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Conventional machine-learning (ML) models in computational chemistry learn to
directly predict molecular properties using quantum chemistry only for reference data.
While these heuristic ML methods show quantum-level accuracy with speeds several
orders of magnitude faster than traditional quantum chemistry methods, they suffer
from poor extensibility and transferability; i.e., their accuracy degrades on large or
new chemical systems. Incorporating quantum chemistry frameworks into the ML
models directly solves this problem. Here we take the structure of semiempirical
quantum mechanics (SEQM) methods to construct dynamically responsive Hamilto-
nians. SEQM methods use empirical parameters fitted to experimental properties to
construct reduced-order Hamiltonians, facilitating much faster calculations than ab
initio methods but with compromised accuracy. By replacing these static parameters
with machine-learned dynamic values inferred from the local environment, we greatly
improve the accuracy of the SEQM methods. Trained on molecular energies and atomic
forces, these dynamically generated Hamiltonian parameters show a strong correlation
with atomic hybridization and bonding. Trained with only about 60,000 small organic
molecular conformers, the resulting model retains interpretability, extensibility, and
transferability when testing on much larger chemical systems and predicting various
molecular properties. Overall, this work demonstrates the virtues of incorporating
physics-based descriptions with ML to develop models that are simultaneously accurate,
transferable, and interpretable.
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Modeling the interactions between electrons and nuclei is central to the study of chemical
and material systems. Conventional quantum-mechanical (QM) approximations include
density functional theory (DFT), coupled-cluster (CC), and configuration interaction
(CI) methods (1–7). These techniques can often provide highly accurate predictions of
physical properties. However, ab initio QM approaches are computationally expensive
relative to alternatives such as classical force fields or semiempirical QM, which inhibit
the application of these methods to very large systems and high-throughput screening
of materials. Fortunately, in recent years, machine-learning (ML) methods have shown
promise for making predictions with QM-level accuracy but at a much-reduced compu-
tational cost.

ML is now frequently used to make direct predictions of materials and chemistry prop-
erties. A common strategy is to extract descriptors that characterize local atomic geometries
and feed them into a regression model such as a multilayer neural network (NN). NN ar-
chitectures of this type include hierarchical interacting-particle neural network (HIPNN)
(8), MoleculeNet (9), TensorMol (Tensorflow Molecules) (10), DPMD (Deep Potential
Molecular Dynamics) (11), SchNet (12–14), ANI-1 (Accurate NeurAl Network Engine
for Molecular Energies) (15–18), and PhysNet (19), etc. While these methods are pre-
dominantly used to construct potential energy surfaces and atomic forces, they have also
been used for predicting various properties such as atomic charges (20, 21), dipoles (10,
22, 23), spin distributions (24), band gaps, and more (25, 26). These advances are already
enabling large-scale molecular dynamics (MD) simulations with unprecedented accuracy.

Despite these successes, ML models trained to directly predict material properties
lack the ability to describe properties for which a training set is not readily available.
Training datasets, which typically take the form of millions of atomic configurations
to cover the chemical and conformational space of interest with the desired property
precomputed, are computationally very expensive to generate. This contrasts with QM
approaches, which provide most desired properties in one calculation, such as energy,
orbital, and charge density information. Additionally, most existing ML methods struggle
to predict intensive properties of a system (i.e., properties independent of the system
size), which may typically include electron delocalization effects, excited-state transition
energies, etc. As such, they are often limited to specific types of systems (27–30).
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Typical ML models employ a nearsightedness principle, forcing
certain properties, such as the energy, to be expressed as a sum
over local contributions (plus long-range interactions of known
form, such as Coulomb). In many cases, however, one wants
to predict properties that are relevant to long-range and many-
body effects and do not have a simple functional form. For
example, despite efforts to predict some excited-state quantities
such as nonadiabatic couplings (31, 32), true transferability in ML
predictions of excited-state properties remain limited. While some
work has shown that singlet–triplet gaps may be predictable in a
general way (24), it is a grand challenge for these methods to be
applied more generally to molecular orbital-derived properties or
extend to significantly larger systems such as lipids or proteins. A
final challenge with most existing ML models is interpretability
and uncertainty quantification. It is difficult to understand why
certain predictions are made and thus difficult to trust them.

Incorporating more physical knowledge into the ML model
may help to improve transferability. One approach pioneered by
Yaron and coworkers (33) uses NN and spline-based ML models
to predict matrix elements for the self-consistent-charge density
functional tight-binding (SCC-DFTB) Hamiltonian. This auto-
matic parameterization technique is adapted later in the extended
Hückel method and shows great interpretability (25). Another
strategy leverages Δ-learning, whereby an ML model makes cor-
rections to low-cost quantum chemistry models (34, 35) and
modifies them to resemble more expensive calculations using a
NN. Specifically, OrbNet uses symmetry-adapted atomic orbital
features from semiempirical calculations to achieve high learning
efficiency and a great reduction of computational cost (36).

Here we present a different take on the interface between ML
and QM by dynamically parameterizing an effective Hamiltonian
with a ML model. Established semiempirical quantum mechanics
(SEQM) (37–39) methods take advantage of domain knowledge
in quantum chemistry, while the HIPNN (8) facilitates dynamic
alterations to the model to increase its accuracy. HIPNN behaves
as an encoder, learning to predict SEQM Hamiltonian parameters
from a local environment for each atom. This Hamiltonian-
based method (denoted as HIPNN+SEQM), with these
tuned parameters, then solves the Hartree–Fock equations for
interacting electrons in a reduced-dimensional space. Thus, this
method retains the structure of semiempirical QM for considering
nonlocal effects through the self-consistent field (SCF) procedure
and explicit Coulombic interaction terms. We have enabled
back propagation through the SCF procedure, making multitask
training with molecular energies, forces, orbital energies, and
other properties possible. By incorporating known physics, we
can achieve strong transferability and extensibility using a small
amount of training data. Another advantage is that the method
can naturally extend to new atom types by reusing existing
SEQM parameterizations. A final advantage is interpretability:
The NN modifies parameters such as “orbital energy” or the
“orbital radial exponent term,” which have established physical
meaning. Furthermore, we will show that the alteration of these
parameters strongly correlates with traditional notions of atomic
orbital hybridization and bonding in quantum chemistry, which
verifies the interpretability of the model and gives insights into the
electronic structure of atoms in different chemical environments.

Four models are explored in this work and applied to nonequi-
librium configurations of a diverse set of organic molecules. First,
for comparison, we report results for an unmodified SEQM
method: Parametric Method 3 (PM3) with the D3H4 correc-
tions on hydrogen bonding and dispersion (40–42). Second, we
optimize static (constant) parameters for PM3 using ML tools,
which we denote as PM3*, attempting to best fit the PM3+D3H4

form to the ab initio training data (i.e., reference DFT results).
Third, we build a pure HIPNN model whose architecture was
originally reported in ref. 8. HIPNN learns to directly predict
energies and forces of nonequilibrium conformations. Finally,
based on the PM3* parameters along with D3H4, we build the
Hamiltonian-based HIPNN+SEQM model that uses HIPNN
to dynamically predict PM3 parameters. The SEQM module
used here is implemented in the PYSEQM software package
that utilizes Pytorch to interface with other ML packages (43,
44). We chose PM3 as the base semiempirical method because
it is a highly used method based on Hartree–Fock theory with
well-documented features and one of the simplest methods to
utilize the SCF procedure. It does not have complications like an
overlap matrix or d orbitals as in other SEQM methods (45–47),
which reduces the numerical instabilities and makes PM3 efficient
and stable to train. To examine and compare the extensibility
of these models, we benchmark all four models on the COMP6
(Comprehensive Machine-learning Potential) dataset (48), which
contains diverse molecular families much larger than those found
in the training set. To verify the accuracy of force predictions,
we compute vibrational spectra for the Drug Bank subset of
COMP6 and compare them to vibrational spectra produced by
the reference method. Additionally, we study the performance
of these models under a variety of nonequilibrium conditions.
Finally, we examine the accuracy of the three Hamiltonian models
when predicting untrained properties (which HIPNN cannot
provide) to examine and compare their transferability.

HIPNN+SEQM Workflow

We illustrate the full workflow of HIPNN+SEQM here in Fig. 1.
The HIPNN architecture was originally presented in ref. 8 and is
briefly summarized in SI Appendix, section S1. HIPNN models
take molecular configurations as input, where each molecule
is represented as a set of atom types and pairwise interatomic
distances. The input features are passed through on-site layers (red
block in Fig. 1A), which are applied to the local features for each
individual atom and shared through continuous message-passing
layers (green block in Fig. 1A) that pass information between
nearby atoms and allow atoms to see their chemical environments.
An inference layer is applied to the output from each of the last
on-site layers to obtain the output from the NN in sequences
to get zero- to higher-order corrections of PM3 Hamiltonian
parameters. Entry-wise additions are then used with the constant
PM3 parameters (we use the PM3* parameter set in this work) to
yield the dynamic (local environment-dependent) Hamiltonian
parameters for the SEQM layers.

The Hamiltonian parameters are then fed into the SEQM
module, which is detailed in the PYSEQM paper (43). PYSEQM
is an open-source package for several SEQM methods, including
the PM3 (40, 41) used here. They are implemented in an efficient,
scalable, and stable manner with the ML framework PyTorch (44).
With PyTorch, PYSEQM takes advantage of modern graphics
processing unit (GPU) hardware to greatly accelerate calculations
while automatic differentiation enables the interface with a NN
for the dynamic parameterization of the SEQM model. For these
SEQM methods, the total energy is expressed as the sum of
electronic energy Eelec and pairwise nuclear Coulomb interaction
energy Enuc :

Etot = Eelec +
∑
i<j

Enuc,ij + ED3H4 [1]

Eelec = Tr[D(h +H )]/2 [2]
H (D) = h +G(D), [3]
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Fig. 1. Model structure scheme. (A) HIPNN with molecular configurations as input (black and white blocks), interacting layers (green blocks), onsite layers (red
blocks), and inference layers (blue blocks). The total correction to an SEQM parameter is obtained by summing the output from each inference layer, P0, P1, P2.
(B) The SEQM module takes molecule configurations and dynamic Hamiltonian parameters from HIPNN to generate core Hamiltonian and Coulomb integrals
(orange block) and then performs the SCF procedure to get chemical Hamiltonians (brown block) and to predict various molecular properties. Backpropagation
through the entire procedure enables stochastic gradient descent training to reference DFT data.

where Enuc,ij is the nuclear interaction between atom i and j,
and ED3H4 is the energy correction on hydrogen bonding and
dispersion from Rezac and Hobza (42). Per Eq. 2, the electronic
energy Eelec is obtained from single-particle density matrix D ,
one-electron core Hamiltonian h , and the entire Hamiltonian
(Fock matrix) H given by Eq. 3. G is the Coulomb matrix,
which depends on D and electron–electron interaction terms
(SI Appendix, section S2). The PM3 model utilizes a minimal
basis set containing only effective valence orbitals and truncates
electron–electron interaction terms. As such, there is a limited
number of empirical parameters that are used to construct h ,
G, and Enuc,ij . With these empirical parameters replaced by
the dynamic values learned from local atomic environments by
the HIPNN network, the SEQM module first computes the core
Hamiltonian h and Coulomb integrals G and then performs
standard SCF procedure to get the density matrix D and entire
Hamiltonian H , as shown in Fig. 1B. Finally, the electronic
energy Eelec from Eq. 2, along with nuclear energies Enuc and
the correction ED3H4, is computed to get total energy, Etot . The
gradient of total energy with respect to the molecular coordinates
is automatically computed in PyTorch to get the atomic forces.
Several issues from the SCF procedure along with the implemen-
tation and training details are referred to in Methods. We also train
a pure NN model HIPNN and reoptimize the PM3 parameter set
to create PM3*, as detailed in Methods.

Results

Learned Hamiltonian Parameters. We first examine the SEQM
parameters in PM3* and the original PM3 models. As shown
in Fig. 2 and SI Appendix, Table S2, the Hamiltonian parameters
in the PM3* set have small deviations from the original PM3
values. Most deviations are within 10%, with few exceptions for
several relatively small nuclear interaction parameters K1 and
K2 of carbon atoms in SI Appendix, Table S2. As the dataset
and optimization procedure used to generate the original PM3
parameter set are different from the ones used to create the PM3*
parameter set (Methods), this difference is expected. In fact, the
magnitude of the parameter shifts suggests the PM3 Hamiltonian
is consistent with DFT quantum mechanics. These small differ-
ences also indicate that the performance improvement of PM3*
over PM3 may be insignificant. Using the PM3* parameters as
a starting point, the HIPNN module in the HIPNN+SEQM
model learns to tune these parameters based on the local atomic
environment. We apply the HIPNN+SEQM model on 8,000
randomly selected molecules (100,000 atoms) in the training set

and extract the intermediate SEQM parameters and compare with
the PM3 and PM3* geometry as well as molecule-independent
parameters.

Among the nine output SEQM parameters for each element,
most of them are similar to the corresponding PM3 parameters,
as shown in SI Appendix, Fig. S1. We analyze in detail and exem-
plify trends using the on-site energy term Upp for the p orbital
in the effective Hamiltonian. The distributions of most output
parameters (such as Uss for the s orbital for H) are Gaussian-
like (SI Appendix, Fig. S1), but some are asymmetric and non-
Gaussian, showing multimodal behavior (Fig. 2). This is due
to the complex chemical environments present in the training
set. These multimodal distributions can be related to the local
bonding environment or related to the electron hybridization in
C, N, and O as shown in Fig. 2 A–C. For atoms with different
order of bonding with surrounding atoms, their values of Upp

show the following order: triple bond (sp hybridization) > double
bond (sp2 hybridization) > all single bonds (sp3 hybridization).
The trend clearly shows that HIPNN+SEQM learned that hy-
bridization should modify on-site orbital energies and illustrates
an advantage of the dynamic parameterizations produced by the
HIPNN+SEQM model.

Fig. 2. Histograms for the SEQM predicted parameter Upp (p orbital on site
energy) from the Hamiltonian-based HIPNN+SEQM model for (A) C, (B) N, and
(C) O. Histograms are colored based on atomic hybridization. The vertical lines
are the constant PM3 (solid) and PM3* (dashed) values for each parameter.
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Table 1. Accuracy on predicting atomization energies per atom (unit: eV) and atomic forces (unit: eV/Å) on the
COMP6 subsets for the original PM3 model, the reoptimized PM3* model, the HIPNN model, and the Hamiltonian-
based HIPNN+SEQM model

Atomization energy/atom, eV Atomic forces, eV/Å

PM3 PM3* HIPNN HIPNN+SEQM PM3 PM3* HIPNN HIPNN+SEQM
Held-out test RMSE 0.046 0.032 0.0073 0.013 0.79 0.56 0.20 0.27
Held-out test MAE 0.033 0.024 0.0049 0.010 0.50 0.37 0.10 0.17
GDB RMSE 0.028 0.019 0.017 0.009 0.64 0.43 0.30 0.22
GDB MAE 0.022 0.014 0.013 0.007 0.42 0.28 0.19 0.15
S66x8 RMSE 0.045 0.035 0.045 0.018 0.48 0.34 0.43 0.15
S66x8 MAE 0.036 0.029 0.030 0.014 0.25 0.18 0.20 0.10
Drug Bank RMSE 0.023 0.031 0.046 0.011 0.54 0.37 0.43 0.22
Drug Bank MAE 0.018 0.027 0.038 0.009 0.35 0.25 0.27 0.16
Tripeptides RMSE 0.024 0.030 0.046 0.008 0.67 0.48 0.41 0.26
Tripeptides MAE 0.020 0.028 0.045 0.007 0.42 0.29 0.23 0.17
ANI-MD RMSE 0.030 0.034 0.076 0.012 0.56 0.35 0.66 0.28
ANI-MD MAE 0.026 0.032 0.055 0.011 0.37 0.25 0.38 0.19

Boldface indicates best performing model.

Model Performance. The detailed performance breakdown of
these models is listed in Table 1. On the held-out test set, PM3*
reduces the energy errors by about 25% compared to base PM3,
which is likely due to the testing data originating from the same
DFT method used to optimize PM3*. Rigid parameterization is
a limiting factor in PM3* since these errors are further decreased
by more than 70% in the HIPNN+SEQM model. HIPNN has
the best performance on the held-out test set with an energy mean
absolute error (MAE) of 0.063 eV (1.45 kcal/mol) or 0.0049 eV
per atom (0.15 kcal/mol per atom), which is in line with other
results using ANI-1x datasets and pure NN models (48). However,
this performance does not transfer to different and larger systems,
as shown in the following sections.

We next test all models to the COMP6 benchmark dataset to
analyze their transferability to other molecular families and much
larger systems. COMP6 is a sophisticated benchmark that in-
cludes various molecular conformers covering diverse organic and
biochemical and conformational space. The subsets in COMP6
are two GDB (Chemical Universe Generated Database) subsets
(GDB07to09 and GDB10to13) that are subsampled from GDB-
11 (49, 50) and GDB-13 (51), respectively. The Drug Bank subset
is a subsampling of the Drug Bank dataset (52). The tripep-
tide subset contains 248 random tripeptides. Diverse normal
mode sampling (DNMS) (48) is used to create nonequilibrium
conformations for these four subsets. The ANI-MD subset is
generated from MD simulations using ANI-1x potential on 14
drug molecules (48). Finally, the S66 × 8 subset is created
from the original S66 × 8 benchmark and contains 66 dimeric
systems, which focuses on noncovalent interactions in biological
molecules, including hydrogen bonding, π–π stacking, and van
der Waals interactions (53).

The performance of all models on COMP6 is summarized
in Table 1 and SI Appendix, Figs. S2 and S3. Overall, the
HIPNN+SEQM model performs much better than both
the pure NN and semiempirical models for predicting both
molecular energies and atomic forces. As shown in Table 1,
the HIPNN+SEQM model has a root-mean-square error
(RMSE)/MAE more than 50% lower when compared to
PM3*. On the S66 × 8 subset, HIPNN+SEQM shows again
consistent accuracy when predicting total system energy and
has smaller atomic force errors, partially due to the narrow
range of noncovalent interactions. This is in contrast with
the other three models, which all show a significant loss of
accuracy when predicting energies for S66 × 8 and show

skews when predicting atomic forces indicating systematic errors
(SI Appendix, Figs. S2 a-2–d-2 and S3 a-2–d-2). For the other
COMP6 subsets, Drug Bank, Tripeptides, and ANI-MD, which
contains much larger biological molecules up to 300 atoms, the
Hamiltonian-based methods PM3, PM3*, and HIPNN+SEQM
show consistent performance when compared to the results on
the smaller GDB sets. This indicates that the Hamiltonian-based
methods exhibit good extensibility: They can make accurate
predictions on systems much larger than those found in their
training sets. In contrast, HIPNN alone exhibits a significant
accuracy drop on the larger datasets, with atomization energy per
atom errors 6 to 9 times larger and force errors 1.5 to 2 times
larger than those observed on the GDB dataset, indicative of poor
extensibility.

Compared to PM3 and PM3*, HIPNN+SEQM not only
shows a significant improvement in accuracy, but also corrects a
force skew observed in the tripeptide dataset (Fig. 3). Detailed
examination shows these force outliers originate mostly from

A B

C D

Fig. 3. Two-dimensional histograms show predicted vs. DFT reference
atomic forces on the COMP6 subset Tripeptides from four models in the
main text: (A) original PM3, (B) reoptimizing PM3*, (C) pure HIPNN, and (D)
Hamiltonian-based HIPNN+SEQM.
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A

B

Fig. 4. MAEs of (A) atomization energy/atom and (B) atomic forces as a
function of a system size in COMP6 for the four models: PM3 (black dashed
line), PM3* (red solid line), HIPNN (blue solid line), and HIPNN+SEQM (green
solid line). To obtain acceptable statistical sampling of the MAE, we restrict this
analysis to system sizes with more than 50 configurations.

N-H bonds with lengths between 0.7 and 0.9 Å, which are
much shorter than average N-H bonds with length 1.0 to 1.1 Å.
Some other outliers come from C-C and C-H bonds as shown
in SI Appendix, Fig. S4. The original PM3 parameter set is not
fitted for this region, and while PM3* slightly corrects this discrep-
ancy, the glaring problem remains (as illustrated in SI Appendix,
Fig. S5). The failure of PM3* indicates there may be no static re-
duced parameterization capable of fitting potential energy surfaces
simultaneously at near equilibrium and compressed geometries
and that to capture all of these regions would require a reformula-
tion of the semiempirical method. As a comparison, both HIPNN
and HIPNN+SEQM models do not demonstrate this skew and
show uniform improved performance for compressed, stretched,
and normal bond lengths. Thus, by dynamically reparameterizing
an established semiempirical model, we demonstrate that we can
expand the region of phase space where applicable.

The extensibility of the models is further examined in Fig. 4,
which shows the average inference error with respect to the size
of chemical systems in COMP6. To get a reliable estimation of
errors with respect to system sizes, we compute the MAE for
each system size with more than 50 configurations. As a general

trend, the Hamiltonian-based models have relatively consistent
errors with regard to system size, while the errors of the NN
model increase with system size. This illustrates that models
building upon quantum mechanical concepts capture the essence
of predicting energies and forces, while the conventional heuristic
NN model may require further augmentation such as including
long-range corrections or training to larger molecules to achieve
this level of accuracy. Both machine-learning methods (HIPNN
and HIPNN+SEQM) have similarly small errors when applied to
small systems with up to 20 atoms, but the Hamiltonian-based
HIPNN+SEQM method maintains this performance for larger
systems (Fig. 4).

Predicting Properties of Optimized Structures. To test whether
HIPNN+SEQM can find the correct geometric minimum for
these molecules, we optimize systems from the Drug Bank subset
of COMP6 with each model and compute bonds, angles, dihedral
angles, and the vibrational spectrum for each molecule. The results
of this analysis, for every model type, are compared against the
reference DFT calculations using the ω B97X functional and 6-
31G* basis set with the ORCA software package (54). The DFT
optimization is performed with a geometric convergence tolerance
of 1.5 × 10−3 eV/Å (3 × 10−5 hartree/bohr) on gradients.

The other models use the L-BFGS-B optimizer in SciPy with
a tolerance of 10−3 eV/Å (55). Of the 837 molecular systems
in this dataset, HIPNN optimizes to unphysical structures for
about 40% of the systems. These systems have been removed
from the following comparison for the HIPNN model only,
which artificially inflates the HIPNN performance scores. With
the optimized structures, the RMSD* between these structures
and the corresponding structures from DFT is calculated with
the RDKit package (56) and Hessian matrices are diagonalized
to obtain vibrational frequencies. As ORCA gives unphysical
frequencies for 179 systems due to insufficient optimization, they
are removed from this comparison. There are no such failures
with PM3, PM3*, and HIPNN+SEQM for optimization and
vibrational analysis, so all remaining structures are used to com-
pute vibrational frequencies shown in Table 2. HIPNN, however,
fails to give sufficiently optimized structures for 405 systems and
yields unphysical frequencies, which are filtered from the HIPNN
analysis, artificially improving its results. Dihedral angles for sp3

hybridized N atoms are also shown because PM3 is known to have
problems with these quantities.

As listed in Table 2, HIPNN+SEQM performs consistently
better than other models in predicting local properties such
as bond lengths and angles, dihedral angles, and vibrational

*RMSD is the root mean squared error in atomic positions between two atomic structures
where, one structure is translated and rotated freely to minimize the difference.

Table 2. Bond length, angle, dihedral angle, vibrational frequency, and RMSDs for PM3, PM3*, HIPNN, and
HIPNN+SEQM models on 658 optimized structures from Drug Bank subset in COMP6
RMSE/MAE PM3 PM3* HIPNN HIPNN+SEQM

Bond length, Å, RMSE 0.017 0.010 0.013 0.006
Bond length, Å, MAE 0.013 0.007 0.007 0.004
Bond angle, ◦, RMSE 2.08 2.20 2.62 1.58
Bond angle, ◦, MAE 1.42 1.41 1.46 1.14
Dihedral 1-35-5 angle, ◦, RMSE 8.60 9.06 12.76 9.14
Dihedral 1-35-5 angle, ◦, MAE 5.92 6.17 6.71 5.44
Frequency, cm−1, RMSE 78.2 83.1 168.0 54.2
Frequency, cm−1, MAE 58.9 65.8 47.8 32.6
Å mean ± SD, RMSD 0.69 ± 0.62 0.68 ± 0.57 0.96 ± 0.77 0.70 ± 0.52

Boldface indicates best performing model.
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Fig. 5. (A) Two-dimensional histogram showing predicted bond lengths vs.
the DFT reference. (B) Dependence of RMSD on system size between opti-
mized structures from PM3 (black dashed line), PM3* (red solid line), HIPNN
(blue solid line), and HIPNN+SEQM (green solid line) compared to DFT-
optimized geometries, where each value is an average of six or more systems
with the same number of atoms.

frequencies. PM3 systematically underestimates O/N-H (around
1 Å) and overestimates C-H bond length (around 1.1 Å) by 0.02 Å
as shown in SI Appendix, Fig. S7A. PM3* and HIPNN+SEQM
correct this downshift as shown in SI Appendix, Fig. S7D and
Fig. 5A. The accuracy for predicting bond angles is also slightly
improved over PM3 for PM3* and HIPNN+SEQM. As shown
in SI Appendix, Fig. S7 B and E , PM3 and PM3* display a
Z-shape distribution on dihedral angles: small errors for dihedral
angles around 0◦ (planar shape for sp3-hybridized N atom and
its bonded atoms) and around 30 to 40◦ (pyramidal shape)
and large errors for dihedral angles slightly away from 0◦ (5
to 20◦). It is known that PM3 failed to give planar amide bonds
in peptides (57) and HIPNN+SEQM performs slightly worse
than PM3 and PM3* here, as there is no Z shape as shown in
SI Appendix, Fig. S7B.

HIPNN+SEQM also provides an improvement over PM3
and PM3* for vibrational frequency calculations over all ranges.
There are roughly three ranges for frequencies in the selected
organic systems as shown in SI Appendix, Fig. S6A: 3,300 cm−1

and above stem from O-H and N-H bonds, 2,900 to 3,300
cm−1 originate from C-H bonds, and lower than 2,000 cm−1

frequencies are attributed to other bond vibrations. PM3 and
PM3* show a bias on frequencies over 1,500 cm−1 as shown
in SI Appendix, Fig. S7 C and F . This emphasizes that PM3 and
PM3* methods give inaccurate energy curvatures for O/C/N-H
bonds. However, after training, HIPNN+SEQM corrects these
systematic errors, giving correct optimized distances as shown in
Fig. 5A for these bonds, while slightly overestimating certain high
frequencies.

Although HIPNN+SEQM shows a consistent improvement
for predicting local properties, there is no improvement when
predicting the optimized structures, as shown in Fig. 5B and the
minimal root-mean-square displacement (RMSD) reported in Ta-
ble 2. In Fig. 5B, HIPNN+SEQM performs nearly identically to
PM3*, with slightly smaller RMSDs for small systems and slightly
larger RMSDs for large systems. All semiempirical methods show
similar dependence on system size. On the other hand, HIPNN
shows a significant increase in RMSDs for systems with more
than 30 atoms, even with 40% of the systems removed due to
unphysical optimized structures.

Performance for Nonequilibrium Configurations. A major cha-
llenge for ML-derived force fields (i.e., interatomic potentials)
is ensuring consistent performance when operating far from
equilibrium configurations, like those encountered during high-
temperature MD simulations. This is largely a training dataset
generation problem since many methods for sampling rely on
room temperature MD. As temperatures rise, the distributions
of molecular properties may shift, leading to unseen atomic
environments. Advanced sampling can help alleviate this problem,
like sampling all possible normal modes in the configuration space
as was done in in ANI-1x (16). Here we examine how temperature
affects a variety of property predictions for our HIPNN+SEQM
model.

Forty-eight molecules in Drug Bank with 39 to 41 atoms
(average 40 atoms) were heated to a specific temperature between
100 and 2,000 K with PM3 as implemented in PYSEQM. After
10 ps of heating, a 50-ps trajectory is generated for each system
with an NVT ensemble (an ensemble that conserves number of
particles, volume, and temperature) with a Langevin thermostat
at the target temperature and a 1-fs time step. One configuration
is extracted per 1 ps from each 50-ps trajectory, resulting in 2,400
configurations for each temperature. Potential energies and forces
are computed for each configuration using all four models and

A

B

Fig. 6. (A) Predicting errors on atomization energy over temperatures for
PM3 (black dashed line), PM3* (red solid line), HIPNN (blue solid line), and
HIPNN+SEQM (green solid line). For visual clarity, the error bar is shown as
±1/3 σ (SD). (B) Prediction errors of forces over temperatures for these four
models. Same line styles are used with error bar shown as ±1/3 σ.
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A B C

Fig. 7. Two-dimensional histograms show the predicted band gaps from (A) PM3, (B) PM3*, and (C) HIPNN+SEQM models vs. DFT reference values.

reference DFT with the functional ω B97X and 6-31G* basis set.
The inference errors of atomization energies and atomic forces are
shown in Fig. 6.

As shown in SI Appendix, Fig. S8A, energy fluctuations show
a linear dependence on system temperature, which is expected
from the Boltzmann distribution of total energies in a system.
The errors on predicting energies follow the same trend, increasing
almost linearly for T > 500 K. The HIPNN+SEQM has the
slowest error rate rise among the four methods, as illustrated in
Fig. 6A. While the fluctuation of atomic forces shows a sublinear
dependence on temperatures in SI Appendix, Fig. S8B, the errors
on predicting forces increase linearly with temperature. Again, the
HIPNN+SEQM increases the slowest of all methods (Fig. 6B).
This indicates that HIPNN+SEQM has a wider range of geome-
tries over which it can make reliable predictions compared to other
semiempirical and ML methods and can be safely used for MD at
higher temperatures.
Transferability to HOMO-LUMO Prediction. To examine the
performance on untrained properties of the Hamiltonian-
based models, we compute HOMO-LUMO (Highest Occupied
Molecular Orbital-Lowest Unoccupied Molecular Orbital) energy
gaps for 10,000 molecular configurations randomly selected
from the training dataset and compare them against values
calculated with the same DFT settings. Comparisons between
PM3, PM3*, and HIPNN+SEQM are shown in Fig. 7, while
HIPNN, as a pure neural network, is unable to make predictions
on properties to which it is not explicitly trained. Here, PM3*
and HIPNN+SEQM slightly increase the errors on the HOMO-
LUMO gap compared to PM3. Critically, while neither PM3*
nor HIPNN+SEQM was explicitly trained to HOMO-LUMO
gaps, their predictive performance is only slightly shifted. This
shows the Hamiltonian-based model retains the structure and
knowledge between the tasks of predicting unrelated quantities.
This is usually a challenge for pure NN models that necessitates
advanced techniques such as transfer learning (58). Additionally,
the prediction of the HOMO-LUMO gap requires global
information, namely the structure of the HOMO and LUMO
orbitals, which makes it a particularly challenging quantity for
traditional NN models. Our Hamiltonian-based framework
resolves this by adapting the quantum structure into a machine-
learning model that can automatically and simultaneously make
accurate predictions for many types of observables.

Discussion and Concluding Remarks

In summary, we demonstrate the performance improvement
by implementing the quantum domain knowledge from semiem-
pirical methods into the NN framework. We combine conven-
tional neural net (HIPNN) with a semiempirical Hamiltonian

(SEQM) module to produce a hybrid semiempirical model
(HIPNN+SEQM) retaining essential quantum mechanical con-
cepts. Much like previous work that attempted to devise empirical
functional formulas for describing interactions in SEQM methods
(59), HIPNN+SEQM allows the parameters that comprise the
semiempirical Hamiltonian to change with a specific atom’s chem-
ical environment. NNs, which are effectively general functional
forms, appear to be ideal for finding these implicit, empirical func-
tions. The incorporation of a NN to dynamically alter the SEQM
parameters immediately improves the accuracy of the method
by around 60% on predicting molecular energies and forces,
while negligibly increasing the computational cost. It also corrects
the bias errors of SEQM methods on predicting bond lengths
and vibrational frequencies. At the same time, this Hamiltonian-
based HIPNN+SEQM model shows much better extensibility
compared to the pure NN architectures such as HIPNN when
applied to systems much larger than those included in the original
training set. While conventional NN-based models show unphys-
ical performance for long-range interaction cases due to adapting
to local features for near-sighted assumption, HIPNN+SEQM re-
mains consistently accurate for large systems. Moreover, improved
accuracy extends the usage of the model to higher-temperature
regions that sample highly nonequilibrium configuration.

In addition, the environment-dependent Hamiltonian param-
eters also greatly alleviate the transferability problem of semiem-
pirical methods that originates from the orthogonal compressed
basis set (60). While it is problematic to describe systems with
very different structures using constant Hamiltonian parameters
in traditional SEQM, the NN-inferred Hamiltonian parame-
ters can adapt to the change of local structure, adjusting their
values accordingly, to improve the transferability. Besides excel-
lent transferability, another important advantage for the physics-
inspired HIPNN+SEQM approach is a smaller data require-
ment. The transferability and extensibility results shown here
were achieved with only 61,842 training data points. This is
10 times less data than are used to train the HIPNN reference
model and nearly two orders of magnitude less than the full ANI-
1x dataset. This supports a different paradigm of ML models
that incorporate physics to accurately simulate different classes
of molecular systems. These ML models will also have drasti-
cally reduced training data requirements, limiting the amount of
time spent running expensive ab initio calculations. Because the
HIPNN+SEQM model relies on well-established quantum chem-
istry, it also opens more opportunities for interpreting the ML
predictions. To emphasize that HIPNN+SEQM is indeed captur-
ing the correct underlying physics, we reiterate that it performs
only slightly worse than the original PM3 in predicting molecular
HOMO-LUMO gaps, a property that was not used in the training
procedure.
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Although HIPNN+SEQM represents an improvement over
the original PM3, some problems from SEQM models remain.
It still performs poorly for cases involving torsion rotations and
hydrogen bonding, inheriting some known drawbacks of SEQM
methods (43, 61) (SI Appendix, section S3). We include the
D3H4 correction to address this (42); however, the improvement
on hydrogen bonding and proton affinity is minimal as shown
in SI Appendix, Fig. S10 D–I and there is no improvement
on torsion rotation (SI Appendix, Fig. S10 A–C ). Long-range
noncovalent bonding is strengthened, which gives slightly better
energy barriers for hydrogen bonds. This can be attributed
to the training dataset, which primarily consisted of small
molecules and overemphasizes short-range interactions, leaving
the HIPNN+SEQM parameters for long-range interactions
fixed. This is demonstrated by HIPNN+SEQM’s success at
predicting local properties like bonds, angles, and vibrational
frequencies, while producing optimized structures with similar
RMSDs. To address this issue, it may be possible to augment
the training dataset with an active-learning approach (62) or
utilize other sophisticated semiempirical methods like OMx
(semiempirical models with orthogonalization) (45) and GFN2-
xTB (semiempirical quantum approach providing multipole
electrostatics and density-dependent dispersion contributions)
(63) that can be interfaced with a NN in a similar way.

A very promising application for ML-optimized SEQM models
is in the study of excited-state dynamics (64). Surface hopping and
Ehrenfest dynamics for electronically excited molecules require
many thousands of excited-state calculations, forcing them to
use only inexpensive QM methods. It is reasonable to adapt
HIPNN+SEQM or a similar blend of semiempirics with ma-
chine learning to increase the accuracy of the resultant excited
states computed from a SEQM Hamiltonian. Here, we have
shown that the HOMO-LUMO gap remains almost intact for the
HIPNN+SEQM model compared to the parent SEQM models,
suggesting that the wavefunction and Hamiltonian are suitable
for excited-state calculations. Further improvements could be
obtained by training the model explicitly to excited-state quan-
tities. Another promising application of these methodologies is
the study of chemical reactions, where electronic structure infor-
mation, such as radical or charge states, can significantly change a
molecule’s reactivity.

Methods

As shown in Fig. 1, the HIPNN network learns the dynamical Hamiltonian parame-
ters from the local atomic environments and passes them into the SEQM module.
In PM3, for each element in the first three rows of the periodic table, there are 11
parameters for the electronic energy (4 for hydrogen), and 7 parameters for the
nuclear energy. To prevent the overfitting of long-range interactions to the small-
molecule systems, we train only a subset of these parameters. The entire set of
PM3 parameters with brief description and the ones we train and generate with
HIPNN are listed in SI Appendix, Table S1 and section S2. We apply the softplus
function on the output of the inference layers for certain parameters, like the
radial exponent for atom orbitals, as they are required to be positive based on
their physical meaning or numerical constraints.

The density matrix D in Eq. 2 is obtained through the iterative SCF procedure
leading to a mean-field description of the system, which stops when energy
is converged to a predefined threshold (usually 10−5 hartree or tighter). This
is usually achieved with specific algorithms like adaptive mixing, which we
use here (43). The SCF algorithm can lead to three problems when interfaced
with HIPNN-predicted parameters for training the model, which we discuss in
SI Appendix, section S4. However, once the HIPNN+SEQM model is trained, all
systems in all datasets discussed in this paper reach SCF convergence if proper
care is given to SCF settings, such as mixing method, maximum number of
iterations, and mixing rate of density matrix.

To accelerate the training, we start with a relatively loose convergence thresh-
old of 10−5 Eh (hartree) for the SCF procedure. The patience of the training
procedure is 10 epochs, after which, if there was no improvement to the loss,
the convergence threshold is decayed by a factor of 0.98 and the learning rate
is decreased by a factor of 0.5. This continues until the convergence threshold
reaches a minimum value of 10−6 Eh. The total loss is defined as

L = af(ŷ − yDFT) ∗
√

p + bLL2 + cg(ΔP). [4]

Here y represents the target variables: In this work we include the total energies
with bias removed and atomic forces. LL2 is the L2 regularization term on the
network andΔP is the deviation of SEQM parameters. To constrain the predicted
SEQM parameters and minimize the impact of SCF failures, we add the deviation
of the SEQM parameters from the PM3* parameter set to the loss, which also
behaves as a regularization from overfitting. We also scale the first term in the loss
by

√
p, where p is the fraction of molecules in the batch whose SCF succeeded

to converge (detailed in SI Appendix, section S4). a, b, and c are the weights for
these loss components that are set to a = 1.0, b = 10−6, and c = 10, respectively,
to minimize SCF failures and achieve stable training. f and g are error functions,
for which we use a sum of RMSE and MAE for f and mean-square error (MSE)
for g.

As the molecular configuration is used as the input for HIPNN to generate
SEQM parameters, there is an implicit additional term present in the force
calculation:

−→
F =

∂Etot(
−→
R ; P)

∂
−→
R

+

(
∂P

∂
−→
R

)†
∂Etot(

−→
R ; P)

∂P
. [5]

The first term is the normal one for computing force, and the second one is due to
the change in parameterization predicted by HIPNN due to the changing atomic
configuration and is somewhat akin to a Pulay force. With this full gradient, the
total energy is fully conserved during MD simulations.

Hyperparameters and training the models closely follow the procedure de-
tailed in ref. 8. Here we train both Hamiltonian-based (HIPNN+SEQM) and
heuristic NN (HIPNN) models to compare the relative accuracy and extensibility
for the two types of models. Both HIPNN+SEQM and pure HIPNN have two
interaction layers, and each one has three consecutive on-site layers. In brief,
there are 256 samples in each batch, and we use Adam (an optimizer derived
from adaptive moment estimation) (65) with initial learning rate of 10−3 for
training HIPNN and 10−4 for HIPNN+SEQM. Early stopping is used to terminate
the training when 20 consecutive epochs without improvement are encountered.
Additionally, using the same hyperparameters for gradient descent, we reopti-
mize the SEQM parameter set against the same dataset, resulting in the PM3*
model, the parameter values of which are listed in SI Appendix, Table S2.

We extract a subset of 618,409 samples containing all small conformers
from the ANI-1x dataset (5 million samples), with 5 to 18 hydrogen, carbon,
nitrogen, and oxygen atoms (1 to 13 C, N, O atoms), as shown in Fig. 8A (66).

A

B

C

D

E

Fig. 8. Distribution of molecule size used in training and testing. (A) The
models are trained on a dataset with 5 to 18 H, C, N, and O atoms. (B–E) The
models are tested on COMP6 datasets. ANI-MD is not depicted because it is
composed of 14 molecules with 20 to 312 atoms.
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We also use the dataset’s reference quantities (energies and forces) computed
at DFT level with the hybrid functional ω B97X and 6-31G* basis set using a
Gaussian software package (67). The ANI-1x dataset contains nonequilibrium
conformations generated with active learning to maximize the chemical and
conformational diversity of data and to improve learning efficiency (16, 48).
Due to the computational cost of training Hamiltonian-based models, only 10%
of molecules (61,842 samples) are randomly chosen from this subset (8% for
training, 1% for validation, and 1% for testing) for training HIPNN+SEQM and
reoptimizing PM3*, while the entire subset is used to train HIPNN. We further
compare the performance of the original PM3, reoptimized PM3*, pure HIPNN,
and HIPNN+SEQM models on the COMP6 dataset, which consists of much larger
molecules as shown in Fig. 8 B–D, with reference values generated with the same
DFT settings. COMP6 contains six subdatasets: ANI-MD, Drug Bank, GDB07to09,
GDB10to13, S66 × 8, and Tripeptides, randomly sampled from several sources
with MD simulations as well as normal mode sampling to cover the broad organic
and biochemical and conformational space (48). The molecule size difference can
be further seen in SI Appendix, Fig. S9, which shows the pairwise atomic radial
density. The training set and COMP6 have similar locations for first and second
nearest-neighbor peaks, but the densities for these two datasets differ from 4 Å
and above, indicating that a good cutoff to generate pair features for HIPNN is
around 4 Å. Since the minimal pair distance is around 0.66 Å, we use a soft min
distance of 0.65 Å and soft max distance 4.0 Å for the sensitivity functions used
in HIPNN (8).

As the original PM3 model is fitted to heat of formation, and its basis set
effectively includes only valence orbitals, the PM3 total molecular energy is very
different from that obtained from DFT. As listed in SI Appendix, Table S3, due to
the exclusion of core electrons, the absolute values of isolated atom energies for
C, N, and O estimated with PM3 are an order of magnitude smaller than the values
from DFT. As such, we first extract the energy biases for each type of atom through
linear regression on the training dataset, as listed in SI Appendix, Table S3. All

the reported results on energies regarding the PM3 model have removed these
biases, as only the relative energy matters. To avoid the shift in the atomization
energies, we train the model to the total energies with the bias removed in
Eq. 1. We obtain the predicted atomization energies by adding back the bias and
subtracting the isolated atom energy from DFT as listed in SI Appendix, Table S3.

Data Availability. The code for HIPNN and the interface with PYSEQM
has been deposited in GitHub at https://github.com/lanl/hippynn (68).
The PYSEQM code and trained HIPNN+SEQM model can be found at
https://github.com/lanl/pyseqm (69). The data used to train this model are
available on Figshare (66). Any other data are available on request from the
authors.
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