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Abstract: DNA methylation is an epigenetic mechanism that is crucial for mammalian development
and genomic stability. Aberrant DNA methylation changes have been detected not only in malignant
tumor tissues; the decrease of global DNA methylation levels is also characteristic for aging. The
consumption of extra virgin olive oil (EVOO) as part of a balanced diet shows preventive effects
against age-related diseases and cancer. On the other hand, consuming trans fatty acids (TFA)
increases the risk of cardiovascular diseases as well as cancer. The aim of the study was to investigate
the LINE-1 retrotransposon (L1-RTP) DNA methylation pattern in liver, kidney, and spleen of mice as
a marker of genetic instability. For that, mice were fed with EVOO or TFA and were pretreated with
environmental carcinogen 7,12-dimethylbenz[a]anthracene (DMBA)—a harmful substance known to
cause L1-RTP DNA hypomethylation. Our results show that DMBA and its combination with TFA
caused significant L1-RTP DNA hypomethylation compared to the control group via inhibition of
DNA methyltransferase (DNMT) enzymes. EVOO had the opposite effect by significantly decreasing
DMBA and DMBA + TFA-induced hypomethylation, thereby counteracting their effects.

Keywords: extra virgin olive oil; trans fatty acid; DMBA; LINE-1 methylation pattern

1. Introduction

Adverse environmental effects often cause epigenetic modifications. In turn, the
resulting genomic instability and abnormal methylation patterns can be observed in the
background of cardiovascular and malignant diseases, obesity, type 2 diabetes mellitus,
and neurodegenerative diseases [1]. A good example is the dietary intake of trans fatty acid
(TFA), mainly from hydrogenated fats, which can account for 0.2–6.5% of energy intake [2].
In countries where more olive oil (OO) is consumed as an alternative to hydrogenated fats,
the damage caused by TFA is lower [3].

Nutrients 2022, 14, 908. https://doi.org/10.3390/nu14040908 https://www.mdpi.com/journal/nutrients

https://doi.org/10.3390/nu14040908
https://doi.org/10.3390/nu14040908
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com
https://orcid.org/0000-0002-2898-1571
https://orcid.org/0000-0002-1438-3511
https://orcid.org/0000-0003-1562-9496
https://doi.org/10.3390/nu14040908
https://www.mdpi.com/journal/nutrients
https://www.mdpi.com/article/10.3390/nu14040908?type=check_update&version=1


Nutrients 2022, 14, 908 2 of 20

Early epigenetic alterations may usually be reversed through chemopreventive com-
pounds according to clinical trials [4]. Nutritional factors are the most important in chemo-
prevention and exert their effects mainly through antioxidation and anti-inflammatory
effects. Anticancer effects of nutrition are mediated partly through gene expression ensured
by genomic stability. Proapoptotic effects or antiproliferative regulation by nutritional
factors can help to maintain genomic stability, as supported by numerous in vitro exper-
iments, in vivo experiments, and clinical trials [5–10]. The frequent consumption of OO,
particularly extra virgin olive oil (EVOO), has been shown to protect against cardiovascular
diseases and malignancies and even to increase life expectancy [11,12]. The constituents of
OO are capable to reduce the infarct size, exert strong antioxidant protection, and reduce
the total cholesterol as well as triglyceride level in vivo [13]. The aging process is also
accompanied by epigenetic and gene expression changes, mainly due to alterations in DNA
methylation patterns toward a genome-wide more hypomethylated state [14].

1.1. Effects of Trans-Fatty Acids

TFA content of food increases the risk of cardiovascular diseases (CVD), breast can-
cer, prostate cancer, diabetes, and obesity [15], which also shortens life expectancy. A
16-year prospective cohort study in the United States analyzed the fat intake of 521,120 peo-
ple [16]. The limits of the quintiles of amounts of daily TFA intakes were 1.41; 1.81; 2.2; and
2.73 percentages of calorie intake. Between the data from the upper and lower quintiles is
a positive association with mortality based on gender- and age-normalized hazard ratio
(1.03; CI 1.00–1.05; p trend = 0.0062) [16].

In a meta-analysis, 7 prospective studies of total dietary TFA intake and 5 studies of
serum TFA in which participants were 26 years old or older and appeared to be healthy
were analyzed. Although TFA intake does not correlate with overall cancer mortality, a
positive association between dietary TFA intake and relative risk (RR) of breast cancer
(1.37; 95% CI 1.04–1.81; p = 0.02) was found in postmenopausal women [17]. Another
meta-analysis involving nearly 140,000 subjects demonstrated the adverse effect of TFA,
namely a 2% energy intake increase in dietary intake of TFA significantly elevated the risk
of cardiovascular disease (RR 1.23 95% CI 1.11–1.37; p < 0.001) [18].

Thus, TFA-induced damages increase the risk of cardiovascular diseases (CVD), breast
cancer, prostate cancer, diabetes, and obesity [15], through which TFA presumably also
shortens life expectancy. In contrast, Alfin-Slater and coworkers fed rats with a TFA-
enriched diet (TFA content was 0.32% of the body weight, 30 times of the human consump-
tion/kg of body weight) and found no difference in life expectancy between rats fed with
this diet and rats fed with a conventional diet [19].

However, TFA damage may be especially harmful through enhancing transforming
growth factor-beta (TGF-β) production in case of solitary fibrous tumors, neoplasms (an-
giomyolipoma, leiomyoma, hemangioma, lymphangioma, juxtaglomerular cell tumor,
renomedullary interstitial cell tumor, lipoma, and schwannoma), and malignant tumors
(leiomyosarcoma, rhabdomyosarcoma, angiosarcoma, osteosarcoma, synovial sarcoma,
fibrosarcoma, malignant fibrous histiocytoma) arising from renal mesangial cells [20].

1.2. Effects of Olive Oil

EVOO has 55–83% of omega-9 oleic acid, which is a monounsaturated fatty acid
(MUFA), 3.5–21% of linoleic acid, which is a polyunsaturated fatty acid (PUFA), 7.5–20% of
saturated palmitic acid, and 0.5–5% of stearic acid content, while triunsaturated omega-3
α-linolenic acid is present in 0–1.5% [21]. In addition, EVOO also contains protective
water-soluble substances, the best-known being oleuropein and oleocanthal [22,23].

A meta-analysis by Pelucchi and coworkers found based on five case-control studies
that the pooled RR of breast cancer between the lowest and the highest quartiles of the
population consuming a diet containing olive oil was 0.62 (95% CI 0.44–0.88) [24]. In
another study, it was found that OO consumption significantly reduced the risk of the
development of lung cancer (OR: 0.65; 95% CI: 0.42–0.99; p < 0.05) [25]. A case-control study
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found a significant difference in the protective effect against laryngeal cancer between the
highest quartile consuming 42.9 g olive oil per day and the lowest quartile consuming
less than 3.2 g per day (OR: 0.4 (95% CI: 0.3–0.7; p = 0.01) [26]. In a case-control study, a
statistically significant inverse dose–response relationship was also found between the risk
of developing bladder cancer and the level of olive oil consumption, when comparing the
data of the lower tertile and middle tertile of less than 1.6 g OO consumption per day (OR:
0.62; 95% CI: 0.39–0.99) and the data of the lower and upper tertile consuming over 3.9 g
per day (OR: 0.47; 95% CI: 0.28–0.78; p-trend = 0.002) [27].

1.3. The Effect of DMBA

The environmental carcinogen 7,12-dimethylbenz[a]anthracene (DMBA) is a harm-
ful substance that can also be found in exhaust fumes, tobacco smoke, and burnt food.
DMBA increased the risk of the development of bladder cancer, skin cancer, and soft tissue
malignancies in proportion to age in rodents [28]. Thus, the DMBA-induced changes in
molecular epidemiological biomarkers can reliably predict both the adverse environmental
effects and the protective effect of chemopreventive agents, on which animal models can
be based [29,30].

According to our present knowledge, no data are available either on the annual global
exposure of humans to DMBA or on its effects on reducing life expectancy, but DMBA
damage causes LINE-1 retrotransposon (L1-RTP) DNA hypomethylation [31], which is a
relevant biomarker of biological aging [14,32].

1.4. DNA Methylation

DNA methylation involves the substitution of the hydrogen atom of the number 5
carbon atom of the cytosine ring by a methyl group due to the action of DNA methyl-
transferase (DNMT) enzymes. This epigenetic regulatory mechanism silences the gene
expression of the given gene by methylation at the tandem repeating CpG (cytosine pre-
ceding guanosine) islands in the promoter and/or enhancer region of genes [14,31]. The
L1-RTP DNA methylation pattern is a representative biomarker of global methylation, with
positive correlations between them [31,33].

Hypomethylation may be induced/caused by passive demethylation of DNA, lack of
methyl-donor group containing substrates (for example methionine-deficient diet) [34], or
by the altered functioning of DNMT enzymes [35]. The activity of DNMT enzymes is gener-
ally reduced in global hypomethylation, but parallelly, the activity of the DNMT1 enzyme
may increase, leading to the hypermethylation of CpG islands of the tumor suppressor
genes, silencing them—and thus increases the risk of carcinogenesis or malignancy [36].

Different organs in vivo and tumor cells in vitro show various correlation patterns
between their aging and the possibility of the occurrence of mutations in them [37–40].
Mahmood and coworkers have found a positive association between L1-RTP hypomethy-
lation measured in the DNA content of the cell-free fraction of blood and aging and the
increased likelihood of malignant tumorous diseases [41,42]. Interestingly, however, the
correlation between aging and the probability of development of somatic mutations in the
kidney renal cell carcinoma (KIRC) and the kidney renal papillary cell carcinoma (KIRP)
cell lines is inverse (Horvath, 2013)—which provides a basis for studying the methylation
pattern of renal DNA.

1.4.1. DNA Methylation and Malignant Tumors

Global DNA hypomethylation occurs in malignant tumor tissues, but this is not a
permanent process but a sudden one, usually preceding malignant transformation (Sheaffer,
2016). For example, there is a significant (p < 0.001) correlation between the incidence of
hepatocellular carcinoma and the hypomethylation of serum L1-RTP DNA [43]. According
to published results C-MYC gene expression—which is also important in carcinogenesis—
increased with aging due to the hypomethylation of the promoter region in both the spleen
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and the liver of mice—and this may also cause downregulation of P53, which protects
against aging through treating DNA damage [44–46].

1.4.2. DNA Methylation and Aging

With aging global DNA methylation levels tend to decline continuously—this phe-
nomenon is known as “epigenetic drift” [14,28,35], which is also strongly influenced by
environmental factors [38,47]. On the other hand, the “epigenetic clock” represents with
respect to specific DNA segments and organs, how methylation of CpG regions changes
with aging [Horvath, 2013; Jones, 2015; Lim, 2018]. For example, aging correlates with the
hypomethylation of the liver tissue DNA both in human and rodent liver [48].

Obesity, smoking, and the lack of exercise are also positively associated with L1-RTP
DNA hypomethylation in white blood cells [49] and with reduced life expectancy [47]. In
Europe, smoking shortened life expectancy on average by 19.8% in men and by 18.9% in
women, and overweight and obesity by 7.7% in men and by 11.7% in women [50].

1.5. Objective

Our study aimed to examine the L1-RTP DNA methylation pattern in the liver, spleen,
and kidneys of DMBA-treated TFA—and EVOO-fed mice to determine whether the change
in the quantitative values compared to the DMBA-treated and the controls free of DMBA
reflects the expected harmful effect of TFA and the protective effect of EVOO, as reported
in the literature. Furthermore, we also examined whether the change in the L1-RTP DNA
methylation pattern was associated with the predictors of life expectancy of dietary TFA
and EVOO consumption, and with DMBA exposure, based upon literature data.

A further aim of the experiment was to determine whether the effects of these car-
cinogenic/chemopreventive agents could be examined with the L1-RTP DNA methylation
pattern as potentially relevant biomarker.

Our present study aims to investigate the extent of L1-RTP DNA methylation on the
effects of DMBA exposure combined with TFA or EVOO consumption in the liver, spleen,
and kidneys of mice in vivo.

2. Materials and Methods

We used eight groups of 12-week-old female CBA/Ca mice (n = 6) in our study.
Untreated control and DMBA-treated control groups received no prefeeding, while one
group of animals received 300 mg/day/animal of olive oil (Agraria Riva Del Garda SCA)
and 300 mg/day/animal of TFA (trans-3-hexadecenoic acid) (Sigma Aldrich), respectively,
in addition to their usual diet for 2 weeks before DMBA treatment. Table 1. contains the
exposure details for DMBA, TFA and olive oil.

Table 1. Treatment and feeding of the study groups.

Name of the Group ip. DMBA Daily Dose/Animal Manufacturer Latin/Scientific Names

negative control –

positive control + Sigma Aldrich Ltd. dimethylbenz[a]anthracene

EVOO + 0.3 g Agraria Riva Del Garda SCA Oleum virgineum

TFA + 0.3 g Sigma Aldrich Ltd. trans-3-hexadecenoic acid

Apart from the untreated (negative control) control group, the other seven groups
received 20 mg/kg bodyweight DMBA intraperitoneally (Sigma-Aldrich) dissolved in
0.1 mL of corn oil. The negative control group was also injected with 0.1 mL corn oil.
(Although the corn oil contains chemopreventive linoleic acid in 58–62% in earlier exper-
iments, the effect of DMBA was proper, or even due to n-6 essential fatty acid content it
could enhance the effect of DMBA [51–53]. After 24 h of DMBA exposure, the organs to be
tested (liver, kidneys, and spleen) were removed after cervical dislocation.
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Mice were housed according to the principles and guidelines of animal experimenta-
tion. Every effort was made to minimize their suffering. The experiment was conducted by
following the ethical standards in force (University of Pécs, Animal Welfare Committee;
Ethical approval number: BA02/2000-79/2017).

2.1. Isolation of DNA

DNA was isolated using the High Pure PCR Template Preparation Kit (Roche, Madison,
WI, USA) according to the manufacturer’s instructions.

2.2. LINE-1 DNA Methylation

We used EpiTect Bisulfite kit (Qiagen, Hilden, Germany) for bisulfite conversion ac-
cording to the manufacturer’s instructions. This process resulted in the conversion of
unmethylated cytosines into uracil. High-resolution melting (HRM) analysis was then
performed, which, based on the difference in melting point, was able to distinguish between
uracil and methylated cytosine bases. If the DNA contains highly methylated regions, bisul-
fite conversion and subsequent amplification will result in a higher melting point because
the retention of more cytosine will result in a higher GC content of the amplified fragment
(there are three hydrogen bonds between guanine and cytosine). In less methylated regions,
unmethylated cytosines are converted to adenine resulting in a lower melting temperature.

For the HRM analysis, primers targeting the CpG-rich region of LINE-1 were used
[Newman, 2012], and the sequences were as follows: forward: 5′-GGT TGA GGT AGT
ATT TTG TGT G-3′, reverse: 5′- TCC AAA AAC TAT CAA ATT CTC TAA C-3′. Am-
plification was performed in 96-well plates in a Roche LightCycler480 qPCR instrument
(Roche, Madison, WI, USA). The reaction mix contained 20 ng of bisulfite-treated DNA,
0.75-0.75 µM forward and reverse primers, 1xLightCycler 480 High Resolution Melting
Master (Roche, Madison, WI, USA) in 20 µL final volume [Bray, 2018)]. The parameters
of PCR were the following: heating to 95 ◦C for 5 min, followed by 35 cycles: 1. 95 ◦C for
20 s, 2. 60 ◦C for 30 s, 3. 72 ◦C for 20 s. Then melting point/melting curve analysis was
performed between 73 ◦C and 84 ◦C with temperature steps of 0.1 ◦C/2 s.

We used mouse high methylated genomic DNA (EpigenDx, Hopkinton, MA, USA)
and mouse low methylated genomic DNA (EpigenDx, Hopkinton, MA, USA) for positive
and negative controls, respectively, and their mixtures in different proportions to allow
quantification of the methylation level of our samples.

2.3. Calculation and Statistical Analysis

We calculated and compared the relative L1-RTP DNA methylation levels of L1-RTP
DNA expression levels using the 2-∆∆CT method. The Kolmogorov–Smirnov test was
used to examine the distribution of the results and Levene’s F-test and T-test were used to
compare means. Calculations and analyses were performed using IBM SPSS 21 statistical
software and the level of statistical significance was set at a p-value of <0.05.

Average DNA methylation levels were expressed as the percentage of untreated
animals (negative controls).

3. Results

Compared to untreated control, EVOO coadministered with DMBA could partly
ameliorate the hypomethylating effect of DMBA. DMBA alone and DMBA + TFA-induced
significant L1-RTP DNA hypomethylation in the spleen (Figure 1).



Nutrients 2022, 14, 908 6 of 20

Nutrients 2022, 14, x FOR PEER REVIEW 5 of 20 

 

 
Figure 1. L1-RTP DNA methylation pattern in the spleen of CBA/Ca female mice (n = 6) exposed 
to the effect of DMBA, and the effect of EVOO or TFA coadministered with DMBA, expressed as 
the percentage of untreated control (* p < 0.05; *** p < 0.001). L1-RTP DNA: LINE-1 retrotransposon 
deoxyribonucleic acid, EVOO: extra virgin olive oil, TFA: trans-fatty acid 

DMBA and DMBA + TFA-induced significant L1-RTP DNA hypomethylation in the 
liver, compared to the negative control. EVOO ameliorated the effect of DMBA (Figure 2). 

 
Figure 2. L1-RTP DNA methylation pattern in the liver of CBA/Ca female mice (n = 6) exposed to 
the effect of DMBA, and the effect of EVOO or TFA coadministered with DMBA, expressed as the 
percentage of untreated control (** p < 0.01; *** p < 0.001). 

EVOO coadministered with DMBA could partly ameliorate the hypomethylating ef-
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Figure 2. L1-RTP DNA methylation pattern in the liver of CBA/Ca female mice (n = 6) exposed to
the effect of DMBA, and the effect of EVOO or TFA coadministered with DMBA, expressed as the
percentage of untreated control (** p < 0.01; *** p < 0.001).

EVOO coadministered with DMBA could partly ameliorate the hypomethylating effect
of DMBA. DMBA alone and DMBA + TFA caused significant L1-RTP DNA hypomethyla-
tion in the kidneys (Figure 3).
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Figure 3. L1-RTP DNA methylation pattern in the kidneys of CBA/Ca female mice (n = 6) exposed to
the effects of DMBA and the effects of DMBA + EVOO or DMBA + TFA, expressed as the ratio of
untreated control (* p < 0.05).

Thus, our observations showed that DMBA administered alone induced statistically
significant L1-RTP DNA hypomethylation in all organs examined. DMBA could induce
only a small, statistically not significant hypomethylation in all the three organs examined,
if protective EVOO was added as well. As we expected, the combined effect induced by
TFA and DMBA was significant and the highest degree of L1-RTP DNA hypomethylation
in all three organs was observed. The numerical results of methylation level measurements
are found in Appendix A’s Tables A1–A3.

4. Discussion

Both DMBA and TFA generate ROS with partly overlapping molecular effects and
signal transduction mechanisms [44,54,55].

4.1. Effect of ROS on the L1-RTP DNA Methylation and Aging

The damage caused by reactive oxygen species (ROS) generated during the decay of
DMBA and TFA mainly contributes to global hypomethylation [44,54,55]. ROS depletes glu-
tathione (GSH), S-adenosylmethionine (SAM) and S-adenosylhomocysteine (SAH) [31,56–58].
Decreases in GSH, SAM, and SAH levels cause global DNA hypomethylation [59,60], in-
crease the risk of carcinogenesis [61,62], is associated with lipid peroxidation and cause
age-related neurodegenerative diseases [63]. A decrease in SAH levels stimulates the DNMT1
enzyme [57] and contributes to the hypermethylation of CpG regions of tumor suppressor
genes (for example P53) [31].

ROS also exerts harmful effects by activating secondary signaling pathways, for exam-
ple, increases levels of interleukin 1β (IL1β), interleukin 6 (IL6), and tumor necrosis factor
(TNF), and stimulates nuclear factor kappa B (NF-κB) [64,65], which indirectly increases
the likelihood of malignant transformation [31,65–67], and is also directly proinflamma-
tory [64,68,69]. TNF-α through IFN activation causes global DNA hypomethylation in
aging cells [49,70]. Furthermore, when IL1β is present in high amounts, it stimulates addi-
tional inflammatory growth factors, namely TNF and matrix metalloproteinases (MMPs),
etc. [71]. Both MMPs and TNF (in a redundant manner) promote malignant transformation
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of cells, as well as their progression [72], and activate NF-κB [71,73–75], thus forming a
positive feedback loop. The mentioned interleukins and NF-κB mutually activate each
other, and they also generate additional ROS [66,76], also forming a positive feedback loop.

Moreover, both DMBA and TFA activate the 3-hydroxy-3-methylglutaryl-coenzyme A
reductase (HMG-CoAR) enzyme, which synthesizes cholesterol (for example in hepato-
cytes) that increases membrane rigidity [77,78]. For the sake of completeness, we need to
mention that in the case of TFAs paradoxically, a decrease in cholesterol levels in Wistar rats
has also been reported by Huang et al. [79]. With membrane rigidity and ROS formation, a
positive association is presented within the phospholipid bilayer of the membrane [80] and
ROS activity that elevates the risk of inflammation and malignant transformation [81,82].
For example, the increase of cholesterol levels in membranes favors the activation of
the RAS oncogene family [78] both directly, through affecting the membrane rafts, and
indirectly, via glycosylphosphatidylinositol (GPI) anchor proteins bound to membrane
rafts [83,84].

The production of F2-isoprostane (F2-isoPs) increases up to 100-fold concentration
in response to cholesterol and oxidative stress (predominantly lipid peroxidation) [81,85].
F2-isoPs distorts membrane fluidity and integrity [81]. Nevertheless, F2-isoPs increase
the risk of carcinogenesis as well, for example by increasing proliferation [86]. Moreover,
plasma free and total (free plus esterified) F2-isoPs increase with age (185% and 66%,
respectively), but these increases are reduced by life-extending caloric restriction (50% and
23%, respectively) [87]. The levels of esterified F2-isoPs increase 68% with age in the liver,
and 76% with age in the kidney, but caloric restriction modulated the age-related increase,
reducing the esterified F2-isoPs levels 27% in the liver and 35% in the kidney [87].

4.2. Effect of DMBA on the L1-RTP DNA Methylation and Aging

DMBA caused significant L1-RTP DNA and oncogene (for example, RAS gene family)
hypomethylation as well as hypermethylation of tumor suppressor genes (for example
P53) compared to the control group via influencing DNMT enzymes [31,36,88]. Activated
K-RAS hypermethylated the transcription factors of the tumor suppressor gene INK4-ARF,
and thus silenced its expression [Struhl, 2014]. Its significance is that ARF/P53 signaling
pathway is protective and has been shown to play an important role in slowing down
aging [45], while P53 inhibits transposase enzyme [89] and hinders L1-RTP and presumably
global DNA hypomethylation as well [31].

DMBA also activates the mitogen-activated protein kinase (MAPK) and Janus kinase
(JAK) secondary signaling pathways [76], which activates the above-mentioned interleukins
(and consequently NF-κB). These processes finally lead to global DNA hypomethyla-
tion [31] and accelerate aging, for example, by decreasing the expression of antitumorigenic
microRNA-134 (miR-134) and P53 [67,75,90–92].

DMBA also significantly elevated mTORC1 gene expression and miR-9 level in the liver,
spleen, and kidneys of CBA/CA female mice, compared to untreated controls [93]. DMBA
activates the enzymes of glycolysis and lipogenesis [77]. Indeed, DMBA exposure in female
Sprague-Dawley rats significantly elevated blood glucose levels compared to untreated
controls [94]. The consequently released growth factors such as insulin and insulin-like
growth factor (IGF) activate mTORC1 through phosphoinositide 3-kinase AKT-tuberous
sclerosis-RHEB (PI3K-AKT-TSC-RHEB) signaling [95]. mTORC1 stimulates glycolysis
and glucose uptake through modulating the transcription factor hypoxia-inducible factor
(HIF1α) (Düvel 2010). HIF-1 increases glucose uptake and cell proliferation by increasing
the expression of insulin-like growth factor 2 (IGF2) and C-MYC [96]. HIF-1 also induces
inflammation by upregulating TNFα and cancer metastasis by upregulating fibronectin
1 [96]. However, increased activity of both mTOR and HIF-1 reduces life expectancy [96,97].
The expression level of miR-9 is increased by C-MYC, and miR-9 inhibits the progression of
HCC as a tumor suppressor, but miR-9 also amplifies E-cadherin, which increases C-MYC
expression, which increases miR-9 level, forming a positive feedback loop [93,98].
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4.3. Effect of TFA on the L1-RTP DNA Methylation Pattern

TFA enters the cell membranes and increases their rigidity directly too leading to
oxidative damage and inflammation [15]. Furthermore, TFAs decrease adiponectin and
peroxisome proliferator-activated receptor gamma (PPAR-γ) activity [15,53]. If PPAR-γ is
inactivated, it increases inflammatory response and hinders cholesterol transport, glucose,
and fatty acid storage and promotes F2-isoPs formation [99]. Thus, the decrease of PPAR-
γ activation results in a positive feedback loop with the mentioned harmful effects [53]
[Smith, 2009], and it also hinders preadipocyte differentiation, thereby increasing the risk
of developing malignant tumors and hinders tissue regeneration too [53,100].

Elaidic acid (trans-9-octadecenoic acid) (EA), induced global hypomethylation of
THP-1 cells in vitro and activated proinflammatory (e.g., TNF-α, IL-6, C-reactive protein
(CrP)) and adipogenic signaling pathways at concentrations of 50-200 µM [53,101,102].
Both trans-linoleic acid (trans, trans-9-12-octadecadienoic acid) (LA) and EA increase the
levels of intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1
(VCAM-1) [64]. ICAM-1 and VCAM-1 also generate ROS, which activates NF-κB, which
has a direct proinflammatory effect [64]. These oxidative and inflammatory damages are
added to the effects of DMBA as mentioned earlier [55].

4.4. Protective Effect of OO
4.4.1. The Effect of Fat-Soluble Substances of OO on the LINE-1 DNA Methylation Pattern

The cell membrane fluidity enhancing effects of MUFA and PUFA promote DNA
methylation via the above-mentioned secondary signaling pathways (for example by
decreasing NF-κB) [67,103]. Theoretically, the saturated fatty acids, due to their membrane
rigidity enhancing effects [104], could cause hypomethylation of L1-RTP DNA. In contrast,
palmitic acid caused global hypermethylation [105] and reduced inflammation through the
induction of the PPARγ gene [106] in human myocytes.

Oleic acid decreased the expression of TNF-α and IL1β and increased the anti-inflamma
tory IL10 in septic mice [107]. Furthermore, oleic acid can also stimulate PPAR [108], which
activates antioxidant response, has anti-inflammatory and neuroprotective effects [107,109].

Oleic acid between 1 mM and 150 mM concentration allosterically activates the NAD-
dependent deacetylase sirtuin-1 (SIRT1) [110], which is a regulator of mTOR [Ghosh, 2010].
SIRT1 inhibits the DNMT1 enzyme and through inhibition of DNMT3L protein, it blocks
the gene expression of DNMT3A and DNMT3B enzymes too, [111]. For example, in MDA-
MB-231 breast cancer cell line, SIRT1 reduced the inhibitory effect exerted by DNMT1 on
tumor suppressor genes ERα and CDH1 [112]. (Interestingly, DNMT3 blocking effect was
not accompanied by a decrease in the activity of the enzymes [111], but synergically with
other chemopreventive agents, this could be still relevant).

PUFA, through its direct β-catenin inhibitory effect significantly reduced the expres-
sion of DMBA-induced C-MYC oncogene, compared to controls [44,52,113]. This is relevant,
with respect to the DNA methylation pattern, is high since C-MYC induces oncogenic ex-
pression of the ten-eleven translocation methylcytosine dioxygenase 1 (TET1) gene, which
codes for a DNA demethylating protein [114].

In addition, SIRT1 inhibits oxidative-stress-associated cellular aging [97], and C-MYC
as well, through inhibition of β-catenin, which is important in the liver [67,115]. (In contrast,
SIRT1 also inhibits P53, and hence SIRT1 may also act as an oncogene [115]). Moreover, oleic
acid also prevented TNF-induced decline in insulin level by promoting the translocation of
the transcription factor PPARγ into the nucleus, in a male KKAy type II diabetic mouse
model [116].

4.4.2. Water-Soluble Substances of Olive Oil

Oleuropein and oleocanthal are water-soluble polyphenols of OO and are absorbed
from the small intestine and reach the spleen and liver [117], where they exert a protective
effect against ROS [118,119], mainly on the cell membrane [120].
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Oleuropein can inhibit the activation of NF-κB [56,121] and increase the intracellular
level of GSH, which is protective against the harmful effects of ROS [122–124]. Furthermore,
oleuropein is also a PPARα agonist anti-inflammatory constituent [106,125].

Oleocanthal is a potent inhibitor of mTOR [126]. EVOO consumption significantly
reduced the expression of mTORC1 gene both in the liver and the spleen of DMBA-
treated CBA/Ca female mice [67]. Nanda et al. in Sprague-Dawley rats induced the
DNMT1 enzyme by dimethylhydrazine and hypomethylated the promoters of NFκB,
MMP-9, and VEGF, significantly increasing their gene expression compared to untreated
controls, but these effects were counteracted by EVOO consumption [Nanda, 2019]. Indeed,
the decrease in DNMT1 expression demethylates the promoter region of phosphatase and
tensin homolog (PTEN), leading to the decrease of mTOR expression [127]. Although SAM,
derived from methyl donor, stimulates mTOR through the SAMTOR protein [34], this effect
is ultimately counteracted by EVOO [67].

4.5. L1-RTP DNA Methylation Patterns

ROS induce elevated blood glucose level, which is reflected in age-dependent biomark-
ers of renal damage, such as oxidant-sensitive heme oxygenase, advanced glycation end
product (AGE), and F2-isoPs [128]. However, F2-isoPs, when added in vitro to renal mesan-
gial cells (under high glucose levels, to which DMBA also contributes [94]; see above),
increased the gene expression of TGF-β by activating protein kinase-C (PKC) [129]. TGF-β
induced both expression and activity of DNA methyltransferases (DNMT) -1, -3A, and -3B
in ovarian cancer cells [130], while in vitro phosphorylation of DNMT1 by PKCζ reduced
its methyltransferase activity [131]. TGFβ, as a tumor suppressor, acts as a double-edged
sword and activates anti-inflammatory signaling, but when its receptor loses function
during malignant transformation, it indirectly acts as an immunosuppressant, promoting
vascularization and metastasis, and thus enhances the malignancy of carcinomas [132] as
mentioned earlier [20].

EVOO significantly decreased the DMBA-induced L1-RTP DNA hypomethylation
both in the liver and spleen but not in the kidneys of experimental animals. This may be
related to the fact that hypomethylation of L1-RTP DNA is not common even in RCC [133].
TFA tends to incorporate into the kidneys in smaller amounts than into the liver [79]. In
Wistar rats, Huang et al. measured 1.2 mg/g TFA in the liver and only 0.6 mg/g TFA in the
kidneys after their 16 weeks of consumption of a diet containing 4.5% TFA [79]. Indeed,
lipid sensitivity of organs and hypomethylation of the L1-RTP DNA segment are associated
in the case of TFA exposure [134].

4.5.1. L1-RTP DNA Methylation Pattern in the Liver and Spleen

The trans-3-hexadecenoic acid significantly increased the mTOR gene expression in
the liver of DMBA treated mice group, even compared to the increase induced by DMBA
exposure [67,77]. This can be explained by the fact that TFA inhibits the activity of CAT,
SOD, and GSH peroxidase enzymes in lipid-sensitive liver and spleen [78,134]. Further-
more, TFA depletes antioxidant molecules (for example, GSH), which mainly protects
against hepatotoxic processes [58]. Thereby TFA indirectly promotes the above-mentioned
inflammation, tumor formation, and global DNA hypomethylation [31]. In addition, the
elevated F2-isoPs levels under DMBA and TFA damage enhance the proliferation of stellate
cells in the liver [86].

In nonalcoholic steatohepatitis (NASH) diseases, which include liver fibrosis and liver
cancer, the composition of the cell membrane and the PPARα and the methylation pattern
of DNA is also important [105,135]. Oleuropein as a PPARα agonist exerts hepatoprotective
effects, such as reducing triglyceride levels [125]. Indeed, in hepatocellular carcinomas
(HCC) the adenomatous polyposis coli (APC) and RASSF1 tumor suppressor genes were
hypermethylated and the MEST gene was hypomethylated [136]. Both APC and RASSF1
slows cell proliferation—the former inhibits β-catenin, while the latter induces a cell cy-
cle arrest mechanism by inhibiting cyclin D1, while MEST phosphorylates and thereby



Nutrients 2022, 14, 908 11 of 20

activates the transcription factor CREB, which enhances the expression of the C-FOS proto-
oncogene [137]. Its importance is that in healthy aging, exons 1 and 4 of the C-FOS gene
are hypermethylated, but both liver cirrhosis and liver carcinogenesis are accompanied by
hypomethylation [138]. In an in vivo rat model, the DMBA and corn oil induced hyper-
methylation of RASSF1 promoter, but it was ameliorated by EVOO through decreasing
DNMT1 enzyme’s activity [139]. Even in ApcMin/+ mice (that spontaneously develop
intestinal polyps), the OO-enriched diet reduced polyp number and volume through a
reduction of proliferation as well as proapoptotic effect by inhibiting fatty acid synthase
and HMGCoA reductase gene expression [140]. Intriguingly, the secoiridoid polyphenol
content of EVOO activated through C-FOS pathway the AP-1 (activator protein-1) tran-
scription factors, which in this context were not associated with tumorigenesis but rather
with growth inhibition and/or differentiation of breast cancer cells [141]. The predominant
antiaging effect of EVOO secoiridoids was exerted through inhibiting mTOR and not by
decreasing C-FOS activity [141].

PPARγ also regulates inflammatory factors in the liver, but the promoter of PPARγ is
hypermethylated both in liver inflammation and liver fibrosis, and thus its expression is
reduced [142]—although the oleuropein content of EVOO can counteract it [106]. Moreover,
in rats fed with a high-fat diet, EVOO prevented hyperglycemia, insulinemia, apoptosis of
pancreatic β-cells, and improved insulin resistance [143].

4.5.2. L1-RTP DNA Methylation Pattern in the Kidneys

The result of the kidneys, namely that the DMBA (or DMBA+TFA) induced L1-RTP
DNA hypomethylation was weaker than in the other examined organs, could be explained
by decreased DMBA damage through the generally silenced TSPYL5 gene [144] and by the
generally increased expression of the antioxidant and anti-inflammatory lactoferrin (LTF)
gene in the kidneys [144,145].

Both the expression of the TSPYL5 gene and the amount of TSPYL5 protein decrease
with age [144] because both the DNMT1 (also indirectly activated by DMBA [31]) and the
DNMT3B enzymes can cause hypermethylation of the promoter region of the TSPYL5
gene [146]. The TSPYL5 inhibits the activity of ubiquitin-specific protease 7 (USP7), which
is the deubiquitylase enzyme for the P53 [147]. In summary, TSPYL5 reduces the activity
of USP7 toward P53, resulting in increased P53 degradation through ubiquitylation [147].
Thus, ultimately, the decrease of TSPYL5, which inhibits the P53 and P21 tumor suppressors,
may be the cause of the reduction of risk of mutation in the kidneys, compared to other
organs. Indeed, P53 expression is slightly increased due to DMBA treatment in CBA/Ca
mice in comparison to corn oil control [52] and P53 promotes both global and L1-RTP
DNA hypermethylation by inhibiting LINE-1 transposons [89,148,149]. For the sake of
completeness, it should be mentioned that TSPYL5 gene hypermethylation also occurs in
HCC cells [150] as a protective mechanism.

LTF is generally highly expressed in the human kidneys, increasing further with age
and is in vivo protective against DMBA generated ROS damage [144,145,151]. However,
LTF from the viewpoint of senescence, as a double-edged sword, not only suppresses
ROS-induced senescence of human mesenchymal stem cells (hMSCs) but also activates
NF-κB through the Toll-like receptor 4 pathway [56,152].

The difference between the result in the kidneys and in other studied organs are
explained by the fact that OO does not induce oxidative stress in the kidneys, but does in the
other examined organs [153]. Thus, in the kidneys, the expression of the stress-dependent
P53 gene was only slightly increased due to DMBA treatment [Budan, 2009; Kouka, 2020],
while P53 could have theoretically stimulate global and L1-RTP DNA methylation, as
mentioned earlier [89,148,149].

The effect of EVOO on methylation pattern may also contribute to the decrease in
TSPYL5 expression and to the increase in LTF gene expression, which explains the reduced
possibility of somatic mutation proportional to aging observed in the KIRC and the KIRP
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cell lines [Horvath, 2013], which is supported by the methylation pattern of the renal
L1-RTP DNA in this study (Figure 3).

5. Conclusions

Both DMBA treatment and DMBA added combined with TFA caused significant L1-
RTP DNA hypomethylation in the liver, spleen, and kidneys of CBA/Ca mice. According to
the literature, DMBA forms DNA adducts and thereby inhibits tumor suppressor genes (for
example, P53), activates oncogenes (for example, RAS, C-MYC, BCL-2, NOTCH), and alters
microRNA (for example miR-9, miR-124, miR-132; miR-134) patterns leading to global
hypomethylation [29,31,52,67,93,154].

Both DMBA and TFA manifest a dominant oxidative stress source by generating ROS
and exerts proinflammatory effect, with mostly overlapping molecular biological features,
namely depleting antioxidants (for example, GSH, SAM, SAH) promoting inflammatory
signaling pathways (for example, IL-1β, IL-6, TNF, NF-κB, mTOR), and causing ultimately
L1-RTP DNA hypomethylation [31,67].

Especially important is that according to the literature, TFA decreases PPAR-γ activity
[Ali Abd El-Aal, 2019; Smith, 2009], which could otherwise ameliorate the harmful effect
of DMBA [155], but if one is exposed to both agents, the synergically deleterious effect of
DMBA and TFA exacerbates L1-RTP DNA hypomethylation, as reflected in the results of
the present study. Moreover, TFA administration combined with DMBA further increased
the significant L1-RTP DNA hypomethylation due to increased oxidative stress as well
as increased adipogenic secondary signal transducers induction. Since aging and L1-RTP
DNA methylation are similar in human and mouse species [156], the results are also of
human relevance [157].

EVOO exerts antioxidant and anti-inflammatory effects directly on cell membranes,
and through the regulation of secondary signal transporters [11,12,67], DMBA decreased
significantly; additionally, combined DMBA + TFA-induced L1-RTP DNA hypomethylation
was observed in the liver and spleen but not significantly in the kidneys of CBA/Ca mice.
EVOO induces the PPARγ gene [106], and thereby, theoretically, it could decrease the
mentioned synergic damage of DMBA combined with TFA.

In summary, high EVOO intake with diet decreases the likelihood of cancer and
increases life expectancy because EVOO can counteract DMBA and TFA-induced damage
by improving global DNA methylation pattern, while decreasing hyperglycemia, mTOR
activity, and inducing SIRT1 function among other [11,12,97,103,106,158] (Figure 4).
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Appendix A

Table A1. LINE-1 methylation pattern in the spleen of CBA/Ca female mice (n = 6) exposed to the
effect of DMBA and to the effect of EVOO or TFA co-administered with DMBA, expressed as the
percentage of untreated control.

DMBA Control DMBA + EVOO DMBA + TFA

mean LINE-1
methylation 86.1% 94.5% 75.5%

distribution 6.3% 6.2% 6.9%

p-value 0.0180 0.2852 0.0007

Table A2. LINE-1 methylation pattern in the liver of CBA/Ca female mice (n = 6) exposed to the
effect of DMBA and to the effect of EVOO or TFA co-administered with DMBA, expressed as the
percentage of untreated control.

DMBA Control DMBA + EVOO DMBA + TFA

mean LINE-1
methylation 81.0% 99.0% 66.4%

distribution 7.9% 10.1% 8.2%

p-value 0.0042 0.8635 0.0001

Table A3. LINE-1 methylation pattern in the kidneys of CBA/Ca female mice (n = 6) exposed to the
effects of DMBA and to the effects of DMBA + EVOO or DMBA + TFA, expressed as the ratio of
untreated control.

DMBA Control DMBA + Olive Oil DMBA + TFA

mean LINE-1
methylation 88.8% 92.7% 83.9%

distribution 7.9% 8.7% 9.1%

p-value 0.0444 0.1861 0.0117
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