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Purpose.This study aimed to determine the dynamic changes ofNF-𝜅B-relatedmicroRNAs (miRNAs) and cytokines over the course
of experimental autoimmune anterior uveitis (EAAU) and elucidate the possible immunopathogenesis. Materials and Methods.
Uveitis was induced in Lewis rats using bovine melanin-associated antigen. The inflammatory activity of the anterior chamber
was clinically scored, and leukocytes in the aqueous humor were quantified. RNA was extracted from the iris/ciliary bodies and
popliteal lymph nodes to reveal the dynamic changes of eight target miRNAs (miR-155-5p, miR-146a-5p, miR-182-5p, miR-183-
5p, miR-147b, miR-21-5p, miR-9-3p, and miR-223-3p) and six cytokine mRNAs (IFN-𝛾, IL-17, IL-12A, IL-1𝛽, IL-6, and IL-10). In
situ hybridization of miRNA and enzyme-linked immunosorbent assay quantification of cytokines were performed to confirm
the results. Results. Disease activity and leukocyte quantification were maximum at day 15 after immunization. The profiling of
miRNA revealed downregulation of miR-146a-5p, miR-155-5p, miR-223-3p, and miR-147b and upregulation of miR-182-5p, miR-
183-5p, and miR-9-3p. Cytokine analysis revealed IFN-𝛾, IL-17, IL-12A, IL-1𝛽, and IL-6 overexpression, with IL-10 downregulation.
Conclusions.Dynamic changes of miRNAs were observed over the course of EAAU. By initiating NF-𝜅B signaling, the expressions
of downstream cytokines and effector cells from theTh17 andTh1 lineages were sequentially activated, contributing to the disease.

1. Introduction

Uveitis is defined as the inflammation of uveal tracts. Because
of the heterogeneity of its pathogenesis, recurrent disease
attacks, prolonged or repeated steroid treatment is the current
mainstay. However, this treatment strategy brings about some
problems. Firstly, multiple administrations of steroid might
cause subsequent ocular complications, such as cataract,
glaucomatous optic neuropathy, scleral melting, or even
superimposed infection. Secondly, since no reliable mark-
ers can predict upcoming recurrence in preclinical stages,
steroid usage only alleviates but not prevents uveitis attacks.
Therefore, uveitis still accounts for 10–25% of legal blindness
worldwide [1–3]. Among the anatomical classifications by
the Standardization of Uveitis Nomenclature (SUN)Working
Group [4], 43–70% of uveitis cases are anterior uveitis [5–
7]. Despite the well-described clinical presentations, the
exact underlying mechanism of the disease has not yet been
completely elucidated.

Several animal models have been developed for the
further study of uveitis. Among these, as established by
Broekhuyse and colleagues, experimental autoimmune ante-
rior uveitis (EAAU) on Lewis rats differs from another com-
mon model, experimental autoimmune uveoretinitis (EAU),
in that the inflammation remains exclusively anterior, and the
photoreceptor cells and retinal tissues are not affected [8]; this
resembles human acute anterior uveitis (AAU). Moreover,
the clinical course of EAAU is also similar to human AAU.
It often exhibits disease onset at day 11 after immunization,
with inflammation peaking at days 15–19, recovery at day
30 [9], and it has a recurrent nature [10]. Immunologically,
previous literature has revealed the essential involvement
of the nuclear factor kappa B (NF-𝜅B) pathway in EAAU,
with the subsequent secretion of numerous downstream
cytokines and production of chemokines [11, 12]. While
innate immunity contributes to both the disease induction
and tissue damage, adaptive immunity, particularlyTh1/Th17
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activation, is regarded as being crucial in some panuveitis
studies [13–15]. However, researches on the dynamic involve-
ment of Th1/Th17-related cytokines in EAAU have been
inconclusive [11, 16].

MicroRNAs (miRNAs) are small noncoding RNA
molecules that can function as posttranscriptional regulators
of gene expression and affect numerous biological processes
in eukaryotes [17]. Recently, more information on the
relationship between miRNA and immunity has been
elucidated [18–20]. It has been suggested that the interplay
of miRNAs and NF-𝜅B can regulate the immune response
either positively or negatively [21, 22]. Specifically, miR-
146a and miR-155 are considered as key immunological
players. By attenuating tumor necrosis factor (TNF)
receptor-associated factor 6 (TRAF6) and interleukin- (IL-) 1
receptor-associated kinase 1 (IRAK1),miR-146awas observed
to affect downstream NF-𝜅B expression and, finally, inhibit
inflammation [22, 23]. In contrast, miR-155 was regarded as
a positive regulator in both cellular and humoral immune
responses in some studies. miR-155-deficient mice failed to
secrete class-switched immunoglobulins [24] and exhibited
diminished production of Th17 cells [25]. Expression
profiling of miRNA has been carried out in human and
animal panuveitis [26, 27]. The dynamic changes of miRNAs
emerge long before disease onset [27] and are proposed to
contribute to NF-𝜅B and Fas ligand activation, with ultimate
photoreceptor apoptosis [26].

To our knowledge, no studies have focused on the
involvement of miRNAs in either animal or human AAU.
Since miRNAs regulate the NF-𝜅B pathway, detailed inves-
tigation of the dynamic expression of miRNAsmight provide
new insights into the pathogenesis and treatment of EAAU.
Specific miRNA changes can be quantitative guidance for
inflammatory activity, early predictors of disease attack, and
steroid-sparing therapeutic targets. Meanwhile, as evidence
regarding Th17 participation in EAAU is scarce, Th1/Th17
cytokine analysis is also important in confirmation of specific
cellular immune-pathogenesis in EAAU. The present study
was therefore conducted to reveal the dynamic changes of
miRNAs andTh1/Th17 related cytokines in EAAU.

2. Materials and Methods

2.1. Animals. Lewis rats that were 6–8 weeks old andweighed
125–160 g were used in the experiments. All animals were
treated in accordance with the ARVO statement for the Use
of Animals in Ophthalmic and Vision Research.

2.2. Preparation of Antigen and Induction of EAAU. Melanin-
associated antigen (MAA) was prepared according to the
method from Broekhuyse et al.’s publication in 1991 [8]. The
iris and ciliary bodies were harvested from fresh bovine eyes.
The tissue was homogenized and then filtered through a
wire mesh to remove all the connective tissue and cellular
debris. Next, the homogenate was centrifuged at 1.2 × 105 g
at 4∘C for 15 minutes. The centrifuged homogenate was then
washed once with phosphate buffered saline (PBS) at pH 7.4.
The resulting pellet was resuspended in 2% sodium dodecyl
sulfate (Bio-Rad, Richmond, CA, USA) and incubated at

70∘C for 10 minutes. The pellet was washed three times
with water after centrifugation.These insoluble antigens were
subsequently dried and stored at −20∘C.

In order to induce EAAU, the Lewis rats simultaneously
received two injections of different MAA preparations. (1)
MAA was suspended in PBS and 1 : 1 emulsified in complete
Freund’s adjuvant (Sigma Aldrich, St. Louis, MO, USA).
The suspension (0.05mL) was injected into the left hind
footpad of the rats. (2)MAAwas emulsifiedwith 1 𝜇g purified
Bordetella pertussis toxin (List Labs, Campbell, CA, USA) and
injected intraperitoneally in a total volume of 0.05mL. In the
control group, 0.05mL of PBS was simultaneously injected
into the left hind footpad and intraperitoneally in the rats.

2.3. Clinical Examinations. Biomicroscopy examinations
were performed daily. The disease severity was graded from
0 to 4: 0: normal, without any anterior chamber cells or
iris changes; 1: slight iris vessel dilation and some anterior
chamber cells; 2: iris hyperemia, with some limitation in
pupil dilation; 3: miotic, hyperemic, irregular, and slightly
damaged iris, with considerable flare and cells (especially
when accumulated near the iris); and 4: seriously damaged
and hyperemic iris, with a miotic pupil filled with protein,
and cloudy, gel-like aqueous humor (AqH).

2.4. Tissue Preparations. Three Lewis rats each in the study
and control groups were sacrificed on days 0, 7, 10, 15, and
25 after immunization. Both eyes were harvested at each
time point. The eyes were enucleated, and then the iris and
ciliary bodies were carefully isolated under an operating
microscope. The popliteal lymph nodes were also harvested.

2.5. Quantification of Leukocytes in Aqueous Humor. Imme-
diately after sacrificing the animals and before dissection of
ocular tissues at each time point, the AqH was obtained
using a 30-gauge needle (2 𝜇L). The AqH was then collected
in silicone-treated microcentrifuge tubes (Fisher Scientific,
Pittsburgh, PA, USA) and stained with 0.4% trypan blue.The
numbers of leukocytes were counted under phase contrast
microscopy.

2.6. RNAExtraction andMicroarray Experiments. Total RNA
was isolated from iris, ciliary bodies, and popliteal lymph
nodes with Trizol reagent (Life Technologies, Gaithersburg,
MD, USA). The samples were labeled using the miRCURY
LNA microRNA Hi-Power Labeling Kit, Hy3/Hy5, and
hybridized on the miRCURY LNA microRNA Array (7th
Gen, Exiqon, Vedbæk, Denmark) in accordance with the
manufacturer’s instructions. Image analysis was then per-
formed to quantify the signals on the array.Themean ± stan-
dard deviation was calculated for each group, and miRNA
signals were all transformed to logarithm base 2 for further
statistical analysis.

2.7. Quantitative Measurement of MicroRNAs, Cytokines, and
Corresponding mRNA Levels. Preliminary comparison was
performed between samples from three studies (14 days
after induction) and three control Lewis rats. The miRNA
profiling first identified a subset of 138 miRNAs with the
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absolute value of the log fold changes larger than 1. From
these miRNAs, a thorough literature review was performed
on the 30 most differentially expressed miRNAs. Finally,
eight of the most relevant miRNAs were selected in accor-
dance with the following principles: (1) significant differential
expression between study and control samples was noted
(log fold changes ≥2, either positively or negatively); (2)
involvement in the NF-𝜅B pathway has been reported; and
(3) potential ways that the miRNA contributes to uveitis have
been addressed in the literature. The eight miRNAs studied
were miR-155b-5p, miR-21-5p, miR-146a-5p, miR-9-3p, miR-
147b, miRNA-183-5p, miRNA-182-5p, and mi-RNA-223-3p.
Normalization was performed with snoRNA202 for the
miRNAs. Quantitative real-time polymerase chain reaction
was performed in triplicate.

Further, the cytokines of interest were interferon- (IFN-)
𝛾, IL-17, IL-12A, IL-1𝛽, IL-6, and IL-10. The relative mRNA
expression levels of these six cytokines were studied after total
RNAwas extracted from the iris, ciliary bodies, and popliteal
lymph nodes of the rats, as mentioned above. IL-12 and IFN-
𝛾 have long been recognized as Th1 key cytokines [28], while
IL-1 and IL-17 are regarded as Th17 signature cytokines [29].
In order to elucidate howTh1 andTh17 are involved in EAAU
and to further confirm the results obtained with mRNA, we
measured the levels of IFN-𝛾, IL-17, IL-12A, and IL-1𝛽 in the
AqH at days 0, 7, 10, 15, and 25 after immunization using a
sandwich enzyme-linked immunosorbent assay (ELISA) kit
(R&D Systems, Minneapolis, MN, USA) according to the
manufacturer’s instructions. The ELISA was repeated twice,
and the samples were diluted up to a total volume of 50 𝜇L
before testing. The optical density was determined at A

450

(absorbance at 450 nm) with a microplate reader (Bio-Rad,
Hercules, California, USA), and the cytokine concentration
was determined from standard curves using recombinant
standards supplied by the manufacturer.

2.8. Histopathological Proof by In Situ Hybridization for
miRNAs. Enucleated eyes from Lewis rats were embedded in
paraffin and cut into 2 𝜇m sections. In situ hybridization was
then performed following the standard protocols provided by
the manufacturer (Exiqon). The slides were prehybridized in
a solution of 50% formaldehyde, 0.1% Tween, 5x SSC buffer,
9.2mM citric acid, 50 𝜇g/mL heparin, and 500𝜇g/mL yeast
RNA. The slides were hybridized overnight in a humidified
chamber at 57∘C, with 20 nM of digoxigenin-labeled probe
per slide. Oligonucleotide probes specific for the two selected
miRNAs (miR-146a-5p andmiR-182-5p)were labeled at the 5󸀠
end with digoxigenin. Antidigoxigenin antibodies were used
to detect the hybridized probes. After three washings at 57∘C,
the sections were stained with solutions (Kernechtrot, Muto
Chemical, Tokyo, Japan).

2.9. Statistical Analysis. The levels of cytokine and miRNA
expression and the clinical severity grading of EAAU were
analyzed with the Kruskal-Wallis test. Comparisons between
the study and control groups were performedwith theMann-
Whitney 𝑈 test. Continuous variables are presented as the
mean ± standard deviation. P values < 0.05 were considered
statistically significant.
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Figure 1: Clinical scores and inflammatory cells in aqueous humor
following induction of EAAU. The concentrations of the inflamma-
tory cells are shown in the bar chart, while the clinical scores are
represented by the line graph. EAAU: experimental autoimmune
anterior uveitis.

3. Results

3.1. Clinical Activity Scores and Leukocyte Quantification in
Aqueous Humor following Induction of EAAU. The clinical
signs of EAAU and leukocyte infiltration were noted from
day 7 after MAA induction, with both peaking at day 15
and decreasing at day 25 after immunization. The dynamic
changes of AqH leukocyte quantification and clinical scores
are shown in Figure 1, and both reached statistical signifi-
cance (𝑃 = 0.0001 and 𝑃 = 0.0472, resp.).

3.2. Relative miRNA Expression Levels in Iris and Ciliary
Bodies following EAAU Induction. The complete dynamic
profiles of the levels of each miRNA are summarized in
Table 1 and Figure 2. Generally, the expression of miR-9-
3p, miR-182-5p, and miR-183-5p tended to increase from
day 7 after immunization onwards and peaked at day 10
after immunization.Meanwhile, miR-146a-5p, miR-147b, and
miR-155-5p were significantly downregulated from day 7
and were repressed along the disease course, reaching the
lowest level of expression at day 15. The expression levels
of miR-146a-5p, miR-155-5p, miR-182-5p, and miR-183-5p
in iris/ciliary bodies and popliteal lymph nodes are shown
in Figure 3. The levels of miR-146a-5p and miR-155-5p in
the popliteal lymph nodes reached their lowest point earlier,
on day 7, while those in the iris/ciliary body tissue kept
decreasing until day 15 after immunization. No significant
difference was noted in terms of miR-182-5p and miR-183-5p
in the popliteal lymph nodes over the course of the disease.
In situ hybridization in the iris/ciliary body tissue over the
14 days following disease induction (Figure 4) confirmed the
reduced expression of miR-146a-5p and enhanced expression
of miR-182-5p in the eyes examined.

3.3. Cytokine Concentration in the Aqueous Humor and
Corresponding mRNA Expression in Iris and Ciliary Bodies
following EAAU Induction. A summary of the relativemRNA
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Table 1: Detailed microRNA expression profiles over the course of EAAU.

MicroRNA 7 dpi 10 dpi 15 dpi 25 dpi
Fold 𝑃 Fold 𝑃 Fold 𝑃 Fold 𝑃

Upregulated miRNAs
miR-9-3p 2.20 ± 0.53 0.15 4.42 ± 0.78 0.04 1.64 ± 0.41 0.26 1.48 ± 0.30 0.25
miR-182-5p 3.00 ± 0.55 0.07 6.15 ± 1.19 0.05 2.99 ± 0.38 0.03 2.40 ± 0.38 0.07
miR-183-5p 3.20 ± 0.64 0.08 4.77 ± 0.90 0.05 2.63 ± 0.34 0.04 2.62 ± 0.38 0.05

Downregulated miRNAs
miR-146a-5p 0.37 ± 0.05 <0.01 0.25 ± 0.02 <0.01 0.05 ± 0.00 <0.01 0.10 ± 0.01 <0.01
miR-147b 0.31 ± 0.08 0.01 0.12 ± 0.01 <0.01 0.07 ± 0.02 <0.01 0.09 ± 0.02 <0.01
miR-155-5p 0.42 ± 0.08 0.02 0.15 ± 0.03 <0.01 0.08 ± 0.01 <0.01 0.31 ± 0.07 0.01
miR-223-3p 0.82 ± 0.09 0.18 0.51 ± 0.08 0.02 0.18 ± 0.02 <0.01 0.29 ± 0.03 <0.01

miRNA with mixed trends
miR-21-5p 1.28 ± 0.24 0.35 1.42 ± 0.18 0.14 0.99 ± 0.07 0.86 0.56 ± 0.09 0.04
Fold: fold changes among study/control eyes, expressed inmean± standard deviation; dpi: days after immunization; EAAU: experimental autoimmune anterior
uveitis
The peak expression levels among upregulated miRNAs and the trough expression levels among downregulated miRNAs are expressed in bold.
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Figure 2: Relative expression levels of microRNAs in iris/ciliary bodies. ∗Significant differential expression among study and control eyes
(𝑃 < 0.05).

expression levels in iris/ciliary bodies is shown in Figure 5.
Among them, IL-6 showed the most obvious increase in
expression, with 6.89 ± 0.28-fold changes at day 15 after
immunization (𝑃 = 0.002), while IL-10 exhibited significantly
repressed expression, with 0.63 ± 0.01-fold changes at day
15 after immunization (𝑃 = 0.001). The peak/trough fold
changes of mRNA expression of the other four cytokines
were IFN𝛾: 1.68 ± 0.03 at day 15 after immunization (𝑃 =
0.002), IL-12A: 1.53 ± 0.03 at day 25 after immunization (𝑃 =
0.004), IL-17A: 1.52 ± 0.04 at day 25 after immunization (𝑃 =
0.007), and IL-1𝛽: 1.30 ± 0.05 at day 25 after immunization
(𝑃 = 0.025). In order to elucidate the involvement of the
Th1 and Th17 lineages and to confirm the mRNA findings,
the concentrations of IFN𝛾, IL-12A, IL-17A, and IL-1𝛽 were
analyzed with ELISA.

Detailed mRNA expression and aqueous concentration
of each target cytokines in the disease course are shown in
Figure 6. The concentration of IL-1𝛽 significantly increased
from day 7 after immunization, peaking at day 15 and falling

at day 25 after EAAU induction. IL-1𝛽 mRNA showed a
continuously increasing trend from the beginning of the dis-
ease induction. IL-12A concentration dramatically increased
at day 15 following disease induction, and decreasing soon
after. The mRNA expression of IL-12A kept increasing even
after the reduction of IL-12A concentration. Further, IL-17A
steadily increased in concentration from day 7 after immu-
nization, with a corresponding trend in mRNA expression.
IFN-𝛾 concentration and mRNA expression simultaneously
increased, peaking at day 15 and falling at day 25 after EAAU
induction. Overall, the dynamic changes in the concentration
of each cytokine were consistent with those of the corre-
sponding mRNAs.

4. Discussion

In the current study, the differential expressions of miRNAs
were mostly evident 7–10 days after disease induction, with
sequential cytokine changes 10–15 days after immunization.
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Figure 3: Respective dynamic expression levels of microRNAs in iris/ciliary bodies and popliteal lymph nodes. ∗Significant differential
expression among study and control eyes (𝑃 < 0.05). ICB: iris/ciliary body tissue; PLN: popliteal lymph nodes. miR-146a-5p and miR-155-5p:
downregulation of miRNA in PLN reached its lowest point at day 7 after immunization, while that in ICB reached its lowest point at day 15
after immunization. miR-182-5p andmiR-183-5p: upregulation of miRNA in ICB peaked at day 7 after immunization, while dynamic changes
of miRNA expression in PLN did not reach significant difference among the study and control groups at any specific time point.

Elevation of clinical scores and corresponding leukocyte
infiltration in the AqH peaked at day 15 after immuniza-
tion, which was in agreement with the results in previous
literature [11, 30, 31]. This time sequence suggests that
regardless of proinflammatory (upregulated) or inhibitory
(downregulated) roles of individualmiRNAs, immunological
activation occurs days before clinical presentation, and that
miRNAs may be the upstream molecular driver. The earlier
changes of miR-146a-5p and miR-155-5p in the popliteal
lymph nodes than in the iris/ciliary bodies also demonstrate
the immunoanatomical fact that antigen presentation with T
cell maturation has already taken place in the closest draining
lymph node.

Clinical inflammation ensues through the sequential
activation of both the Th1 and Th17 lineages, as proven
by the cytokine profiling. Previous studies have addressed
the involvement of innate immunity early in the course of
the disease, with late involvement of adaptive immunity in
EAAU [8, 32]. Molecular evidence has further disclosed the

involvement of NF-𝜅B in the induction of uveitis [33, 34].
Taken together with the detailed pathway ofNF-𝜅B activation
by upstream miRNAs in toll-like receptor signaling [35] and
the role of miRNAs in T cell clonal expansion/polarization
[36], the miRNA signatures in the current study provide
insight into the immunopathogenesis of EAAU. Among the
miRNAs studied, miR-146a-5p, miR-155-5p, miR-182-5p, and
miR-183-5p are four particularly crucial miRNAs for the
following reasons: they all show significant differential pro-
files in the disease course; they all regulate NF-𝜅B pathway,
and miR-146a-5p and miR-155-5p are regarded as potent
immunological drivers; they all have been reported in some
uveitis models. Therefore, the interplay of these 4 miRNAs
with NF-𝜅B deserves special attention.

The regulation of miR-146a and NF-𝜅B is bidirectional
and encompasses both innate and adaptive immunity. While
themiR-146a gene is transcriptionally activated in response to
NF-𝜅B activation, it inhibits TRAF6 and IRAK1 and, hence,
dampens NF-𝜅B expression [20, 22, 23]. Additionally, the
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(a) (b)

(c) (d)

Figure 4: In situ hybridization of microRNAs in iris/ciliary body tissue. (a) + (b)miR-146-5p at day 15 after immunization: note the decreased
purple dots, which reflect the lower expression in the study eye (b) than in the control eye (a). (c) + (d)miR-182-5p at day 10 after immunization:
note the increased purple dots, which reflect the higher expression in the study eye (d) than in the control eye (c).
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Figure 5: Summary of relative expression levels of mRNA of the
target cytokines in iris/ciliary bodies. Because of the space limit, IL-
17 and IL-12A coincide in the graph.

Th1 lineage is normally suppressed by miR-146a through the
targeting of STAT-1 expression and the activation of Treg cells
[37]. Genetic studies on human uveitis revealed the associ-
ation of the downregulated genotype of a single nucleotide

polymorphism of miR-146a, rs2910164, with increased sus-
ceptibility to juvenile idiopathic arthritis [38] and microvas-
cular leakage in pediatric uveitis [39]. The decreased expres-
sion of miR-146a in a Chinese population with Behçet’s
disease has also been noted [40]. In agreement with the afore-
mentioned studies, the dramatic downregulation ofmiR-146a
over the disease course possibly causes the NF-𝜅B activation
and Th1 clonal expansion and, ultimately, the intraocular
inflammation observed in this disease. As current evidence
clearly delineated the regulation between miR-146a and NF-
𝜅B, and the immune-inhibitory role has been consistently
validated through various autoimmune diseases and uveitis,
miR-146a can be a promising therapeutic target.

Previous literature has revealed the substantial involve-
ment of miR-155 in both innate and adaptive immunity,
including the inhibition of the MyD88-dependent toll-like
receptor pathway [41], immunoglobulin class switching,
Th17/IL-17 axis enhancement, and Th1 upregulation with
Th2 downregulation [36]. While the positive contribution of
the immune response in clinical and experimental arthritis
[42] and multiple sclerosis [43] has been noted, miR-155
knockout mice suffered from an exaggerated autoimmune
response in the lungs, indicating its role in the prevention
of asthma [44]. These contradictory results reflect the fact
that multiple targets of the intracellular pathways can be
manipulated by miR-155. The downregulation of miR-155
may possibly contribute to EAAU emergence. Firstly, NF-𝜅B
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upstream factors such as MyD88 [45], TAB2 [46], IKK𝜀,
and RIP1 [35], which are normally inhibited by miR-155,
may be overexpressed following the downregulation of miR-
155. Secondly, the Th1 lineage may be abated after the
downregulation of miR-155, which subsequently results in
high levels of Th17 axis expression. In accordance with our
findings, miR-155 downregulation has also been noted in
human subjects with active Behçet’s disease [47].

MiR-182 and miR-183 belong to the same family, and
unlike other miRNAs, miR-182 is one of the few dominant
miRNAs that can increase more than 100-fold [48]. These
miRNAs are abundant in retinal tissues and are necessary for
maintaining the outer segments of adult cone photoreceptors
and visual function [49]. Previous evidence has suggested the
important role of miR-182 in T cell clonal expansion after
the stimulation of T helper cells by IL-2 [50] and regulation
of specialization of Treg cells [51]. Blockage of miR-182 led
to the improvement of arthritis in an ovalbumin-induced
arthritis mouse model [50]. Importantly, miR-182 was noted
to be overexpressed in gliomas and directly suppressed
cylindromatosis (CYLD), an NF-𝜅B-negative regulator [52].
The expression profile of the miR-182 family in panuveitis
has been studied. In murine EAU or human sympathetic
ophthalmia eyes, miR-182 and miR-183 were downregulated

following disease induction and were speculated to be asso-
ciated with retinal tissue injury [27] and Forkhead box
O1 or Fas/Fas ligand system activation [26, 53]. A genetic
association study in humans also revealed that subjects with
the downregulated miR-182 genotype are more susceptible
to Behçet’s disease and Vogt-Koyanagi-Harada disease [54].
In current EAAU models sparing the retina, however, the
results differed from those from previous panuveitis studies.
We believe that, in the absence of retinal destruction, the
cause of miR-182 family overexpression in EAAU is highly
likely due to active involvement of NF-𝜅B activation and
T cell recruitment. This discrepancy also exemplifies the
heterogeneous pathogenesis in different types of uveitis.

Although cytokine profiling has been performed, few
studies have provided consistent results and specific demon-
stration of Th1/Th17 relevance in the EAAU model. A
previous study revealed that TNF-𝛼 and IFN-𝛾 mRNA are
upregulated over the disease course of EAAU and that inhi-
bition of NF-𝜅B reduced the levels of these two proinflam-
matory cytokines, while augmenting the expression of anti-
inflammatory cytokines such as IL-10 [11]. However, another
research has revealed that IFN-𝛾 mRNA is easily detectable
in the popliteal lymph nodes but is barely measureable in
iris/ciliary bodies. No changes in IL-10, IL-2, IL-4, or IL-6
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mRNA levels were noted in the iris/ciliary bodies in the same
EAAU study [16].The results from the current study not only
show the significant differential mRNA expression of IL-6
and IL-10 but also delineate the dynamic involvement of the
Th1/Th17 related cytokines in EAAU.

IL-1𝛽 is regarded as a potent proinflammatory cytokine
that is involved in many autoimmune diseases in humans
[55, 56]. Some evidence has also suggested the indispensable
role of IL-1𝛽 in uveitides involving the whole uveal tract, such
as human Behçet’s disease [57] and animal EAU [58]. The
inflammatory cascades that result in TRAF6 and subsequent
NF-𝜅B activation can be activated [59]. The upregulation
of downstream cytokines such as IL-17 and IFN-𝛾, along
with the development of Th17 cells, may further sustain
intraocular inflammation [60]. In brief, the predominant
participation of IL-1𝛽 in EAAU shown in our study reflects
the multifunctional nature of IL-1𝛽 by promoting innate
immunity and autoinflammation, inducing NF-𝜅B activa-
tion, enhancing Th17 activation, and introducing numerous
downstream cytokines activation.

The Th17 lineage plays a pivotal role in autoimmune
diseases [61] and is also considered to be crucial in uveitis
activation [62–64]. By activating TRAF6, synergizing TNF-𝛼
expression, and inhibiting miR-23b, NF-𝜅B and other down-
stream pathways are strongly upregulated [61]. Interestingly,
the contribution of immunopathogenesis by the Th17 and
Th1 lineages can be quite complex. IFN-𝛾, the key cytokine
of the Th1 axis enhanced by IL-12 [65], reportedly plays a
negative regulatory role in dendritic cell function and T cell
priming in EAU [66] andmay protect eyes from autoimmune

attacks promoted by the Th17/IL-17 axis [67, 68]. However,
rather than mutual antagonization, single dominant Th1 or
Th17 lineagewas found to be sufficient to generate intraocular
inflammation independently from the other axis [69]. Our
results demonstrate the early elevation of both IL-1𝛽 and IFN-
𝛾, which represent the Th17 and Th1 axes, respectively, at
day 10 after immunization. Both cytokines remain active and
synergistically promote further activation of IL-17A and IL-
12 at day 15 after immunization, with a concurrent increase
in clinical inflammation. The current results confirm that
both Th1 and Th17 lineages are active in EAAU, just as in
panuveitis.

Summarizing these findings, following the recognition
of MAA by toll-like receptors in antigen presenting cells,
relevant miRNAs may promote the activation of NF-𝜅B and
subsequent cytokine secretion (Figure 7). Further activation
of T cells and polarization of the immune axis could also be
influenced by miRNAs. Through multiple regulation points
by miRNAs, innate and adaptive immunity manage the
clinical signs and leukocyte infiltration in EAAU (Figure 8).

5. Conclusions

The current study provides valuable information on the
dynamic changes of miRNAs and relevant Th1- and Th17-
specific cytokines over the course of EAAU. miR-146a-5p,
miR-155-5p, miR-147b, and miR-223-3p were downregu-
lated, while miR-182-5p, miR-183-5p, and miR-9-3p were
upregulated. Upstream changes of miRNAs contribute to
NF-𝜅B activation, with further downstream activation of
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both Th17- and Th1-specific cytokines and effector T cells.
In future, studies investigating how the miRNAs, espe-
cially miR-146a-5p, miR-155-5p, miR-182-5p, and miR-183-
5p, affect each upstream NF-𝜅B signaling factor and the
therapeutic effects of miRNAs in EAAU are warranted.
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