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ABSTRACT: Deasphalting bitumen using paraffinic solvent
injection is a commonly used technique to reduce both its viscosity
and density and ease its flow through pipelines. Common modeling
approaches for asphaltene precipitation prediction such as
population balance model (PBM) contains complex mathematical
relation and require conducting precise experiments to define initial
and boundary conditions. Machine learning (ML) approach is
considered as a robust, fast, and reliable alternative modeling
approach. The main objective of this research work was to model
the effect of paraffinic solvent injection on the amount of
asphaltene precipitation using ML and PBM approaches. Five
hundred and ninety (590) experimental data were collected from
the literature for model development. The gathered data was
processed using box plot, data scaling, and data splitting. Data pre-
processing led to the use of 517 data points for modeling. Then, multilayer perceptron, random forest, decision tree, support vector
machine, committee machine intelligent system optimized by annealing, and random search techniques were used for modeling.
Precipitant molecular weight, injection rate, API gravity, pressure, C5 asphaltene content, and temperature were determined as the
most relevant features for the process. Although the results of the PBM model are precise, the AI/ML model (CMIS) is the
preferred model due to its robustness, reliability, and relative accuracy. The committee machine intelligent system is the superior
model among the developed smart models with an RMSE of 1.7% for the testing dataset and prediction of asphaltene precipitation
during bitumen recovery.

1. INTRODUCTION
Petroleum makes up a notable portion of the global energy
basket to deal with growing energy demands and economic
development. At the same time, sources of conventional crude
oil (e.g., light crude oils) are limited and are on decline. Hence,
the petroleum industry has attempted to recover unconventional
crude oil such as heavy oil, extra heavy oil, bitumen, oil shale, and
shale oil to address the demand.1 For instance, Canada
significantly increased its bitumen production compared to
light crude oil in the past five decades. Various daily crude oil
production types in Canada from 1971 to 2019 are shown in
Figure 1.
The in situ viscosity of bitumen is very high (10,000 to

500,000 mPa·s at 25 °C) and raises many issues associated with
production and pipeline transportation. Injection of naphtha
and paraffinic solvents (anti-solvent) are two main commercial
methods for decreasing bitumen viscosity.3 Naphtha dilutes
bitumen and decreases its density and viscosity. Paraffinic
solvents precipitate the heavy bitumen component (e.g.,
asphaltene) and help bitumen to flow easily. The yield of the
paraffinic solvent method in bitumen recovery is low compared

to the naphtha injection method. Nevertheless, the chance of
coke formation in the paraffinic solvent method is very low
because of the rejection of asphaltene from bitumen. In addition,
the asphaltene precipitation phenomenon was observed during
conventional crude oil during oil recovery, production, trans-
portation, and storage when equilibrium conditions (e.g.,
temperature, pressure, and composition) are disturbed.
Asphaltene is the most polar and the heaviest component of

crude oils, having a sophisticated molecular architecture that is
defined in terms of solubility in different substances.4−7

Asphaltenes can be dissolved in aromatic hydrocarbons (e.g.,
toluene and benzene), and it is not soluble in paraffinic solvent
with low molecular weight, including n-hexane, n-heptane, and
n-pentane.4,5,8 Asphaltene aggregation increases the crude oil
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viscosity and promotes the stability of water-in-oil emulsions,8

implying the need for removing them from crude oil. Asphaltene
precipitation can result in undesired wettability alteration,
plugging wellbores,9 and permeability reduction10 leading to
flow assurance issues,7 equipment damage, increased capital/
operation costs, and decreased production.11,12

Asphaltene precipitation usually occurs during some EOR
methods such as miscible gas injection and solvent injection
because of compositional modifications and pressure
drop.5,7,10,12 The nature of solvent/precipitant injected into
crude oil directly affects the amount of asphaltene precipitation.
For instance, the naphthenic and resin groups in the solvent
structure have the same effect as aromatic compounds and
inhibit asphaltene precipitation. In contrast, adding paraffinic
solvents (e.g., n-butane, n-hexane, and n-heptane) leads to
asphaltene precipitation.6 Hence, the nature of solvent and its
composition for asphaltene deposition prevention is very
important. For establishing this aim, Khormali et al.13

introduced a new chemical solvent package for removing
asphaltene from the system. Toluene, pyridine, methanol,
surfactant dodecyl benzene sulfonic, and sodium hydroxide
are the main elements in the new solvent. Their results showed
that the permeability of the core improved from 71 to 94% after
the use of new solvent in comparison with toluene. In another
research work, the composition of polyacrylamide, amphoteric
fatty acid, ethylene copolymer, maleic anhydride, organic sulfate,
and 1-hydroxyethane-1,1-diphosphonic acid was used as an
asphaltene inhibitor by Khormali et al.9 The IFT between crude
oil and inhibitors decreases with increasing organic sulfate, and
6% of organic sulfate was found as the optimum concentration
for decreasing the IFT between crude oil and inhibitors,
meanwhile, the concentration of other components was held
constant. The isolation of asphaltenes out of the crude oil
mixture is a significant procedure for decreasing bitumen
viscosity, measuring characteristics of asphaltenes, and examin-
ing aggregation and deposition mechanisms. Hence, estimation
of the asphaltene precipitation amount because of the addition
of a precipitant is essential before planning the production
operations.14 The conventional method to isolate asphaltene
from crude oil is the addition of a precipitant (anti-solvent) to
the crude oil sample.7,15 This method enables investigation of
the asphaltene precipitation amount. However, the asphaltene
aggregation mechanism to understand the precipitation

phenomenon is not well understood, is still being debated,
and needs to be further clarified.
Different research works are reported in the literature to

model asphaltene aggregation process from different view-
points.16−18 In general, thermodynamic and kinetic approaches
are two main methods to model asphaltene aggregation.
Thermodynamic models categorize into two main groups:
solubility and colloidal approaches.19 These methods are based
on the asphaltene state in crude oil. The solubility model
assumes that crude oil is divided into two phases: asphaltene and
de-asphaltene phases, while asphaltene surrounded by resin is
considered in the colloidal model.20 These models can help to
enhance the knowledge of asphaltene aggregation/precipitation
phenomena. The population balance model (PBM) is a kinetic
model to explain the asphaltene aggregation mechanism.21 This
model helps to predict the size distribution of asphaltene
aggregates under unstable thermodynamic conditions. Nuclea-
tion and growth of asphaltene aggregates are two main steps
considered in the PBM. In addition, generation of new
asphaltene aggregates (birth process) and breakage ones
(death process) during the time are considered in the PBM
equations that help to predict the asphaltene kinetic properly.22

The common PBM can predict size distribution of the
asphaltene particles but cannot calculate the amount of
asphaltene precipitation. Hence, it is vital to use mass balance
models at the same time to predict the amount of asphaltene
precipitation. Khoshandam and Alamdari21 used the PBM and
mass equations to model asphaltene aggregation inside a
heptane−toluene solution. They considered the asphaltene
growth and agglomeration mechanisms as an exponential
dependency to supersaturation. In addition, the kinetic
parameters of the model were identified using experimental
data to match the modeling results. In their model, there was
10% of relative deviation between modeling results and
experimental data. Moradi et al.22 investigated the size
distribution of asphaltene aggregates during miscible gas
injection and natural depletion using the PBM. They concluded
that the PBM can be used to determine the size distribution of
asphaltene particles effectively, and it accounts for the
aggregation mechanism to optimize the collision factor. They
reported that one optimal collision factor is necessary for
unimodal distribution and two different optimal collision factors
are required for bimodal curves. Duran1 applied the PBM to the
kinetics of asphaltene precipitation upon adding n-heptane for

Figure 1. Daily crude oil production types in Canada from 1971 to 2019. Data courtesy of statista.com.2
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four types of heavy crude oil. They considered diameters of
asphaltene aggregates and precipitation yield measured at
anaerobic and room conditions. In addition, they used the
modified model to enhance the accuracy of their work. Nassar et
al.23 used a PBM to show the effect of nanoparticles (e.g.,
magnetite, alumina, and commercial silica) in preventing
asphaltene precipitation. They reported that the hydrodynamic
size of asphaltene aggregates decreases in the presence of
nanoparticles. Their prediction by the PBM was in line with
experimental results with acceptable error. Besides the accuracy
of the PBM in predicting the amount of asphaltene precipitation,
this method contains complex mathematical relation and
requires conducting precise experiments to define the initial
and boundary conditions. Performing experiments requires
significant time, specific equipment, and financial resources. In
addition, providing reservoir thermodynamic conditions in the
lab is challenging and complicates conducting experiments
under high-pressure, high-temperature (HPHT) conditions.
Moreover, solving complex equations and knowing the nature of
the reactions are two main limitations in theoretical methods.
Therefore, development of robust, accurate, fast, and reliable
predictive tools are inevitable.
Connectionist or smart computational tools can provide a

practical way to overcome these limitations. Artificial
intelligence/machine learning (AI/ML) approaches can con-
nect input parameters and target values using a training process.
They can also estimate the parameters that were not considered
in the network.24 Artificial neural network (ANN), genetic
algorithm (GA), support vector machine (SVM) and support
vector regression (SVR), least-squares support vector machine
(LSSVM), decision tree (DT), random forest (RF), and particle
swarm optimization (PSO) are the most common AI models for
estimating the amount of asphaltene precipitation that are used
in the previous research works. For instance, Sattari et al.25

developed AI models such as decision tree (DT), gene
expression programming (GEP), and least squares support
vector machine (LSSVM) to estimate the amount of asphaltene
precipitation from an Iranian crude oil. The independent
parameters for their research work included the temperature, n-
alkane molecular weight, and n-alkane over oil ratio. GEP
(AARD = 8.5%) and LSSVM (AARD = 3%) methods (in
contrast to DT, AARD = 11%) demonstrated excellent
performance strongly correlated to the obtained experimental
data. In another research work, Bassir and Madani26 used the
LSSVM method to predict the asphaltene precipitation weight
percentage in the presence of three types of paraffinic solvents
such as C22, n-C10, and commercial paraffinic pool. The model
was optimized by a coupled simulated annealing (CSA)
technique. They used a 111 experimental data sample database
to develop their AI model. Their modeling results with AARD
0.068% showed a good agreement with the experimental data
obtained from titration tests. Ghorbani et al.27 developed a
support vector regression (SVR) model to forecast the amount
of precipitated asphaltene. They used generic algorithm (GA) to
optimize the performance of the SVM model. Their suggested
model performed better than scaling models for various datasets
from the literature,28,29 as was evident from graphical and
statistical accuracy assessments. Based on these valuable results,
we can calculate the amount of asphaltene precipitation during
bitumen recovery using AI/ML techniques.
To the best of our knowledge, this is the first application of

AI/ML models to develop connectionist models for asphaltene
precipitation deposition during bitumen recovery by injection of

paraffinic solvents. The outcomes of the present work could
validate other experimental research and help to further
optimize the process and reduce operation/production costs.
In this paper, various connectionist models such as DT, RF,
SVM, CMIS, and MLP were developed to predict asphaltene
precipitation due to paraffinic solvent injection during bitumen
recovery. The structure of this paper is as follows. First, data
gathering and data pre-processing techniques such as removal of
duplicates and low-variance features, missing value imputation,
collinearity assessment, data characteristics, outlier removal,
feature selection, data scaling, and data splitting are explained.
Then, the model development stage and producer are described.
After that, the outcomes of models are presented and discussed
in detail. Finally, the main conclusions, practical implications,
limitations, and some suggestions for future research are
presented.

2. DATA COLLECTION AND PRE-PROCESSING
2.1. Data Collection.The first stage of the research involved

developing a comprehensive and accurate database. The
literature on this subject was reviewed, and parameters were
determined based on the physics of the process. Overall, 590
data samples were gathered from eight different stud-
ies.1,6,14,30−34 The input parameters were categorized into
several groups, such as operational parameters (five features), oil
parameters (eight features), and anti-solvent properties (one
feature). The asphaltene precipitation yield (%) was selected as
a target parameter. The pressure (MPa), temperature (K), anti-
solvent/oil (v/v), anti-solvent/oil (cm3/g), and anti-solvent rate
injection (%) were defined as operational parameters. Oil
parameters included API gravity (degrees), density (kg/m3),
viscosity (cP), SARA content (%), and water content (%).
Molecular weight (g/mol) was recognized as the primary
characteristic of anti-solvent. The effect of each parameter on
the asphaltene aggregation process and consequently asphaltene
precipitation is different. For instance, the chance of asphaltene
aggregation before bubble point pressure will increase with the
increase in pressure; meanwhile, there is a reverse trend after the
bubble point.

2.2. Data Pre-Processing. 2.2.1. Removal of Duplicates
and Low-Variance Features.Duplicates in the dataset create an
unnecessary load for processing. Two types of duplicates can be
recognized in the dataset by monitoring input and output
variables. Type I duplicates implies the same values for both
input and output variables. Whereas, type II duplicates mean
that different output variables are retrieved for the identical
input variables. For this study, 77 duplicates were eliminated
manually based on the authors’ judgment before other pre-
processing procedures. Apart from the removal of duplicates, the
removal of low-variance features is regarded as a necessary stage
of data cleaning or quality control. These are defined as features
for which most values are identical. Since they have a trivial
impact on the dependent parameter, they need to be eliminated.
As the variance is defined as a distance-based quantity, the data
must be normalized between 0 and 1. A threshold is necessary to
define when a feature becomes a low-variance one. In this
research work, the threshold was set at variance values less than
0.5% (0.005) of the number of data samples. Zero features were
recognized as low-variance features.
2.2.2. Missing Value Imputation. It is not always feasible to

assemble a database from experiments for which data for all
features are available. There are two main approaches to this
issue: dropping the value or handling it using imputation. The
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loss of knowledge resulting from dropping of the values leads to
inefficient learning for the models, subsequently. Hence, filling
up these missing values is of paramount importance. Missing
value imputation can be performed using a middle value (mean,
mode, or median). The mean was used as an imputation tool for
the current research work. Prior to imputation, it is necessary to
ensure that there is a sufficient amount of data for imputation. If
a column has more than 50% of data missing, then it is dropped,
and the attempt for imputation is dismissed.35,36 Missingno and
Bilogur’s37 method was used to illustrate the missing values.
Missing values from the database are shown in Figure 2.
Viscosity, water content, anti-solvent/oil (v/v), and anti-

solvent/oil (cm3/g) were omitted. Imputation was conducted
on variables such as the API degree, density, saturates, aromatics,
resins, pressure, and temperature. After that, a low-variance
feature removal was performed and 4 type I and 65 type II
duplicates were subsequently eliminated.
2.2.3. Collinearity Assessment. Collinear input variables do

not to facilitate modeling efficiently. Their presence causes
repetitive data leading to the increase in size of the database
unnecessarily, which results in additional inessential computa-
tional load. Since for all features the data distribution was not
normal, a heat map was constructed using the Pearson
correlation coefficient (R) to assess potential mutual collinearity

Figure 2. Illustration of absent values in the database.

Figure 3. Collinearity assessment using the Pearson correlation coefficient matrix heat map.
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between two features. The range of the coefficient is between−1
and 1.38 The features are considered collinear when the absolute
value of R is above the threshold determined as 0.9 for this
research work. The next step involves identifying features that
should remain and the ones that should be dropped using the
variance inflation factor (VIF). This factor assesses the
multicollinearity of the input parameter; therefore, the one
with a higher value needs to be discarded. The heat map matrix
constructed using the Pearson correlation coefficient is shown in
Figure 3. It is apparent that the API gravity and density were
collinear. Therefore, the VIF needs to be observed to determine
which one to exclude. Density and API gravity VIF magnitudes
were equal to 541.86 and 13.46, respectively. As a result, density
was selected to be removed from the database. As a result, after
elimination of the density, the VIF values for all variables
experienced an evident reduction with an average VIF ranging
from 104.77 to 41.48 as indicated in Table 1.

2.2.4. Data Characteristics. Various statistical parameters
describing data in this research work are provided in Table 2.
The RMSE was used to show the error of prediction. The
prediction error for different numbers of features is shown in
Figure 4. The green rectangle, green horizontal line, and red
asterisk show average, median, and fliers, respectively. The
length of the blue box shows the interquartile range (IQR). The
values used in the box plot were standardized to prevent the
influence of diversity of raw data using the equation below:

X
X X

SD
i

i

Standard
Original Original

Original
=

(1)

where XStandardi is the standardized value, XOriginali is the original
value, X̅Originalis the average of the original values, and SDOriginal is
the standard deviation for the original values.
2.2.5. Outlier Removal. Outliers recognized during pre-

processing stage are called interesting outliers. They are data
points remote from the most, yet they are not inherently

erroneous. Their removal is favorable as they ruin the normal
distribution of data. If these points are included in the testing
dataset, they will yield inadequate modeling results. Five times
the standard deviation (SD) was used as a threshold to identify
outliers in this research work. Consequently, four interesting
outliers were dismissed from the database.
2.2.6. Feature Selection. Features used for modeling must be

relevant to avoid overfitting problems. The feature selection
process was used using recursive feature elimination (RFE).
Feature relevance can be determined using the decision tree
(DT) process. In this procedure, the feature having minimal
relevance needs to be dismissed step-by-step until the germane
number of features is left. Consequently, the number of features
was reduced from nine to six, with three irrelevant features
removed as indicated in Figure 5. RMSE values for features are
illustrated as a box plot in Figure 6. The most relevant features
include pressure, temperature, API gravity, C5 asphaltene
content, injection rate, and molecular weight of precipitants.
These features obtained are consistent with those from
experimental results as they can significantly affect the
asphaltene precipitation yield in contrast to other parameters.
Hence, they should be gathered and used to identify the yield for
AI/ML modeling.
2.2.7. Data Splitting.The data was divided into a 4:1 ratio for

training (80%) and testing (20%) phases. The training dataset is
used to identify parameters and hyperparameters of modeling.
At the same time, the testing dataset is used to assess the
modeling performance. The overfitting is regulated using 10-
fold cross-validation.
2.2.8. Data Scaling. The different scales for the modeling

features can cause a disproportionate impact from them. This
can be fixed by applying the data scaling. This leads to data to
have values of 0 and 1 for the mean and standard deviation,
respectively.

3. MODEL DEVELOPMENT AND COMPUTATIONAL
PROCEDURE

In this section, the computational procedures conducted in this
research work are presented. In addition, the PBM is introduced
to evaluate the accuracy of the AI/ML models developed in this
research work. The flowchart of the modeling steps taken is
presented in Figure 7.

3.1. Multilayer Perceptron.Multilayer perceptron (MLP)
is one of the most prevalent feedforward ANNs (artificial neural
networks) owing to its ease of execution. This neural network is
comprised of input, output, and hidden layers with a certain
number of neurons in each.39 The hidden layer receives the
information from the input layer and delivers it to the output
layer. The number of neurons in input and output layers is
specified by the number of input and output variables,
respectively. The number of neurons in hidden layers is random

Table 1. VIF Values for Input Parameters Before and After
Discarding Collinear Features

Features VIF before VIF after

API, ° 13.46 10.69
ρ, kg/m3 541.86 -

saturates, wt % 52.63 26.02
aromatics, wt % 124.96 73.18
resins, wt % 50.49 26.35

C5 asphaltenes, wt % 38.67 20.93
MW, g/mol 17.63 17.55
inj. rate, wt % 27.86 27.53

P, MPa 5.43 5.35
T, K 174.71 165.74

Table 2. Statistical Parameters for All Features in This Research Work

Parameter Min Q1 Median Q3 Max Mean Mode S k Range IQR SD

anti-solvent MW, g/mol 44.1 72.15 100.2 100.2 194.64 90.86 100.2 1.56 5.39 150.54 100.2 23.29
inj. rate, wt % 31.36 59.42 70 80.08 97.52 69.81 80 −0.11 −0.74 66.16 70 14.18
C5 asphaltenes, wt % 3.5 14.6 19.4 20.4 24.2 16.52 20.1 −1.18 0.13 20.7 19.4 6.06
API, ° 0.01 6.81 8.35 10.85 33.89 10.18 10.85 1.74 2.88 33.88 8.35 8.45
T, K 273 294 294 298 523 312.16 294 2.63 6.75 250 294 43.79
P, MPa 0.1 0.1 0.1 0.1 13.8 1.41 0.1 2.35 4.4 13.7 0.1 2.98
asphaltene yield, wt % 0 2.08 6.8 13.47 25.35 8.35 0 0.56 −0.8 25.35 7.06 6.95
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and is usually optimized by trial and error. The model is
developed until the difference between desired and actual values
is minimized.
The scikit-learn library offers numerous hyperparameters

necessary for execution of theMLP. If the values are not adjusted
manually by the user, the default values will automatically be

used. The number of hidden layers and the number of neurons
in them are considered essential hyperparameters. The solver is
presented on “lbfgs”. As shown in Figure 8 and Table 3, the RS
and AL optimization methods converge to the same values,
thereby exhibiting identical performance. The best error for the
best MLP architecture after 100 iterations is equal to 0.261.

Figure 4. Standardized values for data in the present research work.

Figure 5. Feature importance of the decision tree model developed using (a) all and (b) the six independent features.
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3.2. Support Vector Machine. The support vector
machine (SVM) model can be used for regression and
classification problems. The distinctive characteristic of the
SVM is the binary classifier. The SVM classifies the data by
dividing it optimally into two groups.40 The kernel coefficient
(gamma) and the regularization parameter (C) are considered
the most significant hyperparameters for the SVM optimization.
The search space established for this instance is continuous. The
results of the SVM modeling are demonstrated in Figure 9 and
Table 4. RS exhibited the lowest error after 100 iterations for the
best architecture, which is equal to 0.311.

Figure 6. RMSE box plot developed by various numbers of features.

Figure 7. Flowchart of the modeling steps taken in the present research work.

Figure 8. MLP error convergence results.

Table 3. MLP Optimization Results

Range RS AL

hidden layer size (1) to (15, 15) (15, 13) (15, 13)
best error (1) to (15, 15) 0.2646 0.2646
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3.3. Decision Tree. The decision tree (DT) model has a
hierarchical architecture that resembles splitting into several
branches. The input and decision rule define the partitioning of
data at each node. The optimization process requires use of two
significant DT hyperparameters that are the maximum depth
and maximum number of features. DT modeling results are
illustrated in Figure 10 and Table 5. RS has shown a far better
error in comparison with the AL. The best error for the best
architecture after 100 iterations is equal to 0.32.

3.4. Random Forest.Numerous DTs can be combined into
RF to obtain a more vigorous model in contrast to single
separate DTs. A number of estimators are used to optimize the
RF besides hyperparameters used for DT. The results of RF
modeling are shown in Figure 11 and Table 6. The AL shows a
better performance than the RL. After 100 iterations for the best
structure, the best error is equal to 0.27.

3.5. Committee Machine Intelligent System. The
committee machine intelligent system (CMIS) model can
incorporate results of other models,41 thereby producing more
efficient solutions in comparison with individual solutions. This
can be done using linear weighted averaging as shown in the
following equation:

Y a Y a Y ai i i
CMIS 1 MLP 2 SVM 0= × + × + (2)

where, YCMISi , YMLPi, and YSVMi are the predicted values by the
CMIS,MLP, and SVMmodels, respectively and a0, a1, and a2 are
the constants. The best model from each modeling family with
the original non-scaled data is used in the CMIS. The modeling
results were obtained after 100 iterations, illustrated in Table 7.
The most superior error is equal to 1.03.

3.6. Population Balance Model. Nucleation and growth
rate of asphaltene particles affect the asphaltene aggregation
kinetics. The mechanism of asphaltene aggregation directly
affects size of asphaltene particles.21 Predicting the asphaltene
growth rate and aggregation process helps to minimize the
problems arising from asphaltene precipitation in flow
assurance. The nuclei of asphaltene start to form under
supersaturation conditions.42 Then, these nuclei are attached
together, and asphaltene aggregates will be formed. Following
that, the collision between asphaltene aggregates causes to break
large aggregates (death process) and produce smaller ones
(birth process). This phenomenon continues until the birth and
death process rates are equal and reach the equilibrium
conditions. The PBM equations represent the number of
particles in a specific size. The number of asphaltene
aggregations based on the PBM is calculated as follows:

Figure 9. SVM error convergence results.

Table 4. SVM Optimization Results

Range RS AL

C 0−1000 657.657 582.576
Gamma 0−1 0.088 0.092
Best error 0.312 0.311

Figure 10. DT error convergence results.

Table 5. DT Optimization Results

range RS AL

max depth 5−20 12 14
max features 1−6 4 3
best error 0.3356 0.3658

Figure 11. RF error convergence results.

Table 6. RF Optimization Results

Range RS AL

Max depth 5−20 17 12
Max features 1−6 3 4

Number of estimators 5−100 45 75
Best error 0.2779 0.2771

Table 7. CMIS Results

Coefficients

Best error a1 a2 a0
1.03 0.931 0.074 −0.057
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whereC (kmol
m3 ) and t (min) are the asphaltene concentration and

time, respectively. K is the kernel function and calculated using
eq 4. i, j, and k are the number of particles. d is the diameter of
particles. R and T are the gas constant value ( J

mol K·
) and

temperature (K), respectively. β is an empirical constant. The
distribution of aggregate is the output of the PBM. Hence, a
mass transfer balance must be solved simultaneously to calculate
the yield of asphaltene precipitation. Equations 5−7 are used to
consider mass transfer between asphaltene particles and
calculate the yield of asphaltene precipitation:
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Δxi is the distance between the aggregates. tc and L are the
centrifugation time and length of the centrifuge tube,
respectively. rc is the radius of the centrifuge, and ω is the
angular velocity.

4. MODEL PERFORMANCE EVALUATION
In the following section, the accuracy of AI/ML models
developed the present study are examined through the statistical
error function, graphical error analysis, and leverage method.

4.1. Statistical Accuracy. In this research work, statistical
tools including the root mean square error (RMSE), mean
absolute relative deviation (MARD), mean relative deviation
(MRD), coefficient of determination (R2), and standard
deviation were used to measure accuracy of the generated
models. Equations 8−15 introduce these parameters as below:
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According to the values for training, testing, and total datasets
shown in Table 8, the best results are attained by the CMIS

model. This is due to its nature of combining the benefits of
several AI/ML models, therefore achieving a better result. The
order of the performance for the created models is as follows:
CMIS > SVM > MLP > RF > DT.

4.2. Graphical Error Analysis. The examination of MRD
and RDi values can enable comprehension of the deviation
distribution. A comparison of the RDi distribution for all the
generated models is shown in Figure 12. A positive value of
MRD signals over-prediction by the model. The more compact
distribution around zero indicates superior performance of the
model. The MRD value for the CMIS is 0.29% indicating the
superior result for error distribution.

4.3. Leverage Method. The applicability domain analysis
needs to be conducted to assess reliability of the developed
models. The leverage method enables detection of unreliable
outliers. The leverage known as hat values (hi) can be identified
using the Hat matrix (H):

H X X X X( )T 1 T= (16)

The warning leverage (h*) is used to determine the limits for
data points in terms of hat values.

5. RESULTS AND DISCUSSION
In this section, the results obtained from the modeling are
presented along with their accuracy assessment through error
analysis, comparison with experimental data and the PBM
results, analysis of the applicability domain, and processing time
for the developed AI/ML models. In addition, the potential

Table 8. Statistical Parameters for the Developed Modelsa

Model Subset RMSE MARD MRD R2 SD N

MLP training 1.08 15.65 2.40 0.97 1.08 413
testing 1.73 18.90 0.50 0.94 1.72 104
total 1.24 16.30 2.02 0.96 1.24 517

SVM training 1.50 19.21 1.00 0.95 1.50 413
testing 1.70 20.99 2.81 0.94 1.70 104
total 1.54 19.57 1.36 0.95 1.54 517

DT training 0.40 6.13 −3.33 0.99 0.39 413
testing 3.67 20.98 −3.65 0.73 3.67 104
total 1.68 9.12 −3.39 0.94 1.68 517

RF training 0.79 11.82 8.82 0.99 0.79 413
testing 2.40 17.53 9.32 0.88 2.40 104
total 1.29 12.97 8.92 0.96 1.29 517

CMIS training 1.08 15.66 0.78 0.97 1.08 413
testing 1.70 18.36 0.29 0.94 1.68 104
total 1.23 16.20 0.68 0.96 1.23 517

aThe best values are in bold.
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implications of the developed models are discussed. It is worth
mentioning that the asphaltene precipitation yield (mass of
asphaltene precipitation divided by the mass of bitumen in the
feed) is considered as the target value in this research work to
compare the experimental data and outcomes of the both PBM
and AI/ML models.

5.1. Model Accuracy. The graphical accuracy charts
displayed in this section illustrate the analysis of the CMIS
model, which was determined as the best smart model among
the developed models as mentioned previously. The cross-plot
of the experimental and predicted asphaltene precipitation yield
for training and testing datasets is presented in Figure 13. Based

on Figure 13, most of the data samples for both training and
testing datasets are compacted around the dashed bisector line,
suggesting the CMIS model’s superior performance. The model
could accurately predict the asphaltene precipitation yield after
training with the portion of the experimental data.
The relative deviation distribution based on experimental

yield values for training and testing datasets is illustrated in
Figure 14. Even though the majority of data points are dispersed

between−20 and 20, for extremely low values of yield below 3%,
relative deviation up to 100 was monitored in this plot. Hence,
this model should not be used for asphaltene precipitation
prediction for very small yields to prevent this kind of error. The
low amount and low rate of injection of an anti-solvent to the
system leads to a low yield of asphaltene precipitation. Hence,

Figure 12. Relative deviation distribution for (a) MLP, (b) SVM, (c) DT, (d) RF, and (e) CMIS.

Figure 13. Cross plot of the experimental and predicted yield for
training and testing datasets of the CMIS model.

Figure 14. Relative deviation distribution plot for training and testing
datasets of the CMIS model.
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estimating the accurate amount using experimental approaches
in such conditions is challenging, causing errors in prediction. As
a result, the experimental data for asphaltene precipitation with
low yield is unreliable when using them in AI/ML methods.
Simultaneous depiction of experimental and predicted yield

values for both training and testing datasets of the CMIS model
is presented in Figure 15. The blue lines indicate the
experimental yield values, and purple diamonds show the
CMIS predictions. It can be concluded here that the CMIS
prediction followed the experimental results of yield adequately,
tightly.

5.2. Outlier Diagnosis. The measurement outliers for
training and testing datasets of the CMIS model were examined
using William’s plot. It is evident from Figure 16 that the
majority of data samples are situated in the safe zone that
bounded between SDi = ±3 and h* (orange vertical line). This
confirms the reliability of the obtained asphaltene precipitation
yield results. Six training and five testing outliers were detected.
Their details are outlined in Table 9. These are only low-leverage
outliers present. The lack of high-leverage outliers can be
attributed to data cleaning in the pre-processing stage.

5.3. Comparison between the CMIS and the PBM. This
section aims to compare the accuracy of the PBM and the

Figure 15. Experimental and predicted yield for (a) training and (b) testing datasets.

Figure 16. William’s plot for the training and testing datasets of the
CMIS model.
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developed ML models in predicting the yield of asphaltene
precipitation in the effect of n-alkane injection during bitumen
recovery. Table 1 compares the experimental results (three
bitumen samples), PBM, and CMIS outcomes in the present
study. From data in Table 10, the performance of the PBM in

predicting the yield of asphaltene precipitation (R2 = 0.99) is
higher than the CMISmodel (R2 = 0.94). However, the accuracy

of the CMIS model is acceptable, and it is a good alternative for
the experimental procedure. The CMIS model allows us to
estimate the amount of asphaltene precipitation without costly
experiment methods and/or solve complex mathematical
relations. Definition of the correct initial and boundary
conditions using experimental data is the main step in
conducting the PBM. Lack of sensitive equipment and human
errors prevent us from determining accurate initial/boundary
conditions, and consequently, the chance of errors will increase.
In addition, calculating the fractal dimension of asphaltene
aggregates is complicated. Hence, most researchers assume that
the asphaltene aggregates are spheres, which is a probable error
source when solving population balance relations. To overcome
these limitations, we need to spend high expenditure and time.
Hence, these limitations encourage us to use smart models as
alternatives for PBM in predicting target values in processes.
Lack of data and variety of experimental samples are two main
challenges during conductingMLmodels that cause deviation of
ML results from actual data. Hence, the accuracy of the CMIS
can be increased to the accuracy of population balance outcomes
if these problems are solved.

5.4. Processing Time. The processing time during
conducting AI/ML models plays a vital role in the final cost.
Considering the processing time can help to minimize the
capital/operation cost. Faster processing time indicates better
performance of the models by saving time. A comparison
between run time and development time of modeling is
illustrated in Figure 17. To facilitate the comparison, the time
magnitudes were scaled in the range (0, 1). The maximum time
resources were needed for the CMIS model in terms of both
running and development phases. The SVM andMLP are inputs
of the CMIS model, as mentioned before. Hence, the
development time of the CMIS model is greater than the
MLP and SVM, individually. Moreover, the DT model required
the least time compared to other models. The MLP, SVM, and
MLP had a longer run time, whereas SVM showed the need for
longer development time.

5.5. Bitumen Recovery Implications. Developing reliable
connectionist models can help to design and optimize
deasphalting bitumen methods and manage unconventional
oil production operating costs. The database constructed in this
research work can also enhance the comprehension of the

Table 9. Outlier Data Details

Index
Yield,
wt %

Predicted
yield, wt % hi SDi Dataset

Leverage
status

1 10.4 6.04 0.006 −3.55 testing low
2 5.5 1.66 0.012 −3.14 testing low
3 15.02 7.95 0.012 −5.77 testing low
4 6.24 1.54 0.009 −3.83 testing low
5 16.02 12.20 0.006 −3.11 testing low
6 6.8 2.76 0.005 −3.29 training low
7 7.8 2.99 0.004 −3.91 training low
8 0.24 5.58 0.013 4.37 training low
9 16.17 10 0.011 −5.03 training low
10 13.91 17.99 0.028 3.37 training low
11 18.89 13.27 0.006 −4.58 training low

Table 10. Comparison between Experimental Data, PBM,
and CMIS Models Developed in this research work

n-heptane
wt %

Experimental, asphaltene
yield wt % PBM CMIS

WC-B-B2 54.5 0.19 0.17 0.32
57.5 2.12 2.12 2.18
59.5 3.81 3.81 3.80
64.5 5.82 5.99 5.73

MSB 38.5 0.01 0.03 0.15
47.5 0.09 0.99 0.23
50 0.12 0.12 0.26
55 0.17 0.18 0.30

EU-HO-
A1

80 0.008 0.02 0.15

81.5 0.044 0.04 0.18
83 0.109 0.14 0.24
86 0.54 0.55 0.66

R2 0.99 0.94

Figure 17. Time necessary to develop and run the models developed in this research work.
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mechanism behind asphaltene precipitation upon introduction
of precipitants.

6. CONCLUSIONS
The primary objective of this research work was to develop
accurate predictive smarts models to estimate the yield of
asphaltene precipitation during n-alkane injection for bitumen
recovery. For this purpose, a database containing 590 data
samples from 8 different experimental studies was gathered from
the literature. This is so far the largest database assembled and
reported up to now. Various pre-processing strategies such as
removing duplicates and low-variance features, missing value
imputation, collinearity assessment, description of data
characteristics, outlier removal, feature selection, data splitting,
and data scaling were used to prepare the data for modeling. Five
MLmodels were constructed, including CMIS, MLP, SVM, DT,
and RF to predict the asphaltene yield. Their accuracy was
assessed using various error analysis methods. In addition, the
results of the CMIS model are compared with the PBM. The
following five main conclusions are drawn from this research
work:

1. Three different categories of variables were obtained from
the input features used including oil properties,
precipitant properties, and operational parameters. The
precipitant’s API gravity, C5 asphaltene content, MW,
injection rate, pressure, and temperature are the most
important features.

2. The results of outlier diagnosis revealed that six training
and five testing outliers from the total dataset
corresponded to 2.1% of all data samples used for
modeling. This low amount of outlier calculation implies
the generality of the CMIS model.

3. The CMIS model is determined as the best connectionist
model in the present research work with an RMSE of 1.69
for the testing dataset. The R2 for the testing dataset is
equal to 0.94 indicating a good match between the
experimental observations and the CMIS predictions. In
addition, the MRD value of 0.29% for the testing dataset
suggests that the error distribution for CMIS is
symmetrical.

4. The connectionist models cannot predict the asphaltene
precipitation yield accurately in low amount of asphaltene
precipitation. The main reason for this problem is the low
sensitivity of the experiment equipment to low asphaltene
content that generates false data in this condition.

5. A comparison between the CMIS and the PBM results
showed that the PBM is slightly more accurate than the
CMIS. Nevertheless, performance of the CMIS model in
predicting asphaltene yield is acceptable and it is a good
alternative for the PBM considering the downsides of the
PBM approach.
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h* warning leverage
hi hat values
k coefficient of proportionality
k kurtosis value
N number of data points
P pressure
Q1 first quartile
Q3 third quartile
R Spearman correlation coefficient
R2 coefficient of determination
s skewness value
T temperature
w asphaltene precipitation yield
XT transpose matrix X
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Abbreviations
AI artificial intelligence
AL annealing
ANN artificial neural network
API American Petroleum Institute
ARDi absolute relative deviation
CMIS committee machine intelligent system
DT decision tree
EoS equation of state
HPHT high pressure, high temperature
IQR interquartile range
MARD mean absolute relative deviation
ML machine learning
MLP multilayer perceptron
MRD mean relative deviation
MW molecular weight
n-alkane normal alkane
PBM population balance model
RD relative deviation
RF random forest
RFE recursive feature elimination
RMSE root mean square error
RS random search
SD, SDi standard deviation
SVM support vector machine
VIF variance inflation factor
Greek Letters
μ oil viscosity
ν precipitant to oil ratio
ρ oil density
σ solubility
Superscripts
T transpose
Subscripts
crit critical
solv solvent
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