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Motivation: The emergence of single-cell RNA sequencing (scRNA-seq) technology
has paved the way for measuring RNA levels at single-cell resolution to study precise
biological functions. However, the presence of a large number of missing values in
its data will affect downstream analysis. This paper presents AdImpute: an imputation
method based on semi-supervised autoencoders. The method uses another imputation
method (DrImpute is used as an example) to fill the results as imputation weights of the
autoencoder, and applies the cost function with imputation weights to learn the latent
information in the data to achieve more accurate imputation.

Results: As shown in clustering experiments with the simulated data sets and the
real data sets, AdImpute is more accurate than other four publicly available scRNA-
seq imputation methods, and minimally modifies the biologically silent genes. Overall,
AdImpute is an accurate and robust imputation method.

Keywords: scRNA-seq, missing value filling, semi-supervised learning, autoencoder, imputation method

INTRODUCTION

With the development of high-throughput sequencing technology, the emergence of single-cell
RNA sequencing (scRNA-seq) technology in genomic sequencing has become a hot topic in recent
years (Wagner et al., 2016; Kalisky et al., 2018). Compared with bulk RNA sequencing sequences,
scRNA sequences have a relatively high noise level, especially due to so-called dropouts (Vallejos
et al., 2015; Lun et al., 2016; Ziegenhain et al., 2017). Dropouts are a special type of missing values
due to low RNA input in sequencing experiments and the randomness of gene expression patterns
at the single cell level. The presence of dropouts often misleads downstream analysis, such as data
visualization, cell clustering, and differential expression analysis (Stegle et al., 2015; Bacher and
Kendziorski, 2016; Svensson et al., 2017).

Based on different principles, a variety of single cell RNA-seq data imputation methods have been
proposed (Chen and Zhou, 2018; Huang et al., 2018; Van Dijk et al., 2018; Eraslan et al., 2019; Hu
et al., 2020; Qi et al., 2021). ScImpute (Li and Li, 2018) divides genes into two groups based on
dropout probability (unreliable and reliable classification: Aj,Bj), and the dropout probability is
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estimated by a mixed model. Scientific computing estimates Aj
by processing Bj as gold standard data. In the first version, a
weighted lasso model is used to find similar cells among other
cells in Bj genes. Then use the linear regression model of the
most similar unit as the estimate of Aj. DrImpute (Gong et al.,
2018) is an integrated method, which is designed based on the
consistent clustering results of scRNA-seq data. In other words,
it performs multiple clusters and imputes based on the average
of similar cell expression. AutoImpute (Talwar et al., 2018) is a
method of imputing dropouts based on an autoencoder. It uses
over-complete autoencoders to capture the distribution of given
sparse gene expression data, and regenerates complete expression
data. DeepImpute (Zhang and Zhang, 2020) is an imputation
method based on deep neural networks. The method uses missing
layers and loss functions to learn patterns in the data to achieve
accurate imputation.

At present, machine learning methods are increasingly used
in bioinformatics, and many achievements have been made
(Peng et al., 2021a,b). We have conducted a lot of clustering
experiments on the existing imputation method. According to
the experimental results, we found that the machine learning

methods did not perform well. The analysis revealed two reasons.
One is a large number of zeros in the raw data, making it difficult
for machine learning methods to extract deep information from
the data. Instead, most of the zeros are regarded as true zeros,
that is, no padding is performed, so the data filled by the machine
learning method is more discrete. The second reason is that after
using some deep learning-based missing value filling methods
to fill in, the output data contains negative values, but the
actual gene expression values should all be non-negative values.
Based on this, we propose an imputation method AdImpute
(Figure 1) based on a semi-supervised autoencoder, which
combines ordinary imputation methods with machine learning
methods to better implement imputation.

An Autoencoder is a type of artificial neural network used
in semi-supervised learning and unsupervised learning. Its
function is to perform representation learning on the input
information by using the input information as the learning target.
A number of recent studies describe applications of autoencoders
in molecular biology.

In order to solve the problem of difficult to extract the
deep information of the data, AdImpute introduces a set

FIGURE 1 | AdImpute pipeline: the pre-processing stage of AdImpute requires screening of raw gene expression data, normalizing by library size, and pruning
through gene selection and logarithmic transformation. Afterward, AdImpute first fills the pre-processed matrix with DrImpute, and uses the result of DrImpute as an
imputation weight label. Then the label is input into the AdImpute model together with the pre-processed matrix to learn gene expression data. Finally, the missing
data value filling and the input matrix reconstruction are done.
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FIGURE 2 | Sigmoid function: f (z) = 1
1+e−z .

of data imputed by DrImpute as an imputed weight label
(DrImpute method can be replaced, this article selects the
current mainstream method, if there is a better one, you can
replace it). While using the autoencoder to impute dropouts,
AdImpute adds an imputation weight term to the cost function
and compares it with the label data. For a zero value that
may be a missing value, the larger the label data value is, the
more likely it is to be a missing value, so as to achieve semi-
supervised learning. We also give a Relu activation function to
the decoding layer to solve the situation of negative values in
the filled data.

An example is given to better understand the principle of this
method. If we compare the imputation process to an exam, then
the unsupervised machine learning method is to complete a test
paper normally, and supervised machine learning is to complete
a test paper under the premise of having a standard answer. Semi-
supervision is equivalent to finding a test paper of a student with
good grades as a reference to complete my test paper.

In reality, supervision is meaningless for imputation. Current
machine learning algorithms are all based on unsupervised.
Here, we first proposed the idea of applying semi-supervision
to imputation, and verified the superiority with the help of
clustering results.

MATERIALS AND METHODS

Autoencoder
In simple terms, the autoencoder is the process of reducing the
dimension after encoding the raw data, so as to discover the
hidden rules among the data. The autoencoder is composed of
encoder E and decoder D. The encoder first maps the input data
X to the latent space H:

H = φ(EX) (1)

FIGURE 3 | Tanh function: tanh (z) = ez
−e−z

ez+e−z .

FIGURE 4 | Relu function: relu (z) = max(0, z).

where φ is the activation function. Several commonly used
functions are shown in Figures 2–4.

In the training phase, the encoder and decoder are usually
learned by minimizing the Euclidean cost function:

arg min
D,E
||X – Dφ(EX)| |2F (2)

There are several variants of the autoencoder model: multi-
layer autoencoder and regularized autoencoder. The multi-layer
autoencoder is created by nesting the autoencoder inside another
autoencoder. Mathematically, this is expressed as:

arg min
D′ s,E′ s

||X – D1φ(D2 · · ·φDN(φ(EN · · ·φE1(X) · · · )| |2F (3)

The cost function used by the regularized autoencoder can
encourage the model to learn other features, rather than copying
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FIGURE 5 | The visualization results of clustering on the simulated data sets. The six images are the clustering results of the raw data and the clustering results
imputed by scImpute, DrImpute, AutoImpute, AdImpute, and DeepImpute. And (A) is the clustering visualization results on simu1 data set; (B) is the clustering
visualization results on simu2 data set.

the input to the output. These characteristics include sparse
representation, robustness to noise or missing inputs, etc. Even if
the model capacity is large enough to learn a meaningless identity
function, the nonlinear and over-complete regular autoencoder
can still learn some useful information about the data distribution
from the data. The regularized autoencoder can be expressed as
follows:

arg min
D,E
||X – Dφ(EX)| |2F + λ<(E,D) (4)

where λ is the regularization coefficient, and the regularizer R is
a real function about E and D.

The Design and Implementation of
AdImpute
AdImpute is a missing value filling method based on semi-
supervised autoencoder. While using a complete autoencoder
to capture the distribution of the given sparse gene expression
data, AdImpute introduces the data filled by DrImpute as
the imputation weight label of the model, which makes the
regenerated complete expression data obtain higher quality.

The purpose of AdImpute is to estimate these dropouts by
looking for the full version of gene expression data. The model

of the measured value is:

R = M ◦ X (5)

where ◦ is the Hadamard product, M is a binary mask containing
1, R contains a non-zero term, and elsewhere is 0. X represents
the count matrix to be estimated.

AdImpute needs to import the data filled by DrImpute into
the model as the imputation weight label of the model, which
is recorded as F. Then the sparse gene expression matrix M◦X
is input into the autoencoder, and it is trained to learn the best
encoder and decoder functions by minimizing the cost function.
In order to prevent the overfitting of non-zero values in the count
matrix, we regularize the learned encoder and decoder matrices.
The cost function is as follows:

min
D,E
||R – Dσ (E (R))| |2O + δ ||F-Dσ (E (R))| |2O

+
λ

2
δ
(
||E| |2F + ||D| |

2
F
)

(6)

where E is the encoder matrix, D is the decoder matrix,
and λ is the regularization coefficient. In the formula (6),
δ ||F – Dσ (E (R))| |2O is the imputation weight item, F is the
imputation weight label, and δ is the weight of the imputation
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FIGURE 6 | The histogram of clustering evaluation indexes on the simulated data sets, including the clustering evaluation indexes of raw data and the clustering
evaluation indexes after imputing by scImpute, DrImpute, AutoImpute, AdImpute, and DeepImpute. And (A) is the clustering evaluation indexes on simu1 data set;
(B) is the clustering evaluation indexes on simu2 data set.

weight item. ||·| |O means that the loss is calculated only for the
non-zero counts present in the sparse expression matrix M◦X,
and σ is the Sigmoid activation function applied to the encoder
layer in the neural network.

Finally, after the training and learning encoder and decoder
matrix, the filled expression matrix is as follows:

X̃ = ψ (Dσ (E (R))) (7)

where ψ is the Relu activation function applied to the decoder
layer in the neural network.

The AdImpute model consists of a fully connected multi-layer
perceptron with three layers: input layer, hidden layer and output
layer. The model uses an imputation weight label composed of
DrImpute-filled data to improve the missing value filling effect.
The gradient is calculated by back propagation of the error, and
the gradient descent method is used for training to reach the
minimum value of the cost function (6). The RMSProp Optimizer
is used to adjust the learning rate so as to avoid falling into a local

minimum and reach the minimum of the cost function faster.
Both the encoder matrix E and the decoder matrix D are subject
to the initialization of random normal distribution. The output of
the decoder uses Relu as the activation function.

The selection of hyper-parameters is as follows:

(1) Regularization coefficient λ is used to control the
contribution of the regular term to the cost function.

(2) The weight δ of the imputation weight term is used to
control the contribution of the imputation weight term to
the cost function.

TABLE 1 | The ranking of clustering effects on the simulated data sets.

scImpute DrImpute AutoImpute AdImpute DeepImpute

simu1 3 2 5 1 4

simu2 4 2 5 1 3

1 represents the best and 5 represents the worst in the table.
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FIGURE 7 | The visualization results of clustering on the real data sets. The six images are the clustering results of the raw data and the clustering results imputed by
scImpute, DrImpute, AutoImpute, AdImpute, and DeepImpute. And (A) is the clustering visualization results on Trapnell (GSE52529) data set; (B) is the clustering
visualization results on hPSC (GSE75748) data set; (C) is the clustering visualization results on Romanov (GSE74672) data set.

(3) The size of the hidden layer (the dimension of the
potential space).

(4) The initial value of the learning rate.
(5) Threshold. The change of the cost function value in

successive iterations is less than the threshold value, which
means convergence and stops the gradient descent.

RESULTS

A good imputation method can retain most of the real available
information for the raw data. Therefore, in order to measure the
quality of the missing value filling methods, we choose cluster
analysis in the downstream analysis. We will select some data sets
and use five methods to impute the dropouts, and use the results
to perform cluster analysis.

By analyzing the results of the clustering, we estimated
the advantages and disadvantages of the dropouts imputation
methods. The cluster evaluation indicators used in this paper are
rand, ARI, FM, and Jaccard.

The Clustering Experiment on the
Simulated Data Sets
We use CIDR (Lin et al., 2017) to generate two simulated data
sets simu1 and simu2. The details of simu1 and simu2 is provided

in the section “Data availability.” We label the generated data and
mark the actual cell clustering results. After preprocessing the raw
data, we use scImpute, DrImpute, AutoImpute, AdImpute, and
DeepImpute to impute the dropouts. Based on the imputed data
results, T-SNE for dimensionality reduction and visualization
is carried out, and then K-means clustering is used. The
visualization results of clustering are shown in Figure 5.

Based on the clustering results, we calculate the cluster
evaluation indexes. The results are given by Supplementary
Table 1. In order to analyze the experimental results more
intuitively, we give a histogram of clustering evaluation indexes
in Figure 6.

Analyzing the results of the above experiments, we can find
that AdImpute has a very good performance in the clustering
experiment on the simulated data sets. The performance of
AutoImpute is not ideal, scImpute and DeepImpute are always
slightly inferior than DrImpute. In general, AdImpute performs
best on the simulated data sets. And the ranking of clustering
effects is shown in Table 1.

The Clustering Experiment on the Real
Data Sets
In the part, we select three real data sets: Trapnell (Trapnell
et al., 2014), hPSC (Chu et al., 2016), and Romanov
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FIGURE 8 | The histogram of clustering evaluation indexes on the real data sets, including the clustering evaluation indexes of raw data and the clustering evaluation
indexes after imputing by scImpute, DrImpute, AutoImpute, AdImpute, and DeepImpute. And (A) is the clustering evaluation indexes on Trapnell (GSE52529) data
set; (B) is the clustering evaluation indexes on hPSC (GSE75748) data set; (C) is the clustering evaluation indexes on Romanov (GSE74672) data set.

(Romanov et al., 2017). After preprocessing the raw data,
we use scImpute, DrImpute, AutoImpute, AdImpute, and
DeepImpute to impute the dropouts. Based on the imputed data
results, T-SNE for dimensionality reduction and visualization
is carried out, and then K-means clustering is used. The
visualization results of clustering are shown in Figure 7.

Based on the clustering results, we also calculate the cluster
evaluation indexes. The results are given by Supplementary
Table 2. In order to analyze the experimental results more
intuitively, we give a histogram of clustering evaluation indexes
in Figure 8.

Analyzing the experimental results, we can find that AdImpute
still has a good performance in the clustering experiment on
the real data sets. Despite being slightly inferior to scImpute in
Trapnell data set, the overall performance is still the best among

TABLE 2 | The ranking of clustering effects on the real data sets.

scImpute DrImpute AutoImpute AdImpute DeepImpute

Trapnell 1 4 5 2 3

hPSC 3 4 2 1 5

Romanov 4 5 2 1 3

1 represents the best and 5 represents the worst in the table.

these methods. AutoImpute and DeepImpute do not perform
well on the simulated data sets, but behave well on the real data
sets. The performance of scImpute is unstable, and DrImpute
is not ideal. Through the results on hPSC data set, we can see
that AdImpute has minimally modified the expression of real
biological silencing genes. Overall, AdImpute still performs best
on the real data sets. And the ranking of clustering effects is
shown in Table 2.

DISCUSSION

Since the scRNA-seq data suffers from dropout events that
hinder the downstream analysis of data, we propose a statistical
imputation method AdImpute to denoise the scRNA-seq data.
AdImpute aims to implement data recovery and maintain
the heterogeneity of gene expression across cells. One of the
advantages of AdImpute is that it can be incorporated into most
of the downstream analysis tools for the scRNA-seq data. In
this paper, we perform downstream analysis experiments in the
simulated datasets and real datasets, and the results show that
our method improves the raw data and outperforms the other
imputation methods.

Rand, ARI, FM, and Jaccard Index were used to measure the
clustering results of imputed data. AdImpute performs well in the
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clustering experiments of the simulated data sets and the real data
sets. In the simulated data sets, it can be seen from Figure 6 that
the clustering results of AdImpute is significantly better than that
of the other three algorithms when v = 9/10.

Because the data loss degree of real data is unknown, there may
be a large number of true zeros, which can reflect the judgment
ability of each algorithm to distinguish between missing zeros
and true zeros. The sequencing data in the third data set hPSC
has almost no zeros caused by data loss, which can better reflect
the judgment ability of the five algorithms. As can be seen
from Figure 8, in the Trapnell and Romanov data sets, the
clustering effects of the five algorithms after missing value filling
are not significantly different. After filled by scImpute, DrImpute,
AdImpute, AutoImpute, and DeepImpute, the clustering results
are improved compared with the raw data. However, from the
experimental results of hPSC data set, we can see that the effect
of AdImpute is significantly higher than the other four methods,
which shows that AdImpute algorithm has good performance in
identifying true zeros. In general, AdImpute performs best on
the real data sets.

By comprehensively analyzing the results of the simulated data
sets and the real data sets, we draw the following conclusions.
scImpute prefers to regard the identified zeros as true zeros, so
it performs well on the real data sets, but it does not perform
well on the simulated data sets. DrImpute prefers to treat the
identified zeros as the missing zeros, so it performs well in
the simulated data sets, but it does not perform well in the
real data sets. One of the limitations of DrImpute is that it
considers only cell-level correlation using a simple hot deck
approach. The performance of AutoImpute is not satisfactory
on both the simulated data sets and the real data sets, but
its effect on hPSC data set is better than that of scImpute,
DrImpute, and DeepImpute. AutoImpute behaves ideally in
retaining the most of true zeros present in the data. It is
speculated that AutoImpute has a poor judgment ability to
determine missing values, and most of the identified zeros
are considered as true zeros. DeepImpute performs ordinarily
on both the simulated data sets and the real data sets. It is
designed for the bulk-RNAseq data and is suitable for handling
large datasets. Its training and the prediction processes are

separate, and DeepImpute tends to fail when the data show large
heterogeneity and sparsity, which are two key characteristics
of scRNA-seq data. AdImpute has minimally modified the
expression of real biological silencing genes, and the filling
effect is very robust.
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