ENCy-
clopedia Of DNA Elements). The dataset consists of two
replicates of histone modification H3K27me3 (identified
by id number 1820 and 1957) and two replicates of Input
(identified by id number 1815 and 1961) from Drosophila
Oregon R embryos, 14-16 hr after egg laying (GEO acces-
sion number GSE47230, modENCODE 3955).
Short reads were aligned to the reference genome using

Bowtie and the alignments were converted to BED format.
As before, the aligned dataset was subject to filtration,
meaning that up to two reads were retained in starting on
a single genomic position.
Table 1 shows the number of reads sequenced in the

study. Since theD. melanogaster genome is about 1.2∗108
bp (compared to 2.8 ∗ 109 bp for the mouse genome), the
coverage of this dataset was about 20 times higher than
the one in previous examples. Sample H3K27me3-pooled
was assembled by pooling the two filtered H3K27me3
replicates. In a similar way we also pooled the two repli-
cate of the Input.
Table 3 shows the estimated r and π0 for each method

in each dataset. The diagnistic plot is shown in Figure 4
and it includes the estimated density and the four sub-
densities as well as the estimated log r for the three
methods. The assessment was done with K = 200.
The shape of the estimated density of the log relative

risks suggests that the enriched regions can be well sepa-
rated from the background. The empirical density of the

lower and upper quartile in length (red and pink curves,
respectively) clearly capture the enriched and background
bins. The diagnostic plot shows that the estimates by
CisGenome and NCIS (which are very close), agree best
with the data, and that the estimate of CCAT is too small:
the mode of the empirical density of the upper quartile
in length bins (in pink) is very close to the estimates by
CisGenome and NCIS, and it is to the right of the esti-
mate by CCAT. Additional file 5 shows the diagnostic plot
for ChIP sample id 1820 versus Inpunt sample Id 1815
and K = 100, 200, 1000, and 2000, respectively (the other
cases behave similarly and are not shown for brevity).

Impact on peak calling algoritms
The main purpose of the ChIP-seq studies is to
detect binding sites and/or enriched regions of histone
modifications, and a peak detection algorithm is typi-
cally used for this purpose. In general, the impact of the
normalization on the identified regions depends on the
specific peak calling method and on the type of multiple
testing procedure that is implemented. Most of the peak
calling algorithms normalize data inside their code using
suitable internal strategies. Tools such as MACS [24] and
SICER[25] use Nch/Nin as their normalization constant.
Following the suggestion of [29], we modified bothMACS
and SICER, making them able to work with user defined
normalization constants. For both methods, the (global)
normalization constant does not change the rank of the
peaks (where the ranking is by p-values or by enrich-
ment scores), but it does affect the number of discovered
regions. Therefore, a smaller normalization constant, with
all other parameters held fixed, may result in a larger
number of discovered regions.
Table 4 shows the empirical impact of the normaliza-

tion constant value. The number of peaks identified using
the default normalization constant (column 2), was always
smaller than the number of peaks identified using the esti-
mated normalization constants by CisGenome, NICS, and
CCAT (columns 3, 4, and 5, respectively). By referring
to the values of the estimated normalization constants in
Tables 2 and 3 we see that the number of discoveries

Table 3 For each dataset of modENCODE 38955, the estimated r and π0 from CisGenome (columns 2 and 3), fromNCIS
(columns 4 and 5), and from CCAT (columns 6 and 7)

Dataset CisGenome NCIS CCAT

r̂ π̂0 = Nin
Nch

r̂ r̂ π̂0 = Nin
Nch

r̂ r̂ π̂0 = Nin
Nch

r̂

H3K27me3 (modENCODE,
id 1820 vs id 1815)

0.6481 0.6587 0.6508 0.6615 0.5760 0.5855

H3K27me3 (modENCODE,
id 1957 vs id 1961)

0.4883 0.6364 0.4933 0.6428 0.4251 0.5540

H3K27me3-pooled (modENCODE) 0.5464 0.6301 0.5656 0.6522 0.4660 0.5373
π̂1820NCh1820+π̂1957NCh1957

NCh1820+NCh1957
0.6473 0.6520 0.5694

The last row shows an estimate of π0 for the pooled sample based on a weighted average of the estimated π0 in the two individuals samples.
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Figure 4 Diagnostic plots for modENCODE data. Diagnostic plots for
the three datasets from modENCODE. Datasets refer to H3K27me3
modification in Dmelanogaster. Panel (a) refers to ChIP id. 1820 and
Input id. 1815, panel (b) to ChIP id 1957 and Input id 1961, panel (c)
to the pooled version of the modEncode semples. The five densities

are: the density of log Ñch(i)
Ñin(i)

in all bins (solid black curve), the density

of the subset of bins in last quartile in length (two-dashed pink), the
density of the subset of bins in third quartile in length (dashed blue),
the density of the subset of bins in second quartile in length
(dot-dashed green), and the density of the subset of bins in first
quartile in length (dotted red). The vertical lines show the estimated
log r using CisGenome (brown line), CCAT (deepink line) and NCIS
(navy line). The plot was produced with K = 200.

increased as the input constant decreased. From Table 4
we see that the choice of the normalization constant had
a significant impact on the peak selection in the datasets
H3K36me3-pooled, CTCF, and all the series of modEn-
code H3K27me3. The impact was less pronounced in the
other datasets. The empirical impact of the normaliza-
tion constant on the peak identifications was shown to be
drammatic by [29] for transcription factors.
Moreover, by looking at the locations of the enriched

regions along the chromosomes in the two replicates we
also measured the number of overlapping/non overlap-
ping intervals as function of the normalization constant.
First, we considered the 1037 regions detected as enriched
(with default constant) in the first H3K27me3 replicate
of modEncode dataset, and the 1026 regions detected as
enriched in the second replicate (see Table 4, column 2).
We found that 106 regions of the first set did not have any
positional overlap with the regions in the second set; and
154 regions of the second set did not have any overlap with
the the first set. However, out of the 106 regions above
described, 79 are detected as enriched in the second repli-
cate when using NCIS as constant (i.e., they overlap some
of the 1893 regions in Table 4, column 4), and out of the
154 regions, 113 overlaps those of the first replicate when
using NCIS as constant (i.e., the 1955 regions Table 4, col-
umn 4). Such comparisons suggest that a proper estimate
of the normalization constant can increase the number of
true discoveries: for example 79 peaks that were detected
by the first replicated but not by the second replicate using
the naive constant due to lack of power, but when the
proper normalization constant was used they were indeed
detected in both replicates.
Overall, using NCIS for estimating the normalization

constant, out of the 1955 regions of the first replicate, 1657
overlap the 1893 regions of the second replicate; and out
of the 1893 regions of the second replicate 1542 overlap
the 1955 regions of the first replicate.

The effect of the estimated normalization constant on the
FDR
As mentioned in the above section, the normalization
constant has an impact on the number of regions that
are declared significant. Each peak calling algorithm pro-
duces an enrichment score (or a p-value) for each region of
interest. The greater the enrichment score (the smaller the
p-value), the greater the evidence that there is a modifica-
tion or a binding site in that region. In order to determine
the cutoff threshold, above which a region is considered
enriched, it has been suggested by [20] and [29] (among
others) to use false discovery rate (FDR, [40]) estimation
by library swapping.
The estimated normalization constant has a crucial role

in determining the cutoff threshold. If the estimate is too
large, r̂ > r, the procedure may be overly conservative. If
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Table 4 Number of peaks detected using the naive normalization constant (column 2), the estimate by CisGenome
(column 3), NCIS (column 4), and CCAT (column 5), in a specific peak calling algorithm (column 6)

TF or Modification Default CisGenome NCIS CCAT Peak calling Algorithm

CTCF [38] 22522 29841 30369 38339 MACS

H3K4me3 [38] 16972 17400 17401 17403 SICER

H3K27me3 [38] 10233 10844 11272 11271 SICER

H3K36me3-1 [38] 10139 10676 10747 10752 SICER

H3K36me3-5 [38] 13880 15192 15248 15257 SICER

H3K36me3-8 [38] 14079 15454 15494 15564 SICER

H3K36me3-pooled [38] 16326 18788 18729 18509 SICER

H3K27me3 (modENCODE:
id 1820 vs id 1815)

1037 1959 1955 2028 SICER

H3K27me3 (modENCODE:
id 1957 vs id 1961)

1026 1894 1893 1949 SICER

H3K27me3-pooled (modENCODE) 1118 2068 2049 2172 SICER

SICER was applied on histone modifications with the following input values: window size 200, gap size 400, FDR 10−8 and all other parameters as default. MACS was
applied on CTCF using default values and FDR 10−4 . The FDR considered here is the one implemented in the corresponding software.

the estimate is too small, r̂ < r, the procedure may detect
too many false positives. To see this, we first introduce a
peak detection procedure based on library swapping that
controls the FDR, and then we discuss the effect of over-
or under- estimation of r.
Consider an enrichment score g(Ñch(i), Ñin(i), r), where

Ñch(i) and Ñin(i) denote the number of reads in the ChIP
and Input sample, respectively, in bin i. The swapped
score in bin i is therefore g(Ñin(i), Ñch(i), 1/r). Let q be
the desired FDR level (e.g., q = 0.05). Let S = {i :
g(Ñin(i), Ñch(i), 1/r) ≥ g(Ñch(i), Ñin(i), r)} be the index
set of the bins where the enrichment score is higher for the
swapped libraries. Let Sc contain the remaining indices.

Procedure 1. The peak detection procedure at FDR level
q is as follows:

1. Find

T = min
{
t ∈ (0,∞) :

1 + #{i ∈ S : g(Ñin(i), Ñch(i), 1/r) ≥ t}
#{i ∈ Sc : g(Ñch(i), Ñin(i), r) ≥ t} ∨ 1

≤ q
}
.

2. Declare all bins with g(Ñch(i), Ñin(i), r) ≥ T , i ∈ Sc,
as enriched.

Theorem 1. Suppose that the enrichment scores in non-
enriched (i.e., null) regions are i.i.d and are independent
from the scores in enriched regions. Moreover, suppose that
for a non-enriched (i.e., null) bin i,

Pr
(
g
(
Ñin(i), Ñch(i), 1/r

)
< g

(
Ñch(i), Ñin(i), r

) |Gi
) ≤ 1/2,

where Gi = max{g(Ñch(i), Ñin(i), r), g(Ñin(i), Ñch(i), 1/r)}.
Then the FDR of the above procedure is controlled at
level q.

See Additional file 6 for a proof based on a very nice
recent result of [41].
Since r is not known in practice, it is estimated

from the data. For a reasonable enrichment score,
g(Ñch(i), Ñin(i), r) decreases with increasing r, since a
larger r implies that a larger fraction of the reads in
the ChIP sample are null reads. Consider an estimate
r̂ > r. Then g(Ñch(i), Ñin(i), r̂) < g(Ñch(i), Ñin(i), r), and
g(Ñin(i), Ñch(i), 1/r̂) > g(Ñin(i), Ñch(i), 1/r). Therefore,
using r̂ instead of r, may result in a larger set S (and,
respectively, a smaller set Sc), and the cut-off threshold
based on r̂ will be smaller, thus less discoveries would
be made. A similar reasoning suggests that if r̂ < r, the
cut-off threshold based on r̂ will be larger, thus more dis-
coveries would be made. However, if r̂ < r, there is no
longer any guarantee for FDR control, and it may very well
be that the actual fraction of false discoveries among the
discoveries is far larger than the desired level q. Therefore,
in order to keep the desired balance between power and
false discovery control, it is crucial to estimate r well.

Remark 2. The algorithm does not require a full list of
enrichment scores for all bins considered, and a partial
list of the largest scores may suffice. To see this, note that
the procedure can be executed as follows (the justification
follows from the proof in Additional file 6.

1. Sort the bins, so that the bin with index i = 1 has the
largest enrichment score or swapped score, the bin
with index i = 2 has the second largest enrichment
score or swapped score, etc. Formally, if
Gi = max

{
g(Ñch(i), Ñin(i), r), g(Ñin(i), Ñch(i), 1/r)

}
,

the sorted scores satisfy G1 ≥ . . . ≥ GB > 0, where B
is the total number of bins considered for enrichment.
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2. Find

k̂ = max
{
k :

1 + #{i ≤ k, i ∈ S}
#{i ≤ k, i ∈ Sc} ∨ 1

≤ q
}
.

3. Declare the bins i = 1, . . . , k̂ as enriched.

If a peak calling algorithm outputs only all enrichment
scores above a cut-off A, then the inference proceeds as fol-
lows. The Gis are computed for all the bins with enrichment
score or swapped score above A. Clearly, if bin i was only
discovered in the original analysis, then i ∈ Sc, and if it was
only discovered after swapping the libraries, then i ∈ S . If
the bin was discovered by both original analysis and anal-
ysis after swapping, then the bin is in Sc if the score in
the original analysis was highest, and it is in S if the score
after library swapping is highest. If 1+#{i∈S}

#{i∈Sc}∨1 ≤ q, all bins
above the cut-off A are declared enriched. Otherwise, find
k̂ as detailed above, and declare the bins i = 1, . . . , k̂ as
enriched. It is straightforward to show that the selection
above the cut-off A does not invalidate the procedure, and
thus the FDR is still controlled. The cut-off A may how-
ever affect the power, since if a lower cut-off than A would
have led to more rejections, then the power could have been
higher. Therefore, it is desirable to choose a cut-off A below
which it is believed that enrichment is unlikely.

Code availability
The diagnostic plot described in this paper has been
implemented within the chip_diagnostics function in the
R language. The chip_diagnostics function is described in
the Additional file 7.

Conclusions
The analysis of ChIP-seq data has become in the last
decade one of the most used methods for obtaining
genome-wide maps of protein-DNA interactions and dif-
ferent epigenetic signatures. Despite the many available
tools for detecting enriched regions from ChIP-seq exper-
iments, many statistical issues are still open. Among them,
we have focused our attention on the problem of esti-
mating the normalization constant when comparing ChIP
and Input samples. We developed a simple diagnostic tool
for assessing the appropriateness of a given normalization
constant when applied to a real dataset. We illustrated the
proposed approach on several real datasets consisting of
enriched regions of various shapes. We showed the use-
fulness of such a plot in picking the most reliable constant
among few proposals. As a consequence, instead of choos-
ing one specific estimator for all datasets, the user can
choose the estimator that is most adequate for the dataset
under analysis.
All our examples clearly show that there is no single

normalization method that is clearly superior to the other
ones, under different settings. The diagnostic tool can

identify problematic cases that require a reassessment of
the normalization procedure, and it can choose the best
estimate among several. However, it cannot serve as an
estimate of the normalization constant, even though the
diagnostic tool shows graphically the range of reasonable
estimates. This is so since from the graph it is very difficult
to extract a single number which can serve as an estimate
of the normalization constant. Although the left peak of
the empirical density of the log relative risks is expected
to be around log r, we see from the real and simulated
examples that the peak is broad, and that it depends on
K . Therefore, it is hard to estimate the normalization con-
stant from the diagnostic plot, and such an estimate will
necessarily be unstable and of limited use.
Once the normalization constant is chosen, it should

be incorporated in the algorithm of detection of enriched
regions in peak calling tools. Unfortunately, most of the
tools compute the normalization constant directly in their
code. Therefore, to change the constant the user has to
access the source code. By suitably modifying MACS and
SICER, we show that the list of significant regions can be
tuned using r̂. An over-estimate of r̂ will produce an over
conservative list of peaks, an under-estimate will increase
the number of false positive. We also provide a novel pro-
cedure aimed to control the FDR at level q using a sample
swapping strategy. This novel procedure can be incorpo-
rated in the analysis pipeline to allow a more rigorous
control of false positives.
In this paper we have considered the problem of

between-sample normalization, and we have limited our
attention to linear methods (i.e., a global estimator r̂).
However, the problem of sample normalization in the
ChIP-seq context can be more complex than what has
been considered here. In fact, several other experimental
biases are connected with ChIP-seq normalization, such
as CG content, PCR amplification, library preparation etc.
This suggests that both within sample and between sam-
ple normalization procedures should be applied. Some
non-linear methods towards this direction have already
been proposed in the context of ChIP-seq [30,31]. Other
approaches could be derived from methods available for
DNA-seq (see [42] for CG content bias). Our approach
does not directly apply to non linear methods and the
extension might depend on the type of non liner method
that is considered. Such extension is outside the scope of
this manuscript, and a direction for future research.
In this paper we have considered the case where a

ChIP sample is compared with an Input sample. It is now
becoming standard practice to profile more ChIP sam-
ples (relative to the same transcription factor or histone
modification) collected under different experimental con-
ditions, such as those used to investigate the epigenetic
response to different pharmacological treatments or to
associate difference in the epigenetic profile to different
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diseases status. In such cases the problem is to detect
regions that are both enriched with respect to the respec-
tive Input samples and are differentially enriched among
the ChIP samples belonging to different experimental
conditions. This context constitutes an emerging area of
research with relatively few methods available (see [18]
for a review), where normalization is going to play a very
important role. Our diagnostic tool is expected to be
useful in such settings as well.
Another point of future development is the possibility of

incorporating additional source of biological information
such as chromatin accessibility obtained from by DNase I
digestion [43] in order to create the sub-densities.

Additional files

Additional file 1: Diagnostic plots. Analogous to Figure 1. Diagnostic
plots for six datasets of histone modifications in [38]. The plot refers to
K = 50.

Additional file 2: Diagnostic plots. Analogous to Figure 1. Diagnostic
plots for six datasets of histone modifications in [38]. The plot refers to
K = 500.

Additional file 3: Diagnostic plots. Analogous to Figure 1. Diagnostic
plots for six datasets of histone modifications in [38]. The plot refers to
K = 5000.

Additional file 4: Diagnostic plots. Diagnostic plots for the CTCF dataset
in [38]. The plot refers to K = 50, 100, 500 and 2000, respectively.

Additional file 5: Diagnostic plots. Analogous to Additional file 4.
Diagnostic plots for H3K27me3 dataset in modENCODE 3955 (id 1820 vs id
1815). The plot refers to K = 100, 500, 1000 and 2000, respectively.

Additional file 6: Proof of Theorem 1.

Additional file 7: R function chip_diagnostics. The supplementary html
file illustrates the chip_diagnostics function and its usage.
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