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A growing body of evidence clearly indicates the beneficial effects of physical
activity (PA) on cognition. The importance of PA is now being reevaluated due to
the increase in sedentary behavior in older adults during the COVID-19 pandemic.
Although many studies in humans have revealed that PA helps to preserve brain
health, the underlying mechanisms have not yet been fully elucidated. In this review,
which mainly focuses on studies in humans, we comprehensively summarize the
mechanisms underlying the beneficial effects of PA or exercise on brain health,
particularly cognition. The most intensively studied mechanisms of the beneficial
effects of PA involve an increase in brain-derived neurotrophic factor (BDNF) and
preservation of brain volume, especially that of the hippocampus. Nonetheless, the
mutual associations between these two factors remain unclear. For example, although
BDNF presumably affects brain volume by inhibiting neuronal death and/or increasing
neurogenesis, human data on this issue are scarce. It also remains to be determined
whether PA modulates amyloid and tau metabolism. However, recent advances in
blood-based biomarkers are expected to help elucidate the beneficial effects of
PA on the brain. Clinical data suggest that PA functionally modulates cognition
independently of neurodegeneration, and the mechanisms involved include modulation
of functional connectivity, neuronal compensation, neuronal resource allocation, and
neuronal efficiency. However, these mechanisms are as yet not fully understood. A clear
understanding of the mechanisms involved could help motivate inactive persons to
change their behavior. More accumulation of evidence in this field is awaited.

Keywords: Alzheimer’s disease, brain-derived neurotrophic factor, exercise, dementia, neurodegeneration,
physical activity, white matter

INTRODUCTION

Cognitive decline and dementia are major health concerns worldwide. A major cause of dementia
is Alzheimer’s disease (AD) and very recently pharmacological treatment with aducanumab was
approved in the United States for AD. However, the effects of this drug are far from a “cure” and
other therapeutics are needed.
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Cumulative research results clearly indicate the beneficial
effects of physical activity (PA) on brain health, and some
reports have suggested that physical inactivity in older
adults caused by COVID-19 pandemic-related lockdowns
have had a negative impact on brain health (Fiorenzato
et al., 2021; Ismail et al., 2021; Tondo et al., 2021;
Znazen et al., 2021).

Physical activity has been found to have a positive impact
on cognition in a wide range of individuals, from those who
are cognitively normal to those who have dementia (Heyn
et al., 2004; Aarsland et al., 2010; Sofi et al., 2011; Groot
et al., 2016). Many basic, epidemiological, and observational
cohort studies, as well as randomized controlled studies, have
provided evidence of the beneficial effects of PA on cognition
(Sofi et al., 2011). Various studies, mainly epidemiological,
have also reported that PA reduces the risk of onset of
dementia (Hamer and Chida, 2009). However, the mechanism
underlying these beneficial effects of PA on brain health
has not been completely elucidated. A neurodegenerative
process may be accelerated with aging through pathological
changes, oxidative stress, or inflammation, and PA may
counteract these neurodegenerative processes. PA may
prevent the development of brain pathologies, including
AD-related and cerebrovascular pathologies, although some
evidence indicates that the cognitive benefits of PA are
independent of pathological changes in the brain (Buchman
et al., 2019). PA may protect the gray and white matter
structure of the brain and may also enhance physiological
aspects of the brain, including cerebral blood flow and
neurotrophic factor release. Functional enhancement of
each neuron and the neural network as a whole may
also be involved.

This review, which largely focuses on human studies,
describes the various mechanisms of the brain-protective effects
induced by PA. We divide the beneficial mechanisms of PA
or exercise into several components and review the structural,
physiological, anti-neurodegenerative, and functional effects of
PA or exercise (Table 1).

TABLE 1 | Hypothetical mechanisms underlying the beneficial effects of PA
on brain health.

1. Structural mechanism
1) Brain volume
2) White matter
3) Small vessel disease

2. Physiological mechanism
1) BDNF
2) Cerebral blood flow

3. Anti-neurodegenerative mechanism
1) Amyloid and tau
2) Oxidative stress
3) Inflammation

4. Functional mechanism
1) Functional connectivity
2) Neuronal compensation
3) Neural resource allocation
4) Neuronal efficacy

W3510PA, physical activity; BDNF, brain-derived neurotrophic factor.

EFFECTS ON BRAIN STRUCTURE

Brain Volume
The volume of the brain declines with aging, starting in midlife
(Scahill et al., 2003). This reduction in brain volume is presumed
to reflect decreases in neuron volume and number (Gogniat et al.,
2021). One of the mechanisms underlying the brain-protective
effects of PA is the preservation of brain volume, or even an
increase in brain volume. Observational studies have found that
brain volume, particularly that of the hippocampus, is preserved
in more active people (Erickson et al., 2010; Flöel et al., 2010;
Maasakkers et al., 2021). PA is also associated with preservation
of cortical thickness (Walhovd et al., 2014; Lee et al., 2016).

Many interventional trials have also shown the positive
impact of PA on brain volume. Some studies showed that
PA interventions reduced the development of brain atrophy
compared with controls (Best et al., 2015), and some studies
even demonstrated an increase in brain volume after an exercise
intervention (Colcombe et al., 2006; Tao et al., 2017) in older
adults. A systematic review of the effects of exercise intervention
on the hippocampus concluded that aerobic exercise helped to
preserve hippocampal volume by preventing its decrease, while
some of the included studies even showed an increased volume
(Firth et al., 2018). The characteristics of these representative
studies are summarized in Table 2.

Although the precise mechanisms remain to be elucidated,
the neuroprotective effects of PA may be exerted through
increased brain-derived neurotrophic factor (BDNF) and blood
flow or reduced oxidative stress and amyloid accumulation (as
discussed below). Recently, the MAPT study reported that more
physically active individuals had lower blood concentrations
of neurofilament light chain, a well-established biomarker of
neurodegeneration (Raffin et al., 2021). These results suggest
that PA may ameliorate neurodegeneration. Moreover, decades
of research have shown that adult neurogenesis persists
throughout life, although it declines with aging. Hippocampal
neurogenesis is reported to be crucial in learning and memory
in rodent experiments (Babcock et al., 2021). PA may accelerate
neurogenesis, particularly that of the hippocampus (Leal-Galicia
et al., 2019). The increased brain volume may thus be due to
enhanced neurogenesis. However, human evidence, particularly
that from older adults, is scarce.

White Matter Integrity
White matter plays a crucial role in cognition by connecting
different brain regions to enable efficient signal transmission.
White matter in adult brains exhibits plasticity involving myelin
formation and remodeling (Sampaio-Baptista and Johansen-
Berg, 2017). Observational studies suggest that higher PA is
associated with better white matter integrity as measured by
diffusion tensor imaging on magnetic resonance imaging (MRI;
Buchman et al., 2018; Franchetti et al., 2020; Wolf et al., 2020).
Several interventional studies have found evidence of improved
white matter integrity (Voss et al., 2013; Burzynska et al., 2017;
Clark et al., 2019; Colmenares et al., 2021), but another study
failed to show an effect (Venkatraman et al., 2020).
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TABLE 2 | Brain volume changes associated with PA levels.

Participants Study design Finding

Observational

Maasakkers et al.
(2021)

718 community-dwelling older adults (mean age 66) Cross-sectional High sedentary levels associated with lower hippocampal
volumes

Flöel et al. (2010) 75 community-dwelling older adults (mean age 60.5) Cross-sectional Higher PA levels associated with increased cerebral gray matter
volume in prefrontal and cingulate cortex

Erickson et al.
(2010)

299 participants recruited from a Medicare database
(mean age 78)

Longitudinal (9 years) Higher PA levels associated with greater volumes of frontal,
occipital, entorhinal, and hippocampal regions 9 years later

Lee et al. (2016) 1842 participants who attended a preventive medical
check-up (mean age 64)

Cross-sectional PA associated with greater global and frontal mean thickness

Walhovd et al.
(2014)

203 community-dwelling older adults (mean age 54) Longitudinal (3.6 years) Higher PA levels associated with less thinning of left prefrontal
cortex

Interventional

Best et al. (2015) 155 (52 experimental) community-dwelling older
women (mean age 70)

Resistance training twice a
week for 2 years

Resistance training reduced cortical white matter atrophy

Colcombe et al.
(2006)

59 (half experimental) older subjects without
neurological defects (mean age 66.5)

Aerobic exercise intervention
for 6 months

Significant increases in brain volume, in both gray and white
matter regions

Tao et al. (2017) 62 (21 tai chi chuan, 16 Baduanjin) health volunteers
(mean age 62)

Tai chi chuan and Baduanjin
exercise (60 min for 5 days a
week) for 12 weeks

Significant increases in gray matter volume in insula, medial
temporal lobe, and putamen after 12 weeks of exercise

PA, physical activity.

Small Vessel Disease
Small vessel disease is represented by white matter lesions
(WMLs). T2-weighted or fluid-attenuated MRI images visualize
WMLs as diffuse high-signal areas. WMLs have been linked to
cognitive impairment (Alber et al., 2019). Although the reported
results are not in complete agreement, several cross-sectional
and longitudinal studies have shown that PA is associated with
fewer WMLs (Torres et al., 2015; Moon et al., 2018). However, no
relevant interventional studies have been reported.

Stroke
A systematic review concluded that PA reduced stroke risk
(Wendel-Vos et al., 2004). Therefore, PA may contribute to
reducing the risk of vascular cognitive impairment.

PHYSIOLOGICAL MECHANISMS

Brain-Derived Neurotrophic Factor
Brain-derived neurotrophic factor is a neurotrophin that

influences neuronal survival, differentiation, synapse generation,
and long-term potentiation (Phillips et al., 2014). Decreased
BDNF level is associated with neuropathological conditions,
including mild cognitive impairment (MCI; Shimada et al., 2014).
The blood concentrations of BDNF decrease with aging, and
there is a strong correlation between the brain and blood levels
of BDNF (Knaepen et al., 2010). A recent systematic review
concluded that PA interventions increased the plasma level of
BDNF in individuals with MCI or AD dementia (Ruiz-González
et al., 2021). A pair of studies also showed that exercise increased
plasma BDNF levels in cognitively normal older people (Müller
et al., 2017; Rehfeld et al., 2018). The representative studies are
summarized in Table 3.

Although the precise cause of the exercise-associated plasma
BDNF increase has not yet been fully elucidated, some studies
have shown increased BDNF in samples from the internal
jugular vein after acute training (Rasmussen et al., 2009) and
chronic regular training (Seifert et al., 2010), possibly suggesting
that exercise-associated BDNF may have a central origin.
Rasmussen et al. (2009) estimated that 70%–80 of circulating
BDNF was derived from the brain and that the remaining levels
were derived from peripheral sources. Thus, the question of
whether circulating BDNF levels reflect those in the human brain
warrants further study.

Insulin-Like Growth Factor 1
Circulating insulin-like growth factor 1 (IGF-1) passes through
the blood–brain barrier, exerts neuroprotective effects, and
induces synaptic plasticity (Sonntag et al., 2005). The upstream
IGF-1 signaling pathway also induces BDNF expression (Yan
et al., 2011). Interventional trials demonstrated that aerobic
exercise increased plasma IGF-1 in older adults (Kang et al.,
2020), including those with MCI (Baker et al., 2010) and AD
(Stein et al., 2021). A systematic review concluded that resistance
training also increased IGF-1 levels in participants, including
older adults (Jiang et al., 2020).

Blood Flow
Cerebral blood flow decreases with aging and may be associated
with cognitive decline (Tarumi and Zhang, 2018). This reduced
blood flow may reflect a decreased cerebral metabolic rate
(Marchal et al., 1992). Increased sympathetic nervous activity and
impaired vasodilation may also contribute to the age-associated
decline in cerebral blood flow. Cardiac output tends to decline
with aging and may also be associated with reduced blood flow
in the brain (Tarumi and Zhang, 2018). Regular exercise may
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TABLE 3 | BDNF findings associated with PA levels.

Participants Study design Finding

Systematic review for interventional studies

Ruiz-González
et al. (2021)

135 (73 experimental) MCI or AD from 5 studies Systematic review of RCTs PA interventions increased plasma BDNF

Interventional

Müller et al.
(2017)

52 (26 experimental) healthy older adults (mean age 68.3) 90-min dance twice a week for 18 months Significant increase in BDNF in dance group

Rehfeld et al.
(2018)

52 (26 experimental) healthy older adults (mean age 68.3) 90-min dance twice a week for 6 months Significant increase in BDNF in dance group

AD, Alzheimer’s disease; BDNF, brain-derived neurotrophic factor; MCI, mild cognitive impairment; PA, physical activity; RCTs, randomized controlled studies.

help to counteract the effects of these aging-associated changes
in cerebral blood flow.

Angiogenesis may also be involved in the ability of PA to
increase blood flow (Swain et al., 2003). Vascular endothelial
growth factor (VEGF) is an important regulator of angiogenesis,
and several animal studies have shown increased VEGF levels
with physical exercise. However, studies in humans have been
inconclusive (Vital et al., 2014). Observational studies have found
that sedentary older adults had lower cerebral blood flow than
active older adults (Rogers et al., 1990; Thomas et al., 2013;
Knight et al., 2021; Li et al., 2021). Recently, a small randomized
controlled trial involving a 1-year aerobic exercise intervention
reported increased cerebral blood flow in the exercise group
(Tomoto et al., 2021).

ANTI-NEURODEGENERATIVE
MECHANISMS

Amyloid β and Tau
Alzheimer’s disease is a major neurodegenerative disease and is
the leading cause of dementia. The main pathological features
of AD are accumulation of amyloid β (Aβ; senile plaques)
and intracellular accumulation of hyper-phosphorylated tau
(neurofibrillary tangles). PA has been associated with reduced
risk of AD (Barnes and Yaffe, 2011). Extensive basic research
results suggest that exercise may be associated with increased
Aβ clearance (Vecchio et al., 2018), reduced Aβ production
(Adlard et al., 2005), enhanced tau degeneration, and decreased
tau phosphorylation (Brown et al., 2019). While animal studies
have established that high PA leads to better amyloid profiles
(Brown et al., 2019), human studies investigating the effects of
PA on brain pathologies have been very difficult to do. However,
recent advances in AD-related biomarkers are enabling research
into the effects of PA on AD pathologies in human subjects.

Although cerebrospinal fluid biomarkers and amyloid PET
imaging are the most frequently applied modalities in this field,
the applicability of plasma biomarkers is gradually improving.
Many observational studies involving measures of Aβ in
cerebrospinal fluid (Liang et al., 2010; Brown et al., 2013, 2017;
Law et al., 2018), plasma (Stillman et al., 2017), and PET (Head
et al., 2012; Brown et al., 2013, 2017; Jeon et al., 2020; Treyer et al.,
2021) have reported better profiles of amyloid-related biomarkers

in active people but inconsistencies remain (de Souto Barreto
et al., 2015; Jeon et al., 2020; Palta et al., 2020; Stojanovic et al.,
2020). The representative studies are summarized in Table 4.

Observational studies, mainly retrospective in nature, have
suggested that individuals with higher PA tend to have
biomarker profiles indicative of lower Aβ deposition in the
brain (Frederiksen et al., 2019). However, interventional studies
with AD biomarkers are rare and have had relatively small
sample sizes. Most obtained inconclusive results, although some
showed favorable effects (Moniruzzaman et al., 2020). More
studies are warranted.

Researchers have investigated the effects of PA on tau-related
biomarkers. Some cross-sectional studies involving cerebrospinal
fluid biomarkers (Liang et al., 2010) and tau PET (Brown et al.,
2018) showed lower tau profiles in participants with high PA
levels, but a longitudinal study did not find an interaction
between PA and tau over time.

Oxidative Stress
Acute exercise increases oxidative stress, but regular PA is
expected to regulate the cellular redox state of the brain, and PA-
induced redox adaptation may contribute to the neuroprotective
effects of PA (Radak et al., 2016). Animal studies showed that
PA protected the brain from oxidative stress (Radák et al.,
2001; Radak et al., 2006). A systematic review concluded
that antioxidant indicators tend to increase and pro-oxidant
indicators tend to decrease after resistance training in humans
(de Sousa et al., 2017). However, another systematic review found
no effects of resistance training on molecular oxidation and
antioxidant capacity markers (Cuyul-Vásquez et al., 2020).

Nonetheless, studies of individuals with dementia or MCI are
rare. Only Jensen et al. (2019) have measured the plasma level
of 8-isoprostane, an oxidative stress marker, in AD participants
before and after an exercise intervention and reported only non-
significant changes.

Inflammation
Inflammation is one of the major mechanisms of
neurodegeneration (Onyango et al., 2021). PA may have
anti-inflammatory potential (Mee-Inta et al., 2019). Cross-
sectional observational studies have reported lower levels of
inflammatory markers (IL-6 and C-reactive protein) in active
older adults (Reuben et al., 2003) and determined that active
women had lower levels of the plasma inflammatory biomarker
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TABLE 4 | Amyloid β findings associated with PA levels.

Participants Study design Modality Finding

Observational

Brown et al. (2013) 546 cognitively healthy older
adults (mean age 69.6)

Cross-sectional PET and plasma Aβ Lower plasma Aβ1-42/1-40 and brain amyloid
observed in participants reporting higher PA levels

Law et al. (2018) 85 cognitive health older adults
(mean age 64.3)

Cross-sectional CSF Aβ Engagement in moderate PA associated with higher
Aβ42

Liang et al. (2010) 69 older adults (age 55–88) Cross-sectional PET Active individuals who followed exercise guidelines
had significantly lower Pittsburgh Compound-B
binding

Brown et al. (2017) 139 presymptomatic mutation
carriers for familial AD

Cross-sectional CSF Aβ and PET Individuals with low PA levels had higher mean
levels of brain amyloid compared with those with
high PA levels on PET but no difference in CSFAβ

Stillman et al.
(2017)

149 cognitively normal older
adults (mean age 83)

Longitudinal for 9–13 years Plasma Aβ Higher baseline PA levels associated with lower
levels of plasma Aβ in subsequent assessments

Jeon et al. (2020) 287 cognitively normal older
adults (mean age 72)

Cross-sectional PET Midlife cognitive activity not related to Aβ deposition

Treyer et al. (2021) 49 cognitively normal older
adults (mean age 87.8, range
84–94 years)

Cross-sectional PET Higher self-reported PA in the last year associated
with lower Aβ load

Head et al. (2012) 201 cognitively normal adults
(mean age 65)

Cross-sectional PET Sedentary lifestyle associated with higher Aβ

deposition

Stojanovic et al.
(2020)

276 cognitively normal older
adults (age 55–88; 95 for CSF
and 181 for PET)

Longitudinal for 10 years CSF Aβ and PET Baseline PA did not impact longitudinal change in
Aβ in CSF or on PET

Palta et al. (2020) 326 community-dwelling older
adults (mean age: 76)

Cross-sectional PET Self-reported higher mid- and late-life leisure-time
PA not associated with amyloid burden

de Souto Barreto
et al. (2015)

271 older adults with normal or
mildly impaired cognition (mean
age 74.7)

Cross-sectional PET PA not significantly associated with Aβ deposition

Interventional

Moniruzzaman
et al. (2020)

MCI and AD population Systematic review of 18 RCTs CSF and plasma Aβ, and PET AD pathological markers rarely investigated and the
results inconclusive; most studies had relatively
small sample size and limited duration

Aβ, amyloid β; AD, Alzheimer’s disease; CSF, central spinal fluid; PA, physical activity; MCI, mild cognitive impairment; PET, positron emission tomography.

TNF-α (Castells-Sánchez et al., 2021). Another observational
study also found low levels of IL-6, C-reactive protein, and
TNF-α (Colbert et al., 2004).

Plasma IL-6 levels decrease in response to aerobic exercise
in both MCI (Nascimento et al., 2014) and AD (Abd El-Kader
and Al-Jiffri, 2016). In addition, levels of C-reactive protein,
a representative inflammatory marker, decrease in response to
exercise interventions (Muscari et al., 2010; Alghadir et al.,
2016). A systematic review concluded that exercise was associated
with a decrease in C-reactive protein levels regardless of age or
sex (Fedewa et al., 2017). Another recent systematic review of
exercise interventions in people with MCI or dementia reported
that exercise significantly decreased the levels of IL-6 and TNF-α
(Huang et al., 2021).

FUNCTIONAL MECHANISMS

Functional Connectivity
Functional MRI enables functionally connected brain regions
to be identified by measuring simultaneous activations via
the blood oxygen level-dependent (BOLD) signals of spatially

distinct regions. A systematic review by Li et al. (2017) suggested
that aerobic exercise increases functional connectivity in the
default mode network, which is associated with memory and
abstract thinking. Recently, Bray et al. (2021) reviewed the effect
of physical exercise on functional brain network connectivity
in older adults with and without cognitive impairment and
concluded that physical exercise increases functional brain
network connectivity.

Allocation of Neuronal Circuits
Physical activity might somehow help to recruit new neuronal
circuits that would be involved in processing tasks. An interesting
fMRI study suggested that 6-week dance exercise training led
to the involvement of the motor-related network during highly
cognitive-demanding memory tasks, possibly as a compensatory
mechanism. Exercise may accelerate the involvement of new
networks in the cognitive process (Ji et al., 2018).

Event-related potentials are generated in response to
specific events or stimuli such as audio sound. Studies
involving the P3 component, the major focus of studies
of event-related potentials, showed that exercise increases
the amplitude of P3, possibly suggesting that exercise
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enhances the allocation of neural resources as part of a
compensatory mechanism (Chang et al., 2015). However,
the results are controversial (Gajewski and Falkenstein, 2018;
Alatorre-Cruz et al., 2020).

Neuronal Efficiency
Exercise may increase neuronal efficiency. An fMRI study
demonstrated that an exercise group had lower BOLD signals
in the hippocampus and para-hippocampal gyrus compared
with a non-exercise group during a memory-encoding task.
Because the BOLD signal reflects brain activity in a specific
region, lower BOLD signals during a certain task mean that
the task was performed with less burden, which probably
reflects higher neuronal efficiency in the hippocampus and
para-hippocampal gyrus in the exercise group (Friedl-Werner
et al., 2020). Another trial also showed that a 12-week
exercise intervention reduced neuronal activation in several brain
regions, including the prefrontal cortex, during a memory task
(Nishiguchi et al., 2015).

Synaptic Plasticity
Synaptic plasticity (long-term potentiation and long-term
depression) is a biological model for learning and memory
processes. Animal studies have demonstrated that PA controls
synaptic plasticity (Bettio et al., 2019). Synaptic plasticity can
be non-invasively measured in humans via a combination
of transcranial magnetic stimulation and recording of motor-
evoked potentials. A recent study reported that PA was associated
with long-term depression-like neuroplasticity in older adults
(Smith et al., 2021).

DISCUSSION

Numerous studies have established the beneficial effects of PA
on brain health. Here, we attempted to comprehensively review
the potential mechanisms underlying the effects of PA on brain
health. Elucidation of the mechanisms may help to establish the
optimal interventional approach in terms of therapeutic effects or
even lead to the development of therapeutic mimics.

Increasing PA is a relatively safe and cheap way to maintain
health, including brain health. However, sedentary people often
struggle to modify their behavior. Clear messages explaining the
intensity and frequency of exercise required to protect brain
health may help motivate them to change their behavior and
lifestyle. Moreover, improved understanding of the mechanisms
of the effects is expected be important for behavioral change.
People may want to know how PA works, and a clearer
understanding of the mechanisms involved could help encourage
behavioral change.

Several mechanisms have been summarized in the current
review. Each mechanism is speculated to exert its effect both
independently and interrelatedly (Figure 1). However, evidence
linking these mechanisms and elucidating their interrelationship
is largely lacking.

The most intensively studied topic and the one with the
most accumulated evidence regarding the impact of PA on brain
health is the increase in blood BDNF levels. However, the source
of the BDNF production induced by PA is inconclusive, so it
remains unclear whether the increase of BDNF in the blood
actually reflects the increase of BDNF in the brain. Moreover,
the underlying mechanisms by which increased BDNF affects
human brain function have not been completely elucidated.

FIGURE 1 | Schematic view of the mechanisms underlying the beneficial effects of PA on brain health. BDNF, brain-derived neurotrophic factor; PA, physical activity.
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BDNF is presumed to be associated with neuronal survival and
neurogenesis, and it may also preserve white matter structure
(Miyamoto et al., 2014). BDNF may play further roles in
preserving brain health such as by modulating neuronal/synaptic
activity and blood flow (Santhanam et al., 2010; Leal et al., 2015).
From a practical point of view, more information is needed to
determine the optimal exercise protocol in terms of intensity and
frequency. The effects of PA on brain volume seem to be more
or less established. However, whether PA merely decreases aging-
related brain volume loss or even increases brain volume is still
unclear, and this may be relevant to the issue of whether PA only
prevents neurodegeneration or enhances neurogenesis in human
brain. Also, it is largely unknown how long the effects of PA on
brain volume last.

More importantly, the mechanisms by which PA affects
human brain volume remain to be elucidated. BDNF may
at least partly help to support brain volume preservation,
possibly through neuronal survival and/or neurogenesis.
However, it is not yet clear whether the preservation/increase
of brain volume is due to the preservation/increase of
the number of neurons in humans. There is room for
further research. It also remains to be elucidated how an
increase in BDNF might contribute to the preservation
of brain volume in humans. The relative contribution of
neurogenesis and prevention of neuronal death to the
preservation of brain volume is not yet fully understood.
Although BDNF has effects on neuronal preservation, PA
may also counteract neurodegeneration through pathways
different from those of BDNF, including antioxidative and
anti-inflammatory effects.

Epidemiological evidence indicates that PA reduces the risk
of clinically diagnosed AD (Buchman et al., 2012). Theoretically,
several possibilities, which are not mutually exclusive, may be
involved in the ability of PA to reduce the risk of a clinical
presentation of AD: (1) PA directly modifies amyloid and tau
metabolism; (2) PA reduces neurodegeneration provoked by the
amyloid cascade; and (3) PA enhances brain function.

Some studies of AD-related biomarkers suggest that PA
may directly modify AD-related pathologies. However, taken
together, the results of these studies are as yet inconclusive.
In particular, insufficient evidence has been accumulated
from randomized controlled studies (Table 4). As discussed
above, PA may have antioxidative and anti-inflammatory
effects, and these effects may help neurons to survive in
the neurodegenerative pathway initiated by Aβ, somewhere
downstream of the amyloid cascade. It should be clarified
whether PA directly modifies the amyloid cascade or exerts
neuroprotective effects downstream of the cascade. Moreover,
some studies have suggested that PA may have effects
on cognition that are independent of pathological changes.
Here, we reviewed several potential mechanisms distinct from
neurodegeneration modification or ischemic pathologies. An
increase in blood flow may be critical to the modification
of brain function, with other contributions coming from

maintained white matter microstructure and connectivity.
Neuronal compensation, neuronal resource allocation, and
neuronal efficiency are relatively under-studied areas and
warrant further research. Also, studying a combination of
several types of biomarkers—amyloid-related, tau-related, and
neurodegeneration-related—might help to elucidate how PA
prevents AD. Prospective interventional studies involving the
combination of several biomarkers would be valuable.

To conclude, numerous studies have been conducted in this
field and a substantial amount of evidence has been accumulated.
Two points have been clarified so far, namely, the association
of PA with increased blood levels of BDNF and its association
with brain volume preservation. However, much remains to be
elucidated. For example, the mechanism by which circulating
BDNF affects the brain as well as the association between
increased BDNF levels and neurogenesis in people are unclear.
Although animal studies have demonstrated that BDNF increases
neurogenesis in the hippocampus, the contribution of BDNF to
neurogenesis in the context of human brain health, especially
in older adults, has yet to be clarified. In addition, even
though the effects of PA on AD-related pathologies have been
extensively studied, the research results are inconsistent, and so
it remains unclear whether PA is associated with less AD-related
pathologies. Many of the studies conducted in this field have
been small in scale and have employed cross-sectional designs.
Larger longitudinal studies or RCTs are needed to understand
the associations between PA and AD-related pathologies. In
this review, many other potential mechanisms were discussed.
Although these mechanisms are interesting and could possibly
be correct, at this point clear evidence is lacking. It would be very
important for people, especially those who lead sedentary lives, to
know how PA affects their brain because such knowledge has the
potential to motivate them to increase their PA. Also, elucidation
of the mechanisms may lead to the development of effective
exercise programs as well as methods for efficiently monitoring
the benefits. A more in-depth and clearer understanding of
the mechanisms underlying the effects of PA on brain health
is therefore needed. The advancement of this research field is
eagerly expected.
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