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Abstract

Sequence-based characterization of bacterial communities has long been a hostage of limitations of both 16S rRNA gene 
and whole metagenome sequencing. Neither approach is universally applicable, and the main efforts to resolve constraints 
have been devoted to improvement of computational prediction tools. Here, we present semi-targeted 16S rRNA sequencing 
(st16S-seq), a method designed for sequencing V1–V2 regions of the 16S rRNA gene along with the genomic locus upstream 
of the gene. By in silico analysis of 13 570 bacterial genome assemblies, we show that genome-linked 16S rRNA sequencing is 
superior to individual hypervariable regions or full-length gene sequences in terms of classification accuracy and identification 
of gene copy numbers. Using mock communities and soil samples we experimentally validate st16S-seq and benchmark it 
against the established microbial classification techniques. We show that st16S-seq delivers accurate estimation of 16S rRNA 
gene copy numbers, enables taxonomic resolution at the species level and closely approximates community structures obtain-
able by whole metagenome sequencing.

DATA SUMMARY
The raw sequencing data were deposited in the NCBI SRA 
repository under BioProject accession number PRJNA695397. 
The custom code used for st16S-seq data analysis will be avail-
able at GitHub before publication.

INTRODUCTION
High-throughput amplicon sequencing has fuelled micro-
biome research by providing tools for culture- and cloning-
free analysis of bacterial phylogenetic marker genes, among 
which the 16S rRNA gene, consisting of nine hypervariable 
regions (V1–V9) flanked by conserved sequences, is the 
molecular chronometer of choice [1] for the vast majority 
of microbial diversity studies, including global initiatives 
such as the Earth Microbiome Project [2] and the Human 
Microbiome Project [3].

Typically, 16S rRNA gene sequences, corresponding to a single 
or multiple amplified hypervariable regions, are clustered 
based on similarity to obtain operational taxonomic units 
(OTUs). Representative OTU sequences are then compared to 
reference databases to infer taxonomy with an assumed iden-
tity threshold for species-level identification of 97% or in the 
range of 97–99% [4–6]. Nevertheless, consensus sequences 
cannot ensure reliable classification or discriminate between 
closely related species as 16S rRNA gene sequences may differ 
by SNPs, which may not be located within the hypervariable 
regions [7]. On the other hand, sequence variation might be 
often characteristic of different 16S rRNA gene copies within 
a single genome [8]. Base-level analysis of the full-length 16S 
rRNA gene is now possible due to the emergence of long-read 
sequencing technologies, but sequencing errors and ambigui-
ties related to the variability of 16S rRNA gene copy numbers 
still pose a significant challenge to accurate interpretation of 
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microbial diversity and quantitative estimates of the propor-
tions of taxa.

Microbial profiling data able to achieve species and strain-
level resolution have great potential to uncover the recent 
evolution of microbial populations, shed light on functional 
differences between communities [9], and provide insights on 
host colonization processes [10] and transmission patterns 
between hosts [11]. Unveiling strain-level variation across 
communities is generally performed by whole metagenome 
sequencing, which can capture genome-wide patterns of 
genetic polymorphism. Comprehensive data come with a cost 
of much deeper sequencing required to detect a reasonable 
number of community members. Moreover, the choice of 
analytical strategy in this case depends on the sample nature; 
for example, reference-based methods work well for species 
from the human microbiome which are well represented in 
databases, but are not effective for environmental samples 
which consist mostly of microbial dark matter [12]. Efforts 
to squeeze out subspecies resolution from 16S rRNA gene 
sequencing data mostly relate to improvements in bioin-
formatic pipelines enabling predictions based on single-
nucleotide sequence variants [13, 14].

Meaningful comparative analysis of microbial communi-
ties requires accurate quantification of taxa for reliable 
numerical comparison across samples. Different strategies 
have been introduced to determine relative abundances of 
identified taxa in complex samples. It was demonstrated that 
16S rRNA gene sequences and other targeted approaches 
perform poorly for such purposes because of inherent biases 
[15]. In contrast, the numbers of reads in metagenomic data 
might be normalized by genome size [16], if taxonomically 
annotated reference genomes are available, and provide accu-
rate abundance estimates. Alternatively, read coverage of the 
selected single-copy clade-specific genes might be used to 
infer quantitative abundances without further normalization 
[17]. Such methods are accurate but require extensive prior 
knowledge of genome sequences and thus are considered 
as not compatible with poorly characterized taxa, although 
improvements in computational algorithms were recently 
suggested to overcome this limitation [18].

We hypothesized that linking highly conserved 16S rRNA 
gene sequences with regions of lower conservation might 
overcome limitations related to both targeted 16S rRNA 
analysis and metagenomic sequencing. Specifically, we sought 
to improve taxonomic resolution and abundance estimation 
retaining the cost-effectiveness of targeted approaches. Here, 
we describe a new method of high-throughput microbial 
profiling which captures 16S rRNA hypervariable regions 
along with the genomic sequences upstream of the gene. 
We termed this technique semi-targeted 16S sequencing, 
or st16S-seq. We first performed a global in silico analysis 
of regions upstream the 16S rRNA gene and confirmed 
their diagnostic potential. Next, we validated the proposed 
approach on microbial community DNA standards. Finally, 
we challenged st16S-seq with ultra-high-complexity envi-
ronmental samples and benchmarked our approach against 

the established amplicon sequencing and whole metagenome 
sequencing techniques.

METHODS
Dataset for in silico analysis
Dataset preparation
The dataset was prepared from genome sequences located in 
the NCBI Genome database [19]. First, metadata for bacterial 
genome assemblies were downloaded. Next, for each unique 
strain only the best assemblies were chosen, discarding 
incomplete genomes and prioritizing newly released assem-
blies over older ones as well as reference genomes over 
representative and unannotated ones. Incomplete genomes 
were discarded due to the potential lack of 16S rRNA gene 
sequences or incomplete gene copy representation. Once the 
assemblies were filtered, FASTA sequences together with their 
corresponding GCC annotations were downloaded. Using 
this strategy 15 669 genomes, each representing a unique 
strain, were obtained.

16S rRNA and upstream sequences were extracted from 
genomes based on GCC annotations. Coordinates for the 16S 
rRNA gene were searched in the GCC file by matching a ‘16S 
ribosomal RNA.*’ string. Next, genes were filtered based on 
their length; only genes of length 1000–2000 bp were used. 
All retrieved sequences were automatically oriented in the 

Impact Statement

The 16S rRNA gene is widely used to differentiate 
operational taxonomic units for the profiling of micro-
bial communities. High-throughput sequencing of 16S 
rRNA amplicons led to rapid growth of available gene 
sequence data, which to this day outnumber complete 
genome assemblies. Despite its versatility, intragenomic 
heterogeneity of 16S rRNA gene copies impairs classi-
fication accuracy as well as quantitative representation 
of microbial communities. Long-read sequencing tech-
nologies and improved computational prediction tools 
are being offered to increase the accuracy of 16S rRNA 
gene sequence analysis, but new experimental tech-
niques which would substantially increase the informa-
tiveness of targeted sequencing are needed to achieve 
truly unbiased characterization. We show that looking 
beyond the 16S rRNA gene is a beneficial strategy and 
suggest a library preparation method that can capture 
any unknown sequence near a defined target site. Semi-
targeted 16S rRNA gene sequencing directly links each 
16S rRNA gene copy with an adjacent genomic locus 
upstream of the gene and enables highly accurate clas-
sification and unambiguous quantification of taxa. This 
technique opens up a new perspective for highly accu-
rate characterization of microbial communities by next-
generation sequencing at a cost of targeted sequencing.
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5′−3′ direction with the beginning of the gene located in the 
5′ terminus of the sequence.

From genome assemblies 16S rRNA genes were retrieved for 
15 655 strains. Four assemblies had missing/empty files and 
52 16S rRNA gene sequences were too short or too long. Two 
generated sequence files (one for 16S rRNA and another for 
upstream region sequences linked to their corresponding 
16S rRNA genes) were matched – this was done to check 
for partial upstream sequences. No sequences were removed 
during this step. In total, 80,014 16S rRNA gene sequences 
linked to their upstream genomic regions were extracted from 
the genomes of 15 655 strains.

Extraction of 16S rRNA hypervariable regions
16S rRNA sequences were split into variable sub-regions 
confined by specific primers. Primer sequences were chosen 
based on previously published data [20]. For each conserva-
tive region, except the one between V1 and V2 sequences, 
primers were selected based on their coverage across species 
(Table S4). Primer locations were searched across 16S rRNA 
sequences using the blast algorithm. For each variable region 
within each 16S rRNA gene sequence, a single primer with 
the highest bitscore was chosen. Primers with more than two 
mismatches were discarded. For each sequence, primer align-
ment locations were saved, and these locations were later used 
to split sequences into corresponding hypervariable regions. 
Primers were matched to the positions between hypervari-
able regions. Each primer was named after the region located 
upstream of the primer hybridization site.

Most sequences were lacking the primer intended to amplify 
the V1 sequence (424 sequences) (Table S5). A substantial 
part of these mismatches were 3 nt in size – 1 nt above the 
cutoff. Some sequences were missing all nine primers, and 
such sequences were unlikely to be 16S rRNAs and probably 
occurred due to incorrect GCC annotations.

For quality control of detected primer positions, the locations 
of all primers were checked to be in sequential order (e.g. V10 
is after V9, V9 is after V8). The locations of two primers for 
two sequences were found to be non-sequential.

Finally, whole genomes were removed if at least a single 16S 
rRNA sequence belonging to the genome was discarded 
for one of the previously stated reasons. After removing 
sequences (and genomes) with missing primers and non-
sequential primer locations, 15 376 strains and 78 925 
sequences remained in the dataset.

Taxonomy matching
To match taxonomic lineage to each strain, NCBI taxonomy 
IDs supplied with genome assemblies were matched to the 
NCBI taxonomy database. Retrieved taxonomic information 
was used to filter genome assemblies based on the following 
criteria: (i) information about taxonomic lineage was not 
present in the taxonomic database; (ii) and the assembly 
did not have a specified genus or species. After taxonomy 
matching and filtering, 13 595 unique genome assemblies and 
71 254 16S rRNA sequences remained in the dataset.

Removal of ambiguous sequences
16S rRNA sequences containing any wildcard letters were 
discarded. This was done to avoid ambiguous sequence 
representations.

In total, 17 555 assemblies were analysed as potential members 
of the dataset. Only full genomes representing unique strains 
were downloaded and processed further. Of 15 669 initial 
genomes, 2129 were discarded during several filtering steps. 
Stepwise changes in sequence and genome counts within the 
built dataset are depicted on Fig. S1.

In silico analysis of genomic sequences upstream of 
16S rRNA gene
Conservation profile of 16S rRNA gene sequences and 
upstream regions
Positional variability of dataset sequences was analysed by 
calculating Shannon entropy for multiple sequence align-
ment (MSA) columns. First, all sequences in the database 
were aligned by Clustal Omega v1.2.2 [21], and then 
columns of MSA were removed or retained based on refer-
ence sequence. For retained columns Shannon entropy was 
calculated as:‍S = −

∑
iPilog4Pi‍

Here, Pi is a fraction of times nucleotide i appears in a column 
of MSA; log with base 4 is used to normalize values to 1. 
Shannon entropy value of 1 indicates that all nucleotides 
appear in a column an equal number of times (in this case 
25 %). An S value of 0 indicates that only a single nucleotide 
appears in an MSA column (100%).

Analysis of identifiable 16S rRNA gene copy numbers
The following dataset normalizations were used for the calcu-
lation of identifiable gene copies: (i) intra-strain, inter-strain 
and inter-species: the number of strains was limited to 10 per 
species; (ii) inter-strain and inter-species: only species with at 
least two strains were used; (iii) inter-species: the number of 
species was limited to 10 per genus. Normalizations limiting 
the number of species per genus or strains per species to 
10 were applied to 13 % of genera and 6 % of species within 
the dataset. To accurately account for 16S rRNA gene copy 
number variation, each gene copy should produce a unique 
contig with at least a single nucleotide sequence variant. 
Computational assessment of identifiable 16S rRNA copies 
at different taxonomic levels was performed by dividing a 
number of unique sequence variants within each member of 
the selected rank by the number of total sequence variants, 
and the mean of all members was taken. We considered this as 
a fraction of identifiable gene copies. For example, if strain X 
has a single 16S rRNA gene copy, for strain X 100 % of copies 
will be identifiable. Meanwhile, if strain Y has two identical 
gene copies, 50 % of sequences will be identifiable. If strains 
X and Y make up the whole dataset, then for this dataset 75 % 
of sequences will be identifiable.

Clustering into OTUs
The quality of clustering sequences into OTUs was assessed 
by published methods [5]. Briefly, four metrics were used: 
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(i) richness ratio – a ratio between generated OTUs and 
the number of unique species, defined as 

‍
min

(
S, O

)
max

(
S, O

)
‍
 where S 

corresponds to the number of species and O to the number 
of OTUs; (ii) Matthews’ correlation coefficient defined as the 
correlation between real and predicted values identified by the 
classifier; (iii) bijection – the fraction of species that have all 
their sequences assigned to the same OTU with no other false 
sequences present; and (iv) normalized mutual information 
– a measurement of mutual dependence between frequency 
distribution pairs. To calculate clustering metrics, we first split 
sequences into subsequences representing regions of interest. 
Then, subsequences were aligned by Clustal Omega. 
Clustering into OTUs was performed at various clustering 
percentages by Mothur v1.43.0 [22]. For each metric the 
optimal clustering percentage was calculated. Clustering was 
performed with two sets of sequences: (i) all sequences of our 
database and (ii) representative sequences where each species 
is represented by a single randomly selected strain.

Sequence classification accuracy
To assess classification accuracy based on various combina-
tions of 16S rRNA and near-16S sequences, the Ribosome 
Database Project (RDP) classifier [23] with 80 % boot-
strap cutoff was used, employing a leave-clade-out testing 
approach. All sequences of the database built in this study 
were used for classification. The classifier was retrained on the 
sequences corresponding to each specific region under inves-
tigation. Fivefold cross-validation was performed changing 
the training and validation dataset compositions for each 
iteration. Classification accuracy was defined as the ratio of 
accurate predictions (>80 % bootstrap) to all predictions.

Primer design
Primer sequences were designed using an in-house pipeline 
based on silva release 132 [24] dataset ‘SSU Ref NR 99’. The 
sequences of the dataset were clustered at the 95 % identity 
threshold with vsearch v2.15.1 [25]. The sequences containing 
non-standard symbols were discarded from the dataset 
supplied for the design algorithm. The algorithm selected 
primer sequences in a way which maximizes sensitivity 
ensuring that the annealing temperature would not drop 
below a certain threshold due to mismatches. All primers 
were synthesized by Metabion GmbH; the full sequences are 
provided in Table S6.

Synthesis of oligonucleotide-tethered 
dideoxynucleotides
All reaction components were added to the reaction mixture 
as solutions in water unless specified otherwise. Modified 
oligonucleotide of the sequence 5′-hexynyl-​AGAT​CGGA​
AGAG​CACA​CGTCTG-biotin-3′ (ON) was synthesized by 
Metabion GmbH requesting HPLC purification.

A solution of 5-(3-(2-azidoacetamido)prop-1-ynyl)−2′,3′-
dideoxycytidine-5′-triphosphate or 5-(3-(2-azidoacetamido)
prop-1-ynyl)−2′,3′-dideoxyuridine-5′-triphosphate (3 eq.) 
solution was added to ON (200–210 nmol) solution in sodium 

phosphate buffer (1 ml, 100 mM, pH 7). A premixed solution 
of CuSO4 (100 mM, 12 eq.) and THPTA (250 mM, 5 eq. to 
CuSO4) was then added to the reaction mixture, followed by 
the addition of sodium ascorbate (1 M, 50 eq. to CuSO4). 
The reaction mixture was stirred for 20 min at 42 °C, and 
quenched with 0.5 M EDTA-Na2 solution (1 ml, pH 8). The 
products were purified by C18 reversed-phase chromatog-
raphy using 100 mM TEAAc/ACN (11–18 %) as eluent and 
desalted using water/ACN (0–100 %) as eluent.

The oligo-modified ddCONTP was obtained with 39 % (82 
nmol) yield. HRMS (ESI-): calculated monoisotopic mass 
for [M]: 7916.345; found: 7916.342. The oligo-modified 
ddUONTP product was obtained with 34 % (67 nmol) yield. 
HRMS (ESI-): calculated monoisotopic mass for [M]: 
7917.329; found: 7917.326.

The synthesis principle and structure of oligonucleotide-tethered 
dideoxynucleotides is depicted in Fig. S4. Oligonucleotide-
tethered dideoxynucleotides used in this study are available 
upon request from the authors.

st16S-seq library preparation
Samples
Two types of samples were used in this study: (i) well-
characterized microbial community DNA standards: 20 
Strain Even Mix Genomic Material (ATCC MSA-1002) 
and ZymoBIOMICS Microbial Community DNA Standard 
(Zymo Research, D6305); and (ii) Cambisol soil samples 
collected in grasslands (Soil #1, Soil #4 and Soil #5), near 
the forest (Soil #2, Soil #6) and in a cultivated field (Soil #3). 
Soil samples were collected from ~30 cm soil depth in early 
August and stored frozen until use. DNA from 250 mg of 
soil was extracted using ZymoBIOMICS DNA Miniprep Kit 
(Zymo Research) according to the manufacturer’s recommen-
dations. DNA quality and quantity were assessed by using 
a NanoDrop 2000 spectrophotometer (Thermo Scientific). 
No template control (NTC) samples, with DNA replaced 
by nuclease-free water, were included in all experiments to 
account for background amplification.

Primer extension
Each library was generated with 30 ng of sample DNA. DNA 
was mixed with 10 pmol of equimolar primer mix described 
above in a 20 µl reaction mixture containing 40 U Thermo 
Sequenase enzyme with thermostable inorganic pyrophos-
phatase (Thermo Scientific), 4 µl Thermo Sequenase Reaction 
Buffer (Thermo Scientific), 500 pmol dNTP mix (Thermo 
Scientific), 5 pmol ddUONTP and 2 pmol ddCONTP. The 
reaction was incubated in a thermocycler with the following 
temperature conditions: 95 °C for 4 min, followed by 15 
cycles of linear extension at 95 °C for 1 min, 65 °C for 30 s, 72 
°C for 1 min and final extension at 72 °C for 5 min. Making 
use of the 3′ biotin modification within the oligonucleotide-
tethered dideoxynucleotide, primer extension products 
were purified by affinity capture using Dynabeads M-270 
Streptavidin beads (Thermo Scientific) according to the 
manufacturer’s instructions for immobilization of nucleic 
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acids. Elution was performed for 5 min at 95 °C in 20 µl 
nuclease-free water.

Amplification
As primer extension products are labelled by partial adapter 
sequences at both termini, they are compatible with a standard 
indexing PCR. In total, 19 µl of streptavidin-purified DNA was 
mixed with 25 µl of Invitrogen Collibri Library Amplification 
Master Mix (Thermo Scientific), 20 U of 3′−5′ exonuclease-
deficient Phusion enzyme (1 µl) and 5 µl of indexing primers 
(50 pmol each) of the following sequences: i5 primer: 5′-​
AATG​ATAC​GGCG​ACCA​CCGA​GATC​TACA​CTCT​TTCC​
CTAC​ACGA​CGCT​CTTC​CGATCT-3′; i7 primer: 5′-​CAAG​
CAGA​AGAC​GGCA​TACGAGAT[8nt_index]​GTGA​CTGG​
AGTT​CAGA​CGTG​TGCT​CTTC​CGATCT-3′.

Phusion exo- was added as a helper enzyme to ensure 
efficient synthesis through the unnatural linker within the 
oligonucleotide-tethered dideoxynucleotide (related data will 
be reported elsewhere). Cycling was performed as follows: 
denaturation at 98 °C for 30 s, followed by 20 cycles of 
denaturation at 98 °C for 10 s, annealing at 60 °C for 30 s, 
extension at 72 °C for 1 min and final extension at 72 °C for 1 
min. Each PCR was then purified using Dynabeads Cleanup 
Beads (Thermo Scientific). DNA binding to the beads was 
performed by mixing 45 µl of bead suspension with 50 µl of 
sample and subsequent incubation at room temperature for 5 
min. Each sample was then placed on a magnet, supernatant 
was removed and beads were resuspended in 50 µl of elution 
buffer containing 10 mM Tris-HCl (pH 8). Then, 50 µl of 
fresh beads was added again to the sample and binding was 
repeated. After incubation at room temperature, each sample 
was placed on a magnet, supernatant was removed and beads 
were washed twice with 85 % ethanol. To elute libraries, beads 
were resuspended in 22 µl of elution buffer and incubated for 
1 min at room temperature. Then, 20 µl of the supernatant 
was transferred to the second amplification step.

The second amplification step is required to generate enough 
material for sequencing. Each sample was amplified in a 50 
µl reaction with Invitrogen Collibri Library Amplification 
Master Mix with Primer Mix (Thermo Scientific) for 12 
cycles according to the recommended temperature condi-
tions. Final libraries were purified using Dynabeads Cleanup 
Beads (Thermo Scientific). DNA binding conditions were 
changed so that 30 µl of bead suspension was used in the 
first binding step, and 50 µl of bead suspension in the second 
binding step. Fragment size distribution was then assessed via 
the Agilent Fragment Analyzer system (Agilent Technologies) 
with an HS NGS Fragment kit. Quantification of sequenceable 
molecules was performed with an Invitrogen Collibri Library 
Quantification Kit (Thermo Scientific).

WGS library preparation
For comprehensive characterization of soil samples, whole 
metagenome libraries were prepared from 10 ng of soil 
DNA. DNA was sheared to ~300 bp using the Covaris E220 
Focused-ultrasonicator (Covaris) and processed through the 
Invitrogen Collibri PS DNA Library Prep Kit for Illumina 

Systems (Thermo Scientific) workflow. Fragment size distri-
bution was then assessed by the Agilent Fragment Analyzer 
system (Agilent Technologies) with HS NGS Fragment kit. 
Quantification of sequenceable molecules was performed 
with an Invitrogen Collibri Library Quantification Kit 
(Thermo Scientific).

16S rRNA gene amplicon library preparation
To compare the semi-targeted approach with conventional 
amplicon sequencing of one or several 16S rRNA gene hyper-
variable regions, ZymoBIOMICS Microbial Community DNA 
Standard, ATCC MSA-1002 DNA and soil DNA were used for 
library preparation with commercially available microbiome 
profiling kits or publicly available protocols (Table S7). All 
procedures were executed with strict adherence to the manu-
facturers’ instructions.

Sequencing
The 2×300 bp paired-end (PE) sequencing was performed on 
the Illumina MiSeq instrument using MiSeq Reagent Kit v3 
(600-cycle) for semi-targeted and 16S rRNA gene amplicon 
libraries. Whole genome sequencing (WGS) libraries were 
sequenced with a MiSeq Reagent Kit v2 (300-cycle) at 2×150 
bp PE mode.

Processing of st16S-seq reads
An overview of the st16S-seq data analysis pipeline is depicted 
in Fig. S9.

Read preprocessing
1. Read quality trimming and sequencing adapter removal 
steps were executed using the BBDuk program from BBmap 
v38.87 [26]. For further analysis only reads that were longer 
than 250 nt were used. The command line options for BBDuk 
excluding file inputs/outputs were as follows ‘ktrim=r k=23 
mink=11 hdist=1 minlength=250 maxns=0 qtrim=r tpe tbo’. 
For soil samples, the quality limit ‘trimq’ was set to 15, while 
for mock community samples this was set to 20.

2. The reads that passed initial preprocessing were subjected to 
further filtering steps. (a) First, read pairs that do not contain 
expected 16S rRNA targeting reads were discarded (BBDuk 
options ‘k=15’). (b) The remaining reads were subjected to the 
detection of an expected 16S rRNA region using the nhmmer 
program from the HMMER v3.3 package [27]. The nhmmer 
search was conducted using a profile hidden Markov model 
that was constructed based on silva release 132 [22]. The 
model was created using the sequences matching silva’s ‘SSU 
Ref NR 99’ dataset clustered to the 95 % identity threshold 
with vsearch v2.15.1 [23]. (c) The reverse reads (R2) were 
checked for the presence of 16S rRNA primer sequences 
and discarded if found at the beginning of the read (BBDuk 
option: ‘hammingdistance=1 restrictleft=40’). (d) The 
sequences of the 16S rRNA targeting primers were removed 
from the forward reads (R1), restricting the search of matches 
to the beginning of the reads and using permissive detec-
tion (BBDuk options: ‘ktrim=l k=12 restrictleft=50 mink=7 
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edist=2’). (e) The forward and reverse reads after independent 
filtering steps were rematched using fastq_pair v1.0 [28].

3. Post-filtering manipulations. (a) Reads were subjected to 
an error correction step using SPAdes v3.13.1 [29]. (b) Over-
lapping reads were joined using BBMerge from the BBmap 
v38.87 package [30]. If a read pair was joined using BBMerge, 
the resulting sequence was considered as a forward read 
while the matching reverse read was generated as its reverse 
complement using seqkit v0.8.1.

Reads were then analysed in two ways either targeting 
assembly of near-16S regions or quantification. These are 
briefly described below.

1. Quantification per phylogenetic group was based only on 
the reads that had an overlapping 3′ terminus and were joined. 
Identical sequences were removed using vsearch v2.15.1 
and further grouped by swarm v.3.0.0 [31, 32] (non-default 
parameter ‘d=1’). Taxonomic assignment using DADA2 v.1.14 
[33] was based on the first 240 bp of the reads after the two 
clustering steps.

2. Assembly of near-16S regions. (a) All reads after the error 
correction and joining steps were clustered using vsearch and 
swarm v.3.0.0 tandem (as above) based on the first 240 bp 
from the forward reads. In this case swarm was run allowing 
larger differences (‘d=2’). (b) The reads were grouped into 
sets (OTUs) matching the two-step clustering. Read names 
after error correction and overlapping 3′ end joining were 
mapped to the clusters after consecutive vsearch and swarm 
processing using a julia v1.5 script. The script integrated the 
two USEARCH cluster format files produced by vsearch and 
swarm. Only those clusters comprising no less than 0.001 
of read pairs after filtering steps were subjected to assembly. 
Before the assembly, the reads were quality trimmed using a 
more restrictive cut-off with BBDuk (command line option 
‘trimq=20’). (c) The assembly itself was conducted exploiting 
programs from the BBmap v38.87 package.

i. Reads were merged using BBMerge, utilizing the possibility 
to perform local assemblies and merge non-overlapping 
paired-end reads. The assemblies/mergers were done under 
several k values (150, 190, 220). Other options used with 
BBMerge were as follows: ‘mincountseed=1 mincountex-
tend=1 rem ecct iterations=20 vstrict=t’. After assembly, 
contigs shorter than the 75th length percentile were discarded. 
All contigs produced using different k values were collected 
for further processing.

ii. If BBMerge failed to assemble any contigs, it was attempted 
to obtain contigs using only forward reads by extending them 
using the Tadpole program (command line options: ‘tmin-
countseed=1 mincountextend=1 mode=extend er=1000’). 
The extensions were conducted using varying k values (70, 
150, 190, 220).

iii. The contigs resulting from the two initial steps were clus-
tered using vsearch with the ‘derep_fulllength’ command.

iv. The dereplicated reads were subjected to an additional 
extension step with sequences from reverse reads from 

non-overlapping pairs using the Tadpole program (command 
line options: ‘tmincountseed=1 mincountextend=1 
mode=extend er=1000’). The extensions were conducted 
using varying k values (70, 150, 190, 220). All contigs 
produced using different k values were collected for further 
processing.

v. The contigs were then clustered by vsearch using the 
‘cluster_fast’ command at a 0.97 identity level.

vi. The resulting contigs were subjected to an error correction 
step by Tadpole using reverse reads from the non-overlapping 
read pairs (non-default command line options ‘aggressive=t 
k=20’).

vii. Finally, the reads were again clustered by vsearch using 
the ‘cluster_fast’ command at a 0.97 identity level and the 
corresponding centroids were considered as the final contigs 
for further analysis.

3. The assembled contigs were then further subjected to 
several cleanup steps in order to remove artefactual contigs. 
Cleanup steps were performed at two levels: within the contigs 
resulting from one read cluster based on 240 bp Step (2a) and 
then considering contigs from all clusters as one set.

(a) Cleanup of contigs resulting from one read cluster:

i. The contigs originating from each initial clustering were 
clustered based on the first 230 bp using consecutive cluster-
ings with swarm (‘d=2’) and vsearch (‘cluster_fast’ command, 
identity cutoff 96 %). Only the contigs that were included in 
this cluster were used for further analysis. In this way, all 
contigs that had an atypical/artefactual 5′ starting sequence 
were discarded.

ii. Contigs that were shorter than 52 % of the maximum contig 
length were discarded.

iii. Contigs that are ‘contained’ within other contigs were 
discarded. A contig was considered to be overlapping if the 
identity level of its fragment excluding the last 20 bp was more 
than 98 % and the aligned fraction constituted ≥ 0.9 of the 
whole contig’s length.

(b) Cleanup of contigs from all clusters as one set:

Contigs were aligned using the blastn program from the 
blast v.2.10.1 package against the whole nt database (down-
loaded October 2020). Options were default except the set 
limitation to a maximum of three target sequences. The 
contigs were considered to be correct if the following condi-
tions were met:

1. The aligned fraction constituted ≥ 90 % of the contig length.

2. The match against a database sequence started from at most 
the fifth base from the 5′ terminus.

3. The matched sequence in the database in the matched 
region contains fewer than 5 ‘Ns’ in the sequence.

4. Each contig was assigned a genus based on the best matching 
sequence in the database. The genus was determined based on 
the taxon ID of the matching sequence using TaxonKit [34]. 
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Within a contig group originating from the same read cluster 
(2a) for each detected genus the median of the corresponding 
contig’s length was calculated. The genus with the largest 
median length of the contigs assigned to it was considered to 
be the typical one, and the contigs that matched other than the 
typical genus were discarded. Moreover, at this stage contig 
3′ ends that span beyond the matched region in the blast 
search were trimmed off.

5. The remaining sequences were again checked for consign-
ments discarding the contigs that are ‘contained’ by other 
sequences at the same time trying to keep sequences that 
start to differ at the very end of the 3′ terminus potentially 
indicating different 16S rRNA gene copies. A contig was 
discarded: (a) if identity was ≥ 96 % across 99 % of its length 
compared to a longer contig; (b) if contigs were of the same 
length, the one with higher abundance was kept. Abundance 
(in terms of TPM - transcripts per million) was evaluated 
using salmon v1.3.0 [35] with the non-default param-
eters: ‘--posBias --biasSpeedSamp 1 --forgettingFactor 
1.0 --useEM’ and using alignments produced by bowtie2 
v2.4.1 [36] (non-default options: ‘-X 2000 --very-fast’. Only 
alignments matching proper pairs and with MAPQ ≥ 1 
were considered. Alignment filtering was conducted using 
samtools v1.10 [37] (command line options ‘-f 2 -q 1’). The 
alignments were done mapping all reads that contained the 
expected 16S rRNA fragment (2e) against all assembled 
contigs (2c). (c) Identity at the 3′-terminal fragments (15 
and 50 bp in length) in the alignment was ≥ 80 %. This 
enabled keeping long contigs that started to differentiate 
among different 16S rRNA copies only at around 0.8–1 kb 
(exclusing the genera Enterococcus and Pseudomonas) from 
the primer binding sites.

(c) Relative abundance of the clusters (OTUs) resulting from 
the swarm-based clustering of the first 240 bp of the forward 
read (2a) (denoted as af) was evaluated as follows:

‍af =

∑j
i=1

n
(
bj

∩
a
)

n
(
bj
)

j ‍, where b is names of reads of a cluster 
(described in section 1) after deduplication with swarm 
of merged read pairs; a is names of reads of a cluster after 
clustering based on the first 240 bp of the forward read with 
swarm (described in section 2a); j is the number of b clusters; 
and n is the number of read names.

Analysis of data produced by conventional 16S 
rRNA sequencing methods
1. Read quality trimming and sequencing adapter removal 
steps were performed using the BBDuk program from BBmap 
v38.87 [24]. Only those reads that were longer than 50 bp 
were used. The command line options for BBDuk excluding 
file inputs/outputs were as follows: ‘ktrim=r k=23 mink=11 
hdist=1 minlength=50 maxns=1 qtrim=r trimq=15 tpe tbo’.

2. Overlapping reads were joined using BBMerge from the 
BBmap v38.87 package [28].

3. The merged reads were clustered into OTUs using 
swarm v.3.0.0 [29, 30] (non-default parameter ‘d=2’) after 

de-replication with vsearch v2.15.1 with ‘derep_fulllength’ 
command.

4. Clusters containing fewer than two sequences were 
discarded using the vsearch ‘sortbysize’ command.

5. Chimeric sequences were discarded by consecutive use 
of vsearch ‘uchime_denovo’ followed by reference-based 
chimera removal using vsearch ‘uchime_ref ’ and reference 
sequences from the ‘Gold’ database.

The data produced with QIAseq 16S/ITS Screening Panel and 
Swift Amplicon 16S+ITS Panel kits were processed following 
the manufacturer’s guidance as those kits generate more than 
one amplicon.

Phylogenetic assignments
Phylogenetic assignments of the clustered reads were 
performed in two ways.

1. In order to compare whole metagenome sequencing 
data with the semi-targeted data of st16S-seq and targeted 
sequencing data of other 16S rRNA kits, Kraken 2.0.7 [38] 
was used. It was recently demonstrated that Kraken2 is well 
suited not only for WGS, but also for targeted sequencing 
data [39]. To compare the ability to reveal the composi-
tion of complex samples (Fig. 1) based on data originating 
from different sample preparation methods, the Kraken 
classification of reads was conducted in the same manner 
using the same reference database. The subset of bacterial 
sequences of the standard Kraken database was used as 
a reference (downloaded in November 2020). After the 
Kraken runs where the input was read pairs, quantities 
at the species and genus levels were estimated by Bracken 
2.6 [16]. In addition to standard Kraken2 use, the st16S-
seq data were supplied for classification in two additional 
ways: (i) concatenated set of cleaned up contigs, and (ii) 
concatenated reads from pairs that were used for 16S 
rRNA contig assemblies. The concatenation of sequences 
was conducted using the ​fuse.​sh program from the BBmap 
v38.87 package [28].

2. To generate data for mock microbial communities 
(Fig.  2), taxonomic assignment was conducted using 
DADA2 v.1.14 [31]. The silva 138 database was used as 
a reference. The non-standard options were ‘inBoot=40 
tryRC=TRUE’.

Note on downsampling
Analysis of the soil samples was conducted after downsam-
pling to 130 000 read pairs after a quality trimming step. 
In addition, the reads were downsampled to the median 
number of reads in st16S-seq samples after read processing/
filtering (as indicated in the main text). During analysis 
of the ZymoBIOMICS and ATCC mock communities, the 
280 000 read pairs were used after quality trimming steps. 
Downsampling was executed using the ‘subseq’ program 
of seqkit v0.8.1.
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Fig. 1. Species-level discriminatory power of st16S-seq on complex samples and comparison with conventional techniques. (a) Shannon 
diversity indices obtained for six soil samples sequenced employing various library preparation approaches. (b) The fractions of taxa 
detected in each dataset as compared to either the total number of taxa identified in all soil samples by all sequencing methods (reference 
value ‘All’) or to taxa identified only by whole metagenome sequencing (reference value ‘WGS’). The analysis was conducted considering 
taxa for which abundance was above the defined minimum thresholds. (c) Principal components analysis considering the relative 
abundance of reads assigned per bacterial species across different soil samples processed by various library preparation techniques. 
The graph on the right depicts data that cluster near WGS. The dataset label ‘b’ stands for the downsampling level equivalent to the 
amount of on-target reads in st16S-seq datasets. The same downsampling strategy is true for WGS samples in all cases. The dataset 
label ‘s’ denotes the downsampling level equivalent to the number of unique reads in st16S-seq datasets retained after deduplication. 
The data for st16S-seq correspond to unique on-target reads in all cases.
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Fig. 2. Validation of st16S-seq on mock community DNA standards and comparison with conventional techniques. (a) Read distribution 
across bacterial genera in libraries prepared from ZymoBIOMICS Microbial Community DNA standards with various commercially 
available kits and st16S-seq approach. Numbers above bars indicate Pearson’s correlation coefficients between the expected and 
obtained read distributions. Two replicates are shown for each sample. (b) Read distribution across bacterial genera in libraries prepared 
from ATCC microbiome standard (ATCC MSA-1002) DNA with various commercially available kits and the st16S-seq approach. Numbers 
above bars indicate Pearson’s correlation coefficients between the expected and obtained read distributions. Two replicates are shown 
for each sample. (c) The number of 16S rRNA gene copies detected by st16S-seq within genomes of the members of the ZymoBIOMICS 
Microbial Community DNA standard that equates to the number of 16S rRNA contigs after removal of artefactual sequences. (d) Species-
level characterization of mock microbial communities using the NCBI database as a reference and either unmerged reads or only 
merged reads as an input for Kraken. Bars represent fractions of identified species as compared to the expected compositions.



10

Kapustina et al., Microbial Genomics 2021;7:000624

RESULTS
Adjacent genomic sequences enhance 
discriminatory power and allow accurate 
quantification when combined with 16S rRNA 
hypervariable regions
To assess whether capturing additional genomic sequences 
along the 16S rRNA gene is a beneficial microbiome profiling 
strategy, we in silico extracted 80 014 16S rRNA sequences and 
corresponding 1 kb upstream regions from 15 655 publicly 
available bacterial genome assemblies. After several filtering 
steps (Fig. S1, available in the online version of this article, 
see Methods), we built a database of taxonomically anno-
tated sequences consisting of 71 035 16S rRNA and near-16S 
regions from 13 570 unique genome assemblies. The distribu-
tion of strains within the final dataset was skewed towards 
well-characterized species: ~50% of strains represented only 
31 species with most strains belonging to Escherichia coli 
and Salmonella enterica. The number of strains per species 
was therefore limited to 10 for certain analyses, such as the 
assessment of identifiable 16S rRNA gene copy numbers, to 
avoid potential biases.

The analysis of positional sequence variability revealed that 
genomic sequences adjacent to the 16S rRNA gene are gener-
ally less conserved than within-gene sequences, but for single 
species the conservation level of near-16S regions is higher 
(Fig.  3a). Moreover, the entropy varies between different 
members of the rank. Despite such variability, the average 
entropy of near-16S genomic regions increases significantly 
for higher taxonomic ranks with P < 0.05 for all of species 
vs. genus, genus vs. order and order vs. family differences as 
assessed by one-sided Mann–Whitney U test. This reflects 
the decrease of phylogenetic relatedness between genome 
sequences of higher taxonomic ranks (Fig. 3d).

We next assessed the differentiation of 16S rRNA gene copies 
on intra-strain, inter-strain and inter-species levels. Within 
individual genomes, 16S rRNA hypervariable regions were 
able to differentiate between up to ~50% of gene copies. The 
full-length gene sequence raised the fraction of identifi-
able copies to only 60%. The inclusion of near-16S regions 
in conjunction with either V1–V2 or V1–V9 increased the 
discrimination rate to 99.7%. Microbiome samples often 
contain a mixture of closely related bacterial lineages, which 
complicates quantitative assessment because of the presence 
of identical 16S rRNA genes in genomes of different strains. 
To evaluate inter-strain 16S rRNA gene copy differentiation, 
we included species with at least two strains in the analysis 
in order not to inflate the mean with single strain variants. 
Although neither sequence allowed for absolute discrimina-
tion, we observed > 80 % of identifiable 16S rRNA copies for 
the near-16S and 16S rRNA sequence combination in contrast 
to ≤ 70% for within-gene sequences. At higher taxonomic 
level, inter-species sequence variation somewhat lowers 
the discriminatory power of full-length 16S rRNA gene 
sequences and sequences of hypervariable regions, although 
there is almost no impact on near-16S regions, thus allowing 
for absolute gene copy number identification (Fig. 3b). The 

discriminatory power of near-16S regions depends on the 
fragment length included in the analysis. We evaluated up to 
1 kb upstream of the 16S rRNA gene in conjunction with 341 
bp within the gene corresponding to V1 and V2 sequences. 
We observed that copy number identifiability peaks at 559 
bp upstream of the 16S rRNA gene and does not significantly 
increase with a further increase in fragment length (Fig. S2). 
The same trend was observed for the discrimination between 
strains.

The ability of near-16S along with 16S rRNA sequences to 
distinguish between strains was assessed on 100 species 
containing the highest numbers of strains in our dataset 
(Data S1). Generally, the higher the number of species 
included in the analysis, the easier it is to distinguish between 
different strains. The top 100 species were selected to reflect 
the scenario where both hardly distinguishable collections 
of strains, such as those comprising E. coli and S. enterica, 
and less challenging datasets are present. We considered a 
strain to be identifiable if at least a single copy of the near-
16S and 16S rRNA region differs from all other analogous 
regions of the same species. We observed that the inclusion 
of near-16S regions statistically significantly (P=1.5e−11, one-
sided Wilcoxon signed rank test) increases the fraction of 
identifiable strains as compared to individual hypervariable 
regions and the full-length gene (Fig. 3e).

Inclusion of near-16S regions increased the classification 
accuracy at the species level when strains were left out 
(Fig. 3c). The accuracy increased with increasing length of 
included genomic fragments up to 400 bp. The mean clas-
sification accuracy using 16S rRNA sequences alone was 
comparable to that of near-16S regions linked to V1–V2. For 
individual hypervariable regions, the classification accuracy 
was substantially lower as compared to both full-length gene 
and near-16S sequences linked to V1–V2.

We tested whether inclusion of near-16S regions improves 
sequence clustering into OTUs. Inclusion of near-16S 
regions does not consistently increase any OTU clustering 
metric (Table S1). As noted earlier [5], thresholds for clus-
tering differ for different datasets, and no clustering value 
seems to be universal. This is true for both the 16S rRNA 
and near-16S sequences. In addition, the utility of the 16S 
rRNA upstream genomic region for clustering into OTUs is 
limited by high variation of the clustering threshold value 
depending on metric. For ‘representative’ sequence sets, bijec-
tion and Matthews’ correlation coefficient thresholds were 
approximately two-fold lower than those of richness ratio, 
and thus if near-16S sequences are included in analysis the 
choice between clustering accuracy and correct community 
richness representation needs to be made.

It is increasingly recognized that the relationship between 
conventional OTUs and real species is largely groundless, 
and thus exact sequence variants were suggested to improve 
resolution [40]. However, such sub-OTU analysis suffers from 
artefactual sequence inaccuracies, which may be treated as 
non-existent taxonomic units. The overall similarity of 16S 
rRNA gene sequences makes it complicated to distinguish 
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Fig. 3. Discriminatory power of genomic regions upstream of the 16S rRNA gene. (a) Shannon entropy values of sequence regions 
upstream and within the 16S rRNA gene. Multiple sequence alignments were built on the basis of the database created in this study. 
(b) The percentage of identifiable 16S rRNA gene copy numbers as assessed by various regions of the 16S rRNA gene. (c) Krona charts 
depicting in silico estimated classification accuracy at the species level. The outer ring corresponds to the genus/family level. The size 
of circular fragments is proportional to the number of sequences belonging to the rank. For near-16S sequences, the length of included 
genomic fragments is indicated (100, 400, 1000 bp). In all cases, near-16S regions were linked to V1–V2 16S rRNA sequences. (d) 
Distribution of mean Shannon entropy values at different taxonomic ranks as assessed for sequences upstream of the 16S rRNA gene. 
Each boxplot represents 20 members of the taxonomic rank, with maximum number of five sub-members for each member of the rank 
and up to two strains per species. Centre line – median, box limits – upper and lower quartiles, whiskers – 1.5× interquartile range, 
points – outliers. (e) Distribution of fractions of identifiable strains within species. Each boxplot represents 100 species with the highest 
number of strains. For near-16S regions, the upstream fragment length (1000, 800, 600, 400 and 200 bp) is indicated. Near-16S regions 
in all cases were linked to the V1–V2 16S rRNA sequences. Centre line – median, box limits – upper and lower quartiles, whiskers – 1.5× 
interquartile range, points – outliers.
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between real SNP and PCR errors. To test whether sequence 
differences in the 16S rRNA upstream region would account 
for PCR errors, we measured the distance between sequence 
variants by the number of substitutions or indels. For 1000 
random sequences, distances were calculated to the five 
closest non-identical (distance >0) sequences in the dataset. 
We observed that for 16S rRNA within-gene regions, the 
distance to the closest sequence is small (1–3 nt) whereas 
the near-16S region demonstrated a larger distance, espe-
cially when the length of the genomic region included in the 
analysis exceeded 200 bp (Fig. S3). This result indicates that 
the near-16S region can effectively improve artefactual error 
detection.

Semi-targeted sequencing enables capture of a 
priori unknown sequences adjacent to the target 
site
To implement the linking of the near-16S region to sequences 
of the 16S rRNA gene, we developed st16S-seq (Fig.  4a), 
which utilizes a nucleotide-mediated adapter addition 

technology for rapid and simple preparation of sequencing-
ready molecules by the extension of a single site-specific 
primer. Specific primers designed for the bacterial st16S-seq 
target region between V2 and V3 and are oriented towards 
16S rRNA upstream sequence. In addition, primers contain 
universal PCR handles for further library amplification. 
Upon annealing, primers are extended by polymerase able to 
incorporate dideoxynucleotides. The nascent DNA strand is 
terminated by the incorporation of base-modified dideoxynu-
cleotides conjugated to an oligonucleotide. This step fulfils two 
library preparation requirements at once: the fragmentation 
step is integrated into the workflow as the average fragment 
length may be controlled by the ratio of oligonucleotide-
tethered dideoxynucleotides (OTDDNs) to corresponding 
dNTPs, and the obtained fragments are readily labelled by 
platform-specific adapters at both termini. The resulting 
extension products are amplified via PCR and subjected 
to standard Illumina paired-end sequencing. The forward 
sequencing read (R1) contains 16S rRNA V1–V2 regions 
starting from the specific priming site while the reverse read 

Fig. 4. Semi-targeted sequencing approach. (a) Outline of st16S-seq library preparation. (b) Read coverage of each of the six 16S 
rRNA gene copies and upstream regions within the Listeria monocytogenes genome. (c) The structure of oligonucleotide-tethered 
dideoxynucleotides (OTDDNs) as exemplified by oligo-modified ddUTP.
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(R2) consists of genomic regions upstream the 16S rRNA 
gene starting from random positions. Reads mapped to six 
16S rRNA gene copies and their upstream regions within the 
Listeria monocytogenes genome are shown in Fig. 4(b.

The successful use of ‘click’ chemistry as a means of adapter 
addition was previously reported [41, 42]. Here, we executed 
‘click’ reactions to generate oligo-modified nucleotides with 
oligonucleotide attached via the 5′ terminus prior to their 
incorporation into the growing DNA strand (Fig.  4c and 
S4, see Methods). We obtained conjugates of correct mass 
and 98% purity with > 30 % yield. An essential requirement 
for these compounds is the compatibility of the unnatural 
triazole-based linker with DNA polymerases to enable the 
use of the attached oligo as a priming site. We optimized 
the structure of linker and identified polymerases of types 
A, B, X and RT able to use OTDDNs as substrates as well as 
polymerases able to perform read-through (manuscript in 
preparation). These findings pave the way for straightforward 
DNA labelling by any desired oligonucleotide irrespective of 
the sequence context of the template.

st16S-seq accurately estimates microbial 
composition in low-complexity samples
To assess the performance of st16S-seq, we sequenced Zymo-
BIOMICS and ATCC microbial community DNA standards, 
two replicates each. The results of in silico analysis suggested 
the optimal total insert length of 1 kb, although we generated 
st16S-seq libraries with a median insert size of ~600 bp to 
comply with the supported range of insert sizes for short-read 
Illumina sequencers. Nevertheless, the assembly of resulting 
reads generated genome-linked contigs ranging in size from 
~600 to 1200 bp (Fig. S5). Genomic sequences enabled unam-
biguous identification of intragenomic 16S rRNA gene copies 
(Fig. 4b) and subsequent correction of read abundances for 
accurate quantitative estimation of taxa on the sole basis of 
sequencing data, assuming no prior knowledge of 16S rRNA 
gene copy numbers. The resulting st16S-seq data strongly 
correlated with the expected abundance distribution in both 
analysed mock communities, with Pearson’s correlation coeffi-
cients of 0.96–0.97 and 0.88–0.90 for ZymoBIOMICS (Fig. 2a) 
and ATCC (Fig.  2b) standards, respectively. In contrast, 
PCR-based techniques demonstrated poorer (Quick-16S and 
NEXTFLEX V1–V3) or inconsistent (EMP, NEXTFLEX V4, 
QIAseq and Swift) performance as compared to st16S-seq, 
which is attributable to widely acknowledged limitations 
posed by PCR primer design and unequal discriminatory 
power of individual variable regions [20, 43, 44]. st16S-seq 
was able to identify the majority of 16S rRNA gene copies 
in the members of the ZymoBIOMICS mock community 
(Fig.  2c). Occasionally, one or several copies may remain 
unresolved because intragenomic sequence differences occur 
at a marginal distance, which can be captured and reliably 
sequenced by our technique using short reads. In bacteria 
with multiple 16S rRNA gene copies, the evolution of 16S 
rRNA genes is thought to occur not only by vertical transmis-
sion of mutations, but also by non-reciprocal recombination 
with either horizontally acquired or intragenomic donors 

[45, 46]. Intragenomic recombination events might in turn 
result in duplications of the chromosomal regions nearby, 
bringing more complexity to the identification of gene copy 
numbers.

As we have predicted from the in silico analysis, the inclusion of 
near-16S sequences into the sequencing library improved the 
classification accuracy at the species level. We have assessed 
the ability of targeted methods and st16S-seq to discern 
bacterial species within mock communities employing both 
unmerged and merged paired-end reads for the analysis. 
The use of unmerged reads placed st16S-seq on a par with 
V1–V2-containing amplicons (Quick-16S and NEXTFLEX 
V1-V3) when analysing 20 species within ATCC microbial 
standards. Neither sequencing method was able to recognize 
Staphylococcus epidermidis and Streptococcus agalactiae from 
the ATCC mock community with such an analysis strategy. 
Of eight bacterial species constituting the ZymoBIOMICS 
mock community, Bacillus subtilis was incorrectly annotated 
by st16S-seq as Bacillus velezensis; the same misassignment 
was observed in V4 datasets (Table S2). In contrast, the 
analysis of assembled genome-linked contigs in st16S-seq 
datasets allowed us to correctly identify all members of mock 
communities, except for Streptococcus agalactiae, while the 
precision of PCR-based methods did not improve from the 
use of merged reads (Fig. 2d, Table S3). This highlights the 
importance of bridging 16S rRNA sequences with adjacent 
genomic regions for the precision of st16S-seq.

st16S-seq approximates relative abundances 
obtainable by WGS in high-complexity samples
To analyse the utility of st16S-seq for the characterization 
of highly complex communities, we sequenced libraries 
prepared from soil-derived DNA. Highly heterogenous 
samples exposed the inherent limitation of st16S-seq related 
to limited ability to assemble genome-linked contigs when 
individual 16S rRNA gene copies are sparsely covered. None-
theless, we used unmerged read pairs to perform species-level 
characterization of soil communities. Alpha diversity within 
soil samples measured by Shannon's index was substan-
tially higher in whole metagenome sequencing datasets 
as compared to targeted approaches as well as st16S-seq 
(Fig. 1a). This observation is not surprising considering < 1 % 
sequence duplication level in WGS datasets. Among targeted 
sequencing methods, st16S-seq along with the Quick-16S kit 
were able to detect the highest bacterial species diversity in 
all samples. Use of the V4 region resulted in underestima-
tion of species-level abundance. The overlap between species 
identified by each individual method and jointly by all studied 
techniques or by WGS alone is given in Fig. 4(b). As the 
median number of unique on-target reads, which reflects the 
complexity of the sequenced samples, in st16S-seq datasets 
was ~10 000, the lowest abundance that could be measured by 
st16S-seq was approximately 1e10−4. Applying an equivalent 
or higher abundance thresholds demonstrated the superior 
ability of st16S-seq to detect species overlapping with all other 
methods, including WGS. The detailed analysis of overlaps 
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between identified bacterial species in each of the soil samples 
is provided in Figs S6 and S7.

Principal component analysis (PCA) considering the relative 
abundances of reads assigned per bacterial species across soil 
samples sequenced using different methods revealed that data 
based on V4 and NEXTFLEX V1–V3 amplicon sequencing 
form distinct clusters, while st16S-seq and Quick-16S can 
approximate the variability of read fractions detected by 
WGS. Moreover, when st16S-seq data are analysed as pseu-
docontigs, meaning that all reads associated with individual 
OTUs are analysed as a whole, st16S-seq clusters with WGS 
even better (Fig. 1c).

We and others [14, 47] have observed that sequence conserva-
tion level of the V1–V2 region is the lowest among within-
gene 16S rRNA sequences, suggesting that this sub-region 
should be of greatest diagnostic power. Practical examples, 
however, often report underperformance of V1–V2 [48, 49]. 
It is apparent that PCR-based methods are often unable to 
make full use of sequence diversity present in that region 
due to not universally applicable design of commonly used 
primers. st16S-seq relieves this constraint by capturing vari-
able sequences in a context-independent manner. We looked 
into the opportunity to exploit only the V1–V2 region in 
st16S-seq data for species-level characterization. The captured 
microbial diversity was in line with other targeted techniques 
(Fig. S8). We argue that the stable performance of st16S-seq 
enables its use both (i) as a method offering high taxonomic 
resolution and enabling precise determination of 16S rRNA 
gene copy numbers, when sample complexity and sequencing 
depth allow us to assemble genome-linked contigs, and (ii) as 
a well-performing method to sequence the V1–V2 16S rRNA 
sub-region without the need to design a primer spanning the 
highly variable V1 locus.

DISCUSSION
Here, we have demonstrated that direct linking of near-16S 
genomic sequences to those of the V1–V2 16S rRNA region 
gives a number of significant methodological advance-
ments to microbiome characterization. Although alternative 
approaches to interrogate microbiomes have been suggested 
[50, 51], the amount of 16S rRNA sequences in the databases 
greatly exceeds those of other bacterial genes and whole 
genomes, favouring the use of 16S rRNA as a phylogenetic 
marker. Considerable effort has been devoted to improving 
its taxonomic resolution [13, 14], but because of limited 
diversity of within-gene sequences and hardly predictable 
gene copy numbers [52] unequivocal characterization of 
microbiomes was barely possible. st16S-seq solves this 
by providing a means of establishing a direct connection 
between 16S rRNA sequences and adjacent genomic regions, 
which we showed to be highly variable and of high diagnostic 
value. A similar approach was proposed previously [53] and 
showed promising results, although low efficiency and an 
elaborate setup impeded its wider adoption. We have devel-
oped an elegant approach of capturing unknown sequences 
near a defined target site. Semi-targeted library preparation 

is based on primer extension reaction in the presence of 
oligonucleotide-tethered chain terminators which ensure 
stochastic fragmentation and adapter addition at the same 
time. This sequencing design is modular: primers can be 
designed to target any gene of interest and oligonucleotide 
modification conjugated to dideoxynucleotides can also be of 
any desired sequence, meaning that the same principle might 
be adapted for a plethora of applications where highly variable 
regions are adjacent to defined loci. Moreover, sequencing can 
be conducted on any platform.

Linking 16S rRNA sequences to genomic loci appeared to 
be a superior strategy for microbiome characterization as 
compared to individual variable regions and full-length gene 
sequence, especially when the length of captured genomic 
region exceeds 200 bp. Admitting that 16S rRNA gene 
sequences will never be able to represent bacterial species 
diversity perfectly [47], whole metagenome sequencing is 
viewed as an alternative to 16S rRNA sequencing providing 
more precise taxonomic resolution [51]. Nonetheless, the 
analysis of whole metagenome sequencing data relies heavily 
on reference databases and requires expansion of reference 
genomes to cover novel environments. st16S-seq is capable of 
genome-linked contig assembly in a reference-free manner. 
Moreover, this approach can assist in metagenomic assembly 
by accurate location of multiple 16S rRNA copies and serves 
to establish a consensus classification.

We applied st16S-seq to discern bacterial species in low- and 
high-complexity samples. The importance of validating any 
microbiome characterization technique on test samples with 
known ground truth cannot be underestimated – each step of 
the sample preparation procedure is a potential source of bias 
[54, 55]. Here we demonstrated that, thanks to unique design 
and carefully selected target-specific primers, st16S-seq 
determines the composition of two different mock microbial 
communities with very high precision in terms of both clas-
sification accuracy and abundance estimation. Soil microbial 
communities contain the highest level of prokaryotic diversity 
of any environment [56], thus making it a challenging sample 
type for any technique. It appeared that ultra-high diversity 
requires higher sequencing depths to enable genome-linked 
contig assembly in st16S-seq. Nevertheless, the analysis of 
unmerged reads and pseudocontigs still provided an adequate 
approximation of species abundance as compared to that 
obtainable by WGS.

We thoroughly benchmarked st16S-seq against other 
commercially available PCR-based microbiome characteriza-
tion techniques. In our study, amplicons containing V1–V2 
or V1–V3 regions exhibited better performance in terms 
of species-level classification accuracy and better captured 
alpha diversity in soil samples than those consisting of V4 
sequences. In other study involving soil communities [44] it 
was observed that V4–V5 domain data clustered separately 
from all other analysed 16S rRNA regions in soil samples, 
indicating that the V4–V5 domain was skewed regarding the 
detection of certain phyla. Our results showed that soil data 
derived from V4-containing amplicons likewise tended to 



15

Kapustina et al., Microbial Genomics 2021;7:000624

group together, although we also observed that the V1–V3 
amplicon formed a distinct cluster. Only st16S-seq and V1–
V2 amplicon datasets clustered along with WGS. Sequencing 
long-range PCR products, spanning the full-length 16S rRNA 
gene [14, 57] or 16S–23S rRNA region [58], by either short-
read or long-read technologies was reported to improve the 
diagnostic yield in clinical samples. While the rationale to 
include long-range information lies in capturing greater 
sequence differences, these techniques are still vulnerable to 
biases typical for amplicons. Given that st16S-seq requires 
only one target-specific primer, it is reasonable to believe that 
the robust performance of st16S-seq would depend to a lesser 
extent on the application and source of bacterial community 
compared with PCR primers [20].

Together, st16S-seq enables high-throughput microbiome 
profiling with unprecedented precision at a cost of targeted 
sequencing. Further development of st16S-seq could include 
the combination of semi-targeted library preparation tech-
niques with the long-read sequencing platforms to streamline 
the assembly of genome-linked contigs.
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