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A B S T R A C T

The discrete resource model of working memory proposes that each individual has a fixed upper
limit on the number of items they can store at one time, due to division of memory into a few
independent “slots”. According to this model, responses on short-term memory tasks consist of a
mixture of noisy recall (when the tested item is in memory) and random guessing (when the item
is not in memory). This provides two opportunities to estimate capacity for each observer: first,
based on their frequency of random guesses, and second, based on the set size at which the
variability of stored items reaches a plateau. The discrete resource model makes the simple
prediction that these two estimates will coincide. Data from eight published visual working
memory experiments provide strong evidence against such a correspondence. These results
present a challenge for discrete models of working memory that impose a fixed capacity limit.

1. Introduction

Working memory, the ability to maintain information from the external world in an active internal state, is highly limited.
Correctly characterizing this limitation is essential for understanding changes over the lifespan, exploring individual differences and
for clinical assessment. Most early models assumed the limit could be adequately described by a fixed maximum number of objects
retained at one time (Cowan, 2001; Luck & Vogel, 1997; Miller, 1956). However, it is now well established that the precision
(resolution) with which information is stored declines monotonically with the number of items in memory (Bays & Husain, 2008;
Palmer, 1990; Wilken & Ma, 2004). This finding is most straightforwardly accounted for by continuous resource models, which
propose that a fixed quantity of a representational medium is shared out between items: precision of an item’s recollection is
determined by the amount of resource allocated to it (Bays, Catalao, & Husain, 2009; Gorgoraptis, Catalao, Bays, & Husain, 2011; Ma,
Husain, & Bays, 2014; van den Berg, Shin, Chou, George, & Ma, 2012). According to continuous resource models there is no fixed
upper limit: instead, as the number of objects in memory increases, representational fidelity degrades until recall is indistinguishable
from noise. A strong advantage of continuous resource models is their biological plausibility, and they have found support in neu-
rophysiological data (Emrich, Riggall, LaRocque, & Postle, 2013; Sprague, Ester, & Serences, 2014) and neurally-inspired models
(Bays, 2014; Schneegans & Bays, 2017).

An alternative viewpoint retains the concept of a fixed maximum number of items, but combines it with a resource or resource-
like behavior below this capacity. Most prominently, Zhang and Luck (2008) proposed a “discrete resource” model, in which a fixed
number of memory slots can be flexibly allocated to items, such that a single object can be stored multiple times, enhancing the
precision of its recall. This conclusion was based on fitting a model in which responses were drawn from a mixture of two dis-
tributions: a normal (von Mises) distribution corresponding to noisy recall of an item in memory, and a uniform distribution
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corresponding to random guessing when the item tested is out of memory (Fig. 1a). The discrete resource model predicts that the
capacity limit will affect the parameters of this fit in two ways: first, the mixture proportion of the normal component (Pm) should
reflect the probability that an item is in memory, so the product of the set size with Pm reaches a maximum at capacity (Fig. 1b);
second, the standard deviation (SD) of the normal component should increase with set size until capacity is reached and then plateau
(Fig. 1c).

This allows for a simple test of the self-consistency of the discrete resource model: capacity estimates calculated from Pm and SD
should be equal1. Here we tested this prediction and found it to be false, providing evidence against the concept of discrete re-
presentations in working memory.

2. Methods

2.1. Studies

We analysed data from eight studies that used the continuous reproduction method to test visual working memory recall (Bays,
2014; Bays et al., 2009; Gorgoraptis et al., 2011; Pratte, Park, Rademaker, & Tong, 2017; van den Berg et al., 2012; Wilken & Ma,
2004; Zhang & Luck, 2008). Four studies tested memory for color and four tested memory for orientation. Data from six of the eight
studies were previously made public as part of the Ma lab benchmark data set (http://www.cns.nyu.edu/malab/resources.html); we
included all (unretracted) studies from that data set in which at least four different set sizes were tested, including set size one. One
additional study (Bays, 2014) was from the author’s own laboratory, and the final study (Pratte et al., 2017) was data originally made
available to the author as part of another project.

2.2. Analysis

Following Zhang and Luck (2008) we obtained fits to response data, from each participant at each set size, of a model that
assumed responses were generated from a mixture of two distributions, one von Mises (a circular analogue of the Gaussian) and one
uniform:

̂ ̂= − + −p θ P ϕ θ θ P
π

( ) ( ) (1 ) 1
2

,m SD m (1)

where θ is the target feature value, ̂θ is the reported feature value, and Pm is the probability that the target item is in memory. ϕ (·)SD
denotes the probability density function of a von Mises with mean of zero and circular standard deviation SD. Maximum likelihood
fits were obtained using an Expectation Maximization algorithm and a range of initial parameter values (code available at http://
www.bayslab.com/code/JV10/).

To estimate capacity based on the frequency of guessing, for each subject we calculated an estimate of the number of items in
memory at each set size, equal to the product of the set size, N, with P N( )m , the estimated probability of remembering an item at that
set size. We then took the maximum of these values as our estimate of capacity:

Fig. 1. Two methods of estimating capacity, according to the discrete resource model. (a) Response errors arise from one of two distributions. When
the item is in memory, with probability Pm, a response is drawn from a von Mises distribution (blue) with width SD. When the item is out of memory,
with probability −P1 m, a response is drawn from a uniform (guessing) distribution (gray). (b) The number of items in memory, estimated by ×N Pm,
reaches a maximum at the capacity limit, providing a capacity estimate KPm. (c) The width of the von Mises distribution, SD reaches a maximum and
plateaus when the capacity limit is reached, providing a second capacity estimate KSD. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

1 Note that the correlation between these variables was previously examined in several papers by Anderson, Vogel & Awh that have subsequently been retracted.
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= ×K N P Nmax{ ( )}.P
N

mm (2)

To estimate capacity based on the plateau in recall variability we again followed Zhang & Luck and fit a function relating SD at
each set size to capacity:

=SD N σ N K( ) min{ , } ,SD1 (3)

where σ1, the variability at set size one, and KSD, the capacity, are free parameters. The logic behind this formula is that, when there
are fewer items than capacity, multiple independent samples of each item can be obtained and averaged, with the result that the
standard deviation of the average is inversely proportional to the square root of the number of samples (which is inversely pro-
portional to the set size). Once the set size equals or exceeds capacity, only one sample is available for each item in memory, so the
standard deviation is fixed.

Fitting was achieved by minimizing squared error using a nonlinear optimization algorithm (fminsearch in MATLAB) with a range
of initial parameter values. We also considered an alternative, bilinear fit to SD of the form:

= +SD N a b N K( ) min{ , },SD (4)

as well as a bilinear fit to the estimated number of items in memory:

× = +N P N a b N K( ) min{ , }.m Pm (5)

Following previous work on discrete capacity models (e.g. Pratte et al., 2017; Rouder et al., 2008; Zhang & Luck, 2008) we
allowed our capacity estimates to take on non-integer values.

To test whether the capacity estimates obtained by the two different methods corresponded, we compared the fit of two models,
an equality model where =K KPm SD and a linear regression model = +K β β KPm SD0 1 . Significance values were obtained from an F test
based on the residual sums of squares under the two models (equivalent to a likelihood ratio test). Additionally, the Bayesian
Information Criterion (BIC) was calculated for each model, and BIC differences are reported in Results. Correlations were calculated
using the Pearson correlation coefficient.

2.3. Correction for attenuation

Correlations can be corrected for the weakening effect of measurement error using a formula due to Spearman (1904):

′ =r
r

r r
,xy

xy

xx yy (6)

where rxy is the uncorrected correlation between variables, and rxx and ryy are the reliabilities of measurements x and y. We assessed
reliabilities of the two capacity estimates using a bootstrap method (Davison & Hinkley, 1997). For each subject and experiment we
generated pairs of K pm estimates and pairs of KSD estimates, based on resampling the trial-by-trial data with replacement. We
repeated this procedure for the whole data set 100 times, and took the mean correlation between pairs as our estimate of reliability
for each measurement. Correlations calculated using Eq. 6 are necessarily larger than correlations calculated from the raw data. The
principle is that, if x and y are imperfect measurements of underlying variables ′x and ′y , then ′rxy estimates the true correlation
between ′x and ′y .

2.4. Bayesian hierarchical model

We additionally fit a Bayesian hierarchical model to data from all participants and experiments simultaneously. In this model,
individual participants’ capacity estimates KPm and KSD were jointly distributed as a bivariate normal:

∼ μK K Σ, ( , ),P SD 2m N (7)

with mean and covariance matrices:
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The estimated maximum number of items stored was normally distributed with mean KPm:

× ∼N P N N K σmax{ ( )} ( , ),
N

m P Pm m (9)

and the SD at each set size was normally distributed as:

∼SD N N σ N K σ( ) ( min{ , } , )SD SD1 (10)

Using JAGS (2003), we fit this model to obtain posterior estimates of population parameters K K σ σ, , ,P SD K Km Pm SD and ρ. Code can
be found in the Appendix, including specification of priors.
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3. Results

We examined data from previously published studies testing visual working memory recall at different set sizes. For each study we
calculated two estimates of capacity: one based on the frequency of guessing, KPm, and one based on the plateau in variability of
recalled items, KSD.

Scatterplots in Fig. 2 display the relationship between the two estimates, for each individual study and for data pooled across
studies (bottom right). If the two estimates matched they would cluster around the dashed equality line in each plot. We found
significant evidence against such a correspondence in six out of eight studies (equality model fit significantly more poorly than linear
regression model, all p< 0.01; see Methods); the remaining two studies both had p< 0.06 ( mean ΔBIC=17.9 against equality model
across all studies). We observed a significant correlation between the capacity estimates in only one of the eight studies (p= 0.031);

Fig. 2. Capacity estimate obtained from the frequency of guessing (KPm) as a function of capacity estimated from the plateau in variability (KSD).
Each datapoint represents one participant. Each panel presents data from a different study, with data pooled across studies shown bottom right. Red
line and colored patch indicate regression line of best fit ± 1 SE. If the capacity estimates correspond they should cluster along the dashed line of
equality. P-values indicate significance of a test for deviation from equality. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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the mean correlation across studies was 0.19, explaining 4% of the variance in the data.
Combining data across studies we found strong evidence against a correspondence (p < 0.001; ΔBIC= 107), and a very weak

correlation between estimates (p= 0.025, r= 0.25, explaining 6% of the variance). Pooling data from different subject groups in this
way may in some circumstances hide a true correlation (Simpson’s paradox; Yarnold, 1996); this can be avoided by standardizing (z-
scoring) data from each group: doing so resulted in a slightly reduced, and non-significant, correlation of 0.21, explaining 5% of the
variance.

A few participants had one or both estimates equal to the maximum set size tested, implying that larger estimates might have been
obtained for these individuals had larger set sizes been used. Excluding these participants from analysis further reduced the corre-
lation between estimates, to 0.09 (explaining < 1% of the variance), indicating that the small correlations reported above are
primarily driven by these unreliable estimates. In order to obtain an upper limit on the correlation between estimates we continued to
include all participants in subsequent analysis.

The lack of correspondence between estimates might result from poor fits of the plateau model to data. To test this we examined
how the absolute difference between estimated capacities varied as a function of the quality of fit of the model (evaluated by the root
mean square error). We found no correlation between these values (p=0.50, r= 0.076, explaining < 1% of the variance), indicating
that the correspondence between the two estimates did not improve with the quality of fit. To maximize the data available for fitting,
we also calculated capacity estimates for each experiment based on the values of SD and Pm averaged across subjects: we again found
significant evidence against a correspondence between these estimates, now at the experiment level (p= 0.006; ΔBIC=9.4), and no
significant correlation (p=0.24, r= 0.47, explaining 22% of the variance).

Finally, we found evidence against a correspondence between mean capacity estimates obtained for each experiment (p=0.022;
ΔBIC= 6.1) and no significant correlation (p=0.39, r= 0.35, explaining 12% of the variance).

3.1. Alternative fits

An alternative method for estimating the point of plateau is to use a bilinear fit to SD in place of the predictions of the Zhang &
Luck model. We applied this model to the present data: we obtained significant evidence against a correspondence in six out of eight
studies (p < 0.05) and p=0.06 for the remaining two (mean ΔBIC=17.6 against equality model across all studies). We observed
significant correlation between estimates in only one out of eight experiments.

It is possible that by taking the maximum estimated number of items stored as a measure of capacity we may have overestimated
the true capacity, as the maximization could amplify the noise in each estimate. We therefore also tried fitting estimates of the
number of items stored at each set size with a bilinear function and taking the point of plateau as our estimate KPm. The results
showed significant evidence against a correspondence in six out of eight studies (p < 0.05; mean ΔBIC= 15.2 against equality model
across all studies), and significant correlation in only one out of eight (mean r = 0.37, explaining 14% of the variance).

3.2. Monte Carlo simulations

To see what results we would expect to observe if the discrete resource model were correct, we simulated behavioral data from the
model based on a typical experiment in our data set (10 subjects; 250 trials at each set size) and the means, standard deviations and
correlations between parameters obtained from the data fits ( =K 3.74 ± 1.3; =σ1 17.4° ± 5.3°, correlation coefficient –0.38), and
calculated KSD and KPm from the simulated data in the same way as we had for empirical data. We repeated this procedure 10,000
times. The mean correlation was 0.79 (explaining 63% of the data) and the mean p-value for the test of equality was 0.18. The
frequency of obtaining a correlation as low as that obtained from the data (mean r = 0.19) was 0.025, and of obtaining a p-value as
low as that obtained from the data (mean p = 0.0148) was 0.205; the probability of obtaining both was 0.009.

A recent study (Pratte et al., 2017) proposed a variant of the discrete resource model, described as a “hybrid” model, in which the
precision of representation within each slot varies randomly from trial to trial according to a Gamma distribution (“double sto-
chasticity”; Fougnie, Suchow, & Alvarez, 2012; van den Berg et al., 2012). We simulated data based on this model using the Gamma
shape parameter obtained in the previous study ( =τ 4.4). The mean correlation between capacity estimates was 0.77 (explaining 60%
of the variance) and the mean p-value for the test of equality was 0.098. The frequency of obtaining a correlation as low as that
obtained from the data was 0.038, and of obtaining a p-value as low as that obtained from the data was 0.357; the probability of
obtaining both was 0.014.

3.3. Correction for attenuation

Correlations between measurements can be reduced (“attenuated”) by measurement error. We used a resampling (bootstrap)
approach to assess individual reliability of the two capacity estimates: we obtained reliabilities of 0.63 for KPm and 0.45 for KSD. From
these values and our experiment-average estimate of correlation we calculated a corrected-for-attenuation correlation of 0.34, ex-
plaining 11% of the variance.Thus, even when the effects of measurement error were taken into account, no meaningful correlation
between estimates was obtained.

3.4. Bayesian hierarchical modeling

To further improve the quality of fits we applied a Bayesian hierarchical approach, in which each participant’s capacity estimates

P.M. Bays Cognitive Psychology 105 (2018) 1–8

5



KSD and KPm were assumed to be drawn from a bivariate distribution with unknown mean, variability, and correlation between the
estimates. This approach uses the distribution of group-level estimates to constrain extreme values in the parameters at the individual
level, resulting in more reliable estimates (Rouder & Lu, 2005). The resulting parameter estimates are shown in Fig. 3.

Confirming results of individual fits, the estimated (mean posterior) correlation was 0.14, explaining 2% of the variance (Fig. 3c).
The posterior 95% highest density interval [–0.33, 0.61] encompassed zero, indicating no significant evidence of a correlation
between the two capacity estimates.

4. Discussion

We have shown that two different calculations that should both estimate an individual’s capacity under the discrete resource
model produce incompatible results. This represents strong evidence against the concept of discrete representations in visual working
memory.

Simulations confirmed that our tests were sensitive to the correspondence between estimates and that the obtained results were
highly unlikely under the discrete resource model. Two attempts to bolster the correlation between capacity measures by reducing
the effect of measurement noise, either applying a correction to the correlation calculation or fitting a Bayesian hierarchical model,
both failed to produce a meaningful correlation between estimates.

We also examined a recently proposed “hybrid” model (Pratte et al., 2017) that combines variability in precision with a discrete
resource framework (with the result that it is no longer discrete). This modification had minimal effect on the predicted correlation
between capacity estimates, and the observed correlation remained highly unlikely under this model (in contrast, the equality test
proved less robust to this modification).

In general, any model that seeks to explain the decline in precision with set size in terms of a set of discrete representations (e.g.
slots) will predict a strong relationship between capacity measures obtained from variability and guess frequency, because both are
ultimately determined by the number of representations available. The absence of such a relationship provides compelling evidence
against discrete representations. In contrast, the present results are potentially consistent with an account in which a maximum
capacity exists independently of the decline in precision, e.g. a continuous resource model in which there is an upper bound on the
number of items the resource can be allocated to. However, proponents of such a model would need to explain why statistics of the
error distribution (e.g. standard deviation or kurtosis of errors) all change smoothly and continuously with set size (see e.g. Bays,
2015), with no indication of a change in response behavior at the capacity limit.

A recent study by Adam, Vogel, and Awh (2017) examined performance on a whole-report task, in which participants reproduced

Fig. 3. Bayesian hierarchical model parameters. (a) Posterior distributions of the population mean capacity derived from SD (left) and Pm (right).
Data points indicate posterior means. (b) Posterior distributions of the population standard deviation of capacity derived from each source. (c)
Posterior distribution of the correlation between capacity estimates derived from each source.
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all items in a memory display in turn, in an order of their choosing. The authors claimed to find evidence for an upper bound on the
number of items stored. A full assessment of their results is beyond the scope of the present paper, but we would point out that their
claims are based on data showing that, as participants report the items on a trial in sequence, their responses become gradually more
variable until they are indistinguishable from noise. Rather than demonstrating any change in performance that would indicate a
participant had reached their maximum capacity, the authors used statistical methods that arbitrarily defined a level of variability
beyond which responses were considered uniform (and hence pure guesses). The authors did not compare fits of working memory
models to their data, but we see nothing that would obviously present a challenge to resource models with no fixed capacity.

Our approach in this study has been to assume the discrete resource model is true and demonstrate that this leads to an internal
inconsistency. In doing so we have intentionally ignored a number of other criticisms that have been leveled at the model, including
the fact that many of the errors ascribed to guessing are in fact “swap” errors in which a non-target item is reported (Bays et al., 2009;
Emrich & Ferber, 2012; Rerko, Oberauer, & Lin, 2014; Schneegans & Bays, 2017); and the observation that plausible models of
internal coding do not predict a von Mises distribution of error for items in memory, as assumed by the discrete resource model (Bays,
2014).

We also allowed the capacity estimates to take on non-integer values, in order to give the discrete resource model the best chance
of fitting the data. While seemingly contradictory to the discrete item concept, such values could be interpreted under a model in
which an individual’s capacity varies randomly from trial to trial (Taylor, Thomson, Sutton, & Donkin, 2017): the non-integer value
would indicate the mean capacity. As most, if not all, previous modeling work by proponents of the discrete resource hypothesis has
allowed non-integer capacities (e.g. Pratte et al., 2017; Rouder et al., 2008; Zhang & Luck, 2008), this moment-to-moment variability
in capacity appears to be an unspoken assumption of the discrete model. We hope that any future iterations of the discrete resource
model will make this assumption explicit.

A previous study (van den Berg & Ma, 2014) argued that comparing models using summary statistics, including capacity estimates
of the kind examined here, is an inferior method of assessing models compared to likelihood-based comparisons on individual trial
data. Although their analysis was based on data from another research group that, unfortunately, we now know to have been falsified,
we nonetheless largely agree with their conclusions. Indeed when formal model comparisons have been conducted on recall data they
have almost without exception demonstrated a substantial advantage for continuous over discrete resource models (e.g. Bays &
Taylor, 2018; Bays, 2014; Keshvari, van den Berg, & Ma, 2013; van den Berg, Awh, & Ma, 2014; van den Berg et al., 2012). However,
we would argue that converging evidence from different methods provides the strongest argument against a theory, and in the
present study we have taken an alternative approach by assaying a simple intuitive test of the discrete hypothesis.

It is important to note that a correlation between capacity estimates would not have represented strong evidence for the discrete
resource model: the two estimates are derived from the same data, so for them to exhibit a correlation would not be particularly
surprising; instead, the discrete resource model makes the clear prediction that they should be equal. Nonetheless, we observed only a
very weak correlation, explaining less than 10% of the variance in the estimates. Our analysis found strong and consistent evidence
across studies that the discrete resource model does not provide a self-consistent estimate of capacity.

Data availability

All data associated with this article can be found at https://osf.io/xvz2y/.
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Appendix A

The following is JAGS code describing the Bayesian hierarchical model.

data {
for (i in 1:nsubj) {
for (j in 1:nn) {

KK[i,j] = ns[1,j]∗pm[i,j]
}
K_pm[i]< - max(KK[i,])

}
}

model {
for (i in 1:nsubj) {
for (j in m[i,1:nm[i,1]]) {

sd[i,j] ∼ dnorm(mu[i,j], tau) T(0,)
mu[i,j]< - sd1[i] ∗ sqrt(min(ns[i,j], max(K_est[i,1], 0)) )
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}
sd1[i] ∼ dnorm(sd1_mu, sd1_tau) T(0,)
K_pm[i] ∼ dnorm(K_est[i,2], tau_pm) T(0,)
K_est[i,1:2] ∼ dmnorm(K_mu[1:2], K_omega[1:2, 1:2])

}
tau ∼ dgamma(10∧-3, 10∧-3)
tau_pm ∼ dgamma(10∧-3, 10∧-3)

sd1_mu ∼ dnorm(10.0, 10∧-3) T(0,)
sd1_tau ∼ dgamma(10∧-3, 10∧-3)

R[1,1:2]< - c(1, 0)
R[2,1:2]< - c(0, 1)
K_omega ∼ dwish(R, 2)

for (i in 1:2) {
K_mu[i] ∼ dnorm(4, 10∧-3) T(0,)

}
}

Definitions:

pm[i,j] Pm estimate for subject i and set size j

sd[i,j] SD estimate for subject i and set size j
nsubj Number of participants
nn Maximum set size
nm[i,1] Number of set sizes tested for participant i
m[i,j] jth set size tested for participant i
ns[i,j] index array of set sizes in form e.g. [1, 2, nan, 4, nan, nan, nan, 8]
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