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a b s t r a c t 

The proposed multilayer network-based comparative document analysis (MUNCoDA) method supports the 

identification of the common points of a set of documents, which deal with the same subject area. As documents 

are transformed into networks of informative word-pairs, the collection of documents form a multilayer network 

that allows the comparative evaluation of the texts. The multilayer network can be visualized and analyzed to 

highlight how the texts are structured. The topics of the documents can be clustered based on the developed 

similarity measures. By exploring the network centralities, topic importance values can be assigned. The method 

is fully automated by KNIME preprocessing tools and MATLAB/Octave code. 

• Networks can be formed based on informative word pairs of a multiple documents 
• The analysis of the proposed multilayer networks provides information for multi-document summarization 
• Words and documents can be clustered based on node similarity and edge overlap measures 
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Specifications table 

Subject Area: Computer Science 

More specific subject area: Network analysis and text mining 

Method name: Multilayer network based comparative document analysis (MUNCoDA) method 

Name and reference of original 

method: 

Term frequency-inverse document frequency: Robertson, Stephen. "Understanding 

inverse document frequency: on theoretical arguments for IDF." Journal of 

documentation (2004). 

Multilayer networks: Boccaletti, Stefano, et al. "The structure and dynamics of 

multilayer networks." Physics Reports 544.1 (2014): 1-122. 

Resource availability: https://github.com/abonyilab 

Method details 

Multi-document summarization extracts information from multiple texts written about the same 

topic. The purpose of the method is to objectively explore the relationships between documents, 

identify key topics and compare documents according to the explored set of focal points. Contrary

to classical multi-document summarization the extracted information is represented in a multiplex 

network which layers represent the network of the most informative word-pairs of the documents. 

The automated analysis of the network provides objective information about the topics and 

similarities of the documents. 

The steps of the proposed method are shown in Fig. 1 . In the first step, the scope of the analysis

needs to be identified that determines which documents are available for the study of the topic (e.g.,

sustainability reports, scientific papers, etc.). The next step is the preprocessing of the text that means

the removal of stopwords, stemming, removal of short/long terms, and removal of frequent/infrequent 

terms (locally or globally) and term weighting and normalization. The informative word pairs are

extracted from the word co-occurrences define the edges of the networks of the documents. Finally,

the multiplex network is generated where the layers represent the networks of the documents. In the

final step, the nodes and the layers are clustered based on their similarities. 

Background on MUNCoDA algorithm 

Text mining is becoming a frequently utilized tool to extract informative patterns from 

unstructured or semi-structured data sources [1] . Text mining can also help in Comparative Document

Analysis (CDA), which means the joint discovery of commonalities and differences between two 

individual documents [2] . Multi-document summarization aims to produce a summary delivering 

the majority of information content from a set of documents about an explicit or implicit main

topic [3] . The result of multi-document analysis allows the comparative evaluation of document 

content. Semantic similarity of words and documents can be determined by human decision-based, 

information content-based [4] , probability-based or word-pair-based [5] approaches. 

Network analysis techniques may be used to understand better the relationships between texts, 

based on which quantitative (e.g., degree, centrality, clustering coefficient) and qualitative semantic 

interpretations (e.g., collocation, semantic relation, encoding semantic topics) can be made [6] . 

Ontology-based approaches, which use advanced text mining tools to unlock the inherent relationship 

between concepts, can be used to improve the retrieval of design information in a large, unstructured

text data [7] . With networks not only the relationships within a document be discovered, but also

whether there is overlap between information from different sources [8] . Text mining combined with

network analysis can also be used to extract keywords from various sources and track the evolution

of a topic over time [9] . 

Informative word pairs of documents can form multilayer networks that are ideal models for 

representing multidimensional data [10] . The proposed method is based on the novel combination

of the previously presented concept as it will be shown in the following subsections. 

https://github.com/abonyilab
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Fig. 1. The process of the proposed multilayer network-based comparative document analysis method. 
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ocument preprocessing and term co-occurrence extraction 

The first step of the KNIME workflow developed for the preprocessing of the documents is the

ext extraction from the pdf files (see Fig. 2 .). After the extraction of document-related information

nd conversion the text to lower case, the stop words are eliminated. A Porter Stammer node is

sed for stemming, which means the reduction of the inflectional and derivationally related forms

f a word to a common base form. The method processes the bag of words containing the terms

ccurring in the documents. The TF node computes the relative term frequency (tf) of each term

ccording to each document and adds a column containing the tf value. The Term Co-Occurrence

ounter node counts the number of co-occurrences for the given list of terms within the selected

arts e.g. sentence, paragraph, section and title of the corresponding document. At the end of the text

ining, the processed data is written to excel or csv files. 

Besides the core preprocessing process, the relevant keywords are also extracted by a graph-based

pproach (with the Keygraph Keyword Extractor node), NGrams were also generated by the and the

Gram Creator node. The Topic Extractor node has also been utilized to cluster the words based
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Fig. 2. The preprocessing workflow developed in KNIME. 

 

 

 

 

 

 

 

 

on the latent Dirichlet allocation (LDA) generative statistical model which topic areas are used for

verification. 

Extraction of the most informative word-pairs 

Contrary to classical text mining, besides studying the frequencies of individual words, the 

distributions of word pairs in the documents were considered, so in this method the word pairs are

referred as terms, denoted by t . 

To measure how commonly or rarely the term is applied across all documents, the number of

documents containing the terms n t is calculated [11] : 

n t = | { d ∈ D : t ∈ d } | (1) 

where D represents the set of the studied documents, so n t is between 1 and M = |D|, where M stands

for the number of documents. 

As the P ( t | D ) conditional probability represents how common or rare is the term across the

documents, the logarithmically scaled inverse fraction of the documents that contain a term is used

to evaluate how much information the term provides.: 

idf ( t, D ) = − log P ( t | D ) = −log 
n t 

M 

= log 
M 

n t 
(2) 

The occurrence of the word pairs in a given document are represented by the variable f t,d , that

shows how many times a term t occurs in a given document d . To prevent bias towards longer
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ocuments, these f t,d raw term counts are normalized by the raw count of the most frequently

ccurring terms in the document, so the augmented frequency is calculated as: 

t f ( t , d ) = K + ( 1 − K ) 
f t,d 

ma x t ′ ∈ d f t ′ ,d 
, i f f t,d > 0 (3)

here K = [0,1] is a tuning parameter, usually K = 0.5 ; 

The “term frequency - inverse document frequency” measure combines the previously presented

erm frequency and inverse document frequency measures to evaluate the information content of a

erm: 

t f idf ( t , d, D ) = t f ( t , d ) idf ( t , D ) (4)

Based on the presented measures the extracted word-pairs are filtered as the word-pairs should

ppear in almost every documents, n t > tr n , and should provide useful information tfidf ( t, d, D ) > tr info .

eneration of a multiplex network of documents 

Our key idea is that the filtered the word-pairs can be used to form networks of the documents.

s the t term consist of the pair of the w i -th and the, w j -th words, the edge between these words in

he d -th layer of the multiplex network is weighted as a d 
i, j 

= tf ( t, d )| w i , w j ∈ d . In this way, a single

etwork can be created for each document, from which a multiplex network can be defined. 

In the resulted multiplex network, the nodes represent words, while the edges represent the

ord-pairs weighted by how frequent of their connection in the given document. The network has

recisely as many layers as documents are analyzed ( M ) and consist of a fixed set of nodes (words)

, j = 1 , . . . , N connected by different types of links in each layer (where N represents the number of

elected words from the D set of documents). 

A general/global picture about the problem, which discussed in the input documents can be

btained by merging the layers of the multiplex network into a “total projection” layer. Instead of

he aggregation of the layers [12] , this layer is defined based on the average or the maximum of the

f ( t, d ) values, 

a ∗i, j = 

1 

M 

M ∑ 

d=1 

t f ( t , d ) | i, j ∈ d (5)

a + 
i, j 

= max 
d 

t f ( t , d ) | i, j ∈ d (6)

valuation of word and document similarities 

The analysis is done by determining the degree of similarity between the nodes (words) and layers

documents) and evaluating the node centralities. 

The similarity of words in a given document evaluated based on the relative term-frequency of

he word-pairs, s d ( w i , w j ) = t f ( t , d ) | w i , w j ∈ d , which is directly represented by the a d 
i, j 

edge weighs.

ased on this interpretation only similarities of the frequently co-occurring words are given. Based

n the calculation of the s d ( w i , w k ) = s d ( w i , w j ) s 
d ( w j , w k ) transitive similarities of the paths can be

etermined for each word-pairs. For the non-neighbor nodes the products of sequentially multiplying

imilarity values of node pairs of the paths can then be calculated. 

As more than one path can exists among these paths, we select that has the minimum similarity

egree, therefore the calculation of the transitive similarity leads to the problem of finding the P

hortest path set [13] 

s d 
(
w i , w j 

)
= min 

P ∈ P ′ 
∏ 

( w m 

, w r ) ∈ P ′ s d ( w m 

, w r ) (7)

The procedure can be easily implemented by the well-known Floyd’s algorithm: 
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for k = 1:N 

for i = 1:N 

for j = 1:N 

if s d ( w i , w j ) < s d ( w j , w k ) s 
d ( w k , w j ) 

s d ( w i , w j ) ← s d ( w j , w k ) s 
d ( w k , w j ) 

end if 

The resulted S d = [ s d ( w i , w j ) ] N×N similarity matrix of the d -th document allows the clustering the 

words in form of dendrograms and layer wise two-dimensional distance-preserving visualization of 

the words by multidimensional scaling (MDS), where the distance is dis t d ( w i , w j ) = 1 − s d ( w i , w j ) . By

using MDS, the subject areas do not need to be preliminary identified, the tool allows the objective

identification of the subject areas. In a targeted study, when subject areas are known, it is possible to

determine which words are most closely related to a particular expression (topic title), thus allows the

measurement the depth of a document’s coverage of the given subject. and clustering the thematic

areas of the documents [14] . 

The similarity of the documents can be evaluated based on the aggregation of the pairwise

comparison of the word similarities: 

L s ( α, β) = 

∑ 

i, j 

min ( s α
(
w i , w j 

)
, s β

(
w i , w j 

)

max ( s α
(
w i , w j 

)
, s β

(
w i , w j 

) (8) 

The above presented L s ( α, β) measure can be considered as the transitive similarity based

extension of the edge overlap measure that is used to compare the similarities of the layers of

multiplex networks [14] . The developed measure can be also used to evaluate the coverage of a given

document: as c(d) = L s ( d, + ) measures how the d document is similar to the layer defined based the

maximum of the tf(t,d) values. 

The importance of the words and word-pairs can be evaluated based on classical network 

centrality measures. As these measures are well known and available in most of the network analysis

packages, we do not discuss them in this paper. We only note that the documents can also be

compared based on the rank correlation of these measures. 

The calculation of the similarities has been implemented in MATLAB and the code is available at

the website of the corresponding author ( https://github.com/abonyilab/MUNCoDA ). 

Method validation 

The methodology is validated based on Voluntary National Reviews (VNR) [15] . The VNRs of

75 countries were analyzed, which were available in English. In this complex example, MUNCAD’s 

method has been used to explore potential future collaboration opportunities for the countries and to

identify topic areas of the implementation of 2030 Agenda. 

Word pairs that are found in at least five documents and have a tf-idf value of equal or more

than 0.6 were analyzed. The selection criteria depend on the scope of the analysis and the structure

of the documents, therefore it should be determined by the analyst. The authors suggest to utilize

criteria based on the tf-idf values of the analysed word pairs. The results of the analysis were

validated by grouping the countries shown in Fig. 3 . (and summarized in Fig. 4 ) based on the authors’

expertise. Fig. 3 . shows that there are countries in a group that has either a geographical similarity

(common border) or an actual level of development. In Fig. 4 . the shapes of the countries in the same

group are marked with the same color. The color of the country code letters indicates their level of

development (green: developed countries, red: developing countries). The summary results obtained 

support the expected groups of countries according to the sustainable development goals [16] . This

result confirms that countries around the world can be grouped based on their VNR documents

[16] with the proposed MUNCoDA method that is proven to be applicable to explore the relationships

between documents in the same subject area. 

The Matlab code of the dendrogram used for document comparison is the following: 

https://github.com/abonyilab/MUNCoDA


V. Sebestyén, E. Domokos and J. Abonyi / MethodsX 7 (2020) 100902 7 

Fig. 3. The dendrogram-based clustering of the analyzed countries. 

 

c

%% clustering based on degree correlation Country 

CK = 1-L_sim; %L_sim contains the similarity measures of the M documents, so it is an M x M matrix. 

ZCK = linkage(CK,’complete’); 

figure ( 3 ) 

[H,T,outperm_ck] = dendrogram(ZCK,0,’Orientation’,’left’,’Labels’,listcountries); 

The Matlab code of the multidimensional scaling based visualization of the similarities of the

ountries is the following: 
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Fig. 4. Similarity-based 2D visualization of countries around the world based on published VNRs. 

 

 

 

 

 

 

%% Similarity-based 2D visualization of the documents 

figure ( 4 ) 

clf 

Y = mdscale(L_sim,2); %,’Start’,’random’,’criterion’,’sammon’ 

plot(Y(:,1),Y(:,2),’w.’) 

hold on 

text(Y(:,1),Y(:,2),listcountries,’Fontsize’,8); 

Conclusions 

The multilayer network-based comparative analysis of documents (MUNCoDA) method has been 

developed to standardize and analyze valuable inconsistent textual information in documents dealing 

with the same subject area. The proposed method creates a multiplex network based on informative

word pairs of documents, in which the edges represent the relevant relationships and can be weighted

based on the information measures used in text mining. Networks can be analyzed on their own

(per document) so that the relationships between topics and word pairs can be identified and

visualized. Word pairs can be compared based on their node similarity and centrality measures. In

the multiplex network, relationships can be classified based on edge overlap and layer similarity

measures. Document exploration is based on an automated KNIME workflow and MATLAB/Octave code 

that calculates the informative word-pairs, generates the network and evaluates the similarities of the 

words and the documents. 
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