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A traumatic brain injury (TBI) induces the formation of cerebral microbleeds (CMBs),
which are associated with cognitive impairments, psychiatric disorders, and gait
dysfunctions in patients. Elderly people frequently suffer TBIs, especially mild brain
trauma (mTBI). Interestingly, aging is also an independent risk factor for the development
of CMBs. However, how TBI and aging may interact to promote the development of
CMBs is not well established. In order to test the hypothesis that an mTBI exacerbates
the development of CMBs in the elderly, we compared the number and cerebral
distribution of CMBs and assessed them by analysing susceptibility weighted (SW)
MRI in young (25 ± 10 years old, n = 18) and elder (72 ± 7 years old, n = 17)
patients after an mTBI and in age-matched healthy subjects (young: 25 ± 6 years
old, n = 20; aged: 68 ± 5 years old, n = 23). We found significantly more CMBs
in elder patients after an mTBI compared with young patients; however, we did not
observe a significant difference in the number of cerebral microhemorrhages between
aged and aged patients with mTBI. The majority of CMBs were found supratentorially
(lobar and basal ganglion). The lobar distribution of supratentorial CMBs showed that
aging enhances the formation of parietal and occipital CMBs after mTBIs. This suggests
that aging and mTBIs do not synergize in the induction of the development of CMBs,
and that the different distribution of mTBI-induced CMBs in aged patients may lead to
specific age-related clinical characteristics of mTBIs.

Keywords: microhemorrages, aging, cognitive decline, traumatic brain injury (TBI), microvascular injury

INTRODUCTION

A traumatic brain injury (TBI) has been shown to induce the formation of cerebral microbleeds
(CMBs) (Huang et al., 2015; Toth et al., 2016, 2020; Ungvari et al., 2017; Irimia et al., 2018; Griffin
et al., 2019). Cerebral microbleeds are hemosiderin deposits that are 5–10 mm in diameter as
a result of bleeding from injured small cerebral arteries, arterioles, or capillaries. They are also
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associated with the development of cognitive impairments,
psychiatric disorders, and gait dysfunctions (Werring et al., 2010;
de Laat et al., 2011; Wang et al., 2014, 2018; Huang et al., 2015;
Toth et al., 2015, 2020; Akoudad et al., 2016; Ungvari et al.,
2017, 2018; Irimia et al., 2018; Nyúl-Tóth et al., 2020). Due to
orthostatic hypotension, dehydration, and impaired balance, the
elderly population frequently suffers TBIs (Krishnamoorthy et al.,
2015; Irimia et al., 2018; Rauen et al., 2020). The most common
form of TBI affecting elderly people is mild brain trauma (mTBI)
(Rachmany et al., 2013; Krishnamoorthy et al., 2015; Rauen et al.,
2020). Similar to TBI, aging is also an independent risk factor for
the development of CMBs (Toth et al., 2015, 2020; Ungvari et al.,
2017; Irimia et al., 2018). The number of CMBs increases with
age, and they are causally linked to age-related cognitive decline
and gait disturbances. Interestingly, mechanisms leading to the
formation of CMBs, such as cerebrovascular oxidative stress, the
activation of matrix metalloproteinases, and the modification
of the content of the cerebrovascular wall, are all induced by
both aging and TBIs (Lewén et al., 2001; Werring et al., 2010;
Rachmany et al., 2013; Abdul-Muneer et al., 2016; Ungvari et al.,
2017, 2018; Griffin et al., 2019; Go et al., 2020). However, it
is not well established and characterized how TBIs and aging
interact to promote the development of CMBs, especially after an
mTBI. In this brief study, we tested the hypothesis that an mTBI
exacerbates the development of CMBs in the elderly compared
with young patients, and aimed to characterize the location and
distribution of CMBs in elderly patients after an mTBI.

MATERIALS AND METHODS

Study Population
The study was approved by the Regional Ethic Committee of the
University of Pecs, Medical School, Hungary (7270-PTE 2018).
We retrospectively analyzed the medical history and three Tesla
susceptibility weighted (SWI) MRIs of 35 patients (15 males and
20 females) who had suffered mTBIs [Glasgow Coma Scale (GCS)
14–15] and were admitted to the Department of Neurosurgery,
Medical School, University of Pecs, Hungary between April of
2014 and September of 2019. We also analyzed the SWI MRI
images of 43 aged-matched control patients (17 males and 26
females) without a medical history of a TBI. For the TBI groups,
the inclusion criteria were: young, age is between 18 and 40 years;
aged, above 60 years old at the time of the injury; an mTBI in
the history within 6 months of the MRI; an mTBI according to
Mayo criteria: GCS 14–15, absence or a maximum of 30 min of
loss of consciousness, and the absence of post-traumatic amnesia
(PTA) (Malec et al., 2007). Exclusion criteria: any conditions
associated with CMB formation in the medical history, such
as epilepsy, a previous TBI, stroke, transient ischemic attack,
cavernous malformations, cerebral amyloid angiopathy,
chronic hypertensive encephalopathy, acute haemorrhagic
leukoencephalitis, cerebral autosomal dominant arteriopathy
with subcortical infarcts and leukoencephalopathy (CADASIL),
Alzheimer’s disease, cerebral vasculitis, cerebral metastases,
haemorrhagic micrometastases, intracranial embolism,
intravascular lymphoma, posterior reversible encephalopathy

syndrome (PRES), progressive facial haemiatrophy, thrombotic
microangiopathies, intracranial infection, and COL4A1 brain
small-vessel disease (Greenberg et al., 2009; Yakushiji, 2015;
Ungvari et al., 2017). For the control group, an additional
exclusion criterion was a TBI in the medical records. Both in
the TBI and control groups, two age groups were defined in a
2 × 2 study design: young (Y): n = 20, 10 females, 10 males, age:
25 ± 6 years; young + mTBI (Y + mTBI): n = 17, 11 females, 6
males, age: 25 ± 10 years; aged (A): n = 23, 16 females, 7 males,
age: 68 ± 5 years; aged +mTBI (A +mTBI): n = 17, 9 females, 8
males, age: 72± 7 years.

Imaging Protocol
A brain MRI was performed using 3T (Magnetom Trio/Prismafit)
Siemens MR scanners (Siemens, Munich, Germany).
Susceptibility- and T1-weighted magnetization-prepared rapid
acquisition with gradient echo (MPRAGE) and fluid-attenuated
inversion recovery (FLAIR) images were obtained. The T1-
weighted high-resolution images were then obtained using a
three-dimensional (3D) MP-RAGE sequence [TI = 900–1,100 ms;
TR = 1,900–2,530 ms; TE = 2.5–2.4 ms; slice thickness = 0.9–
1 mm; field of view (FOV) = 256 mm × 256 mm; matrix
size = 256× 256], while 3D SWI images were acquired as follows:
TR = 27–49 ms; TE = 20–40 ms; slice thickness = 1.2–3 mm;
FOV = 137–201 mm × 230–240 mm; matrix size = 125–
182× 256–320, with no inter-slice gap. For image evaluation, the
3D Slicer 4.8.11 software was used.

Microbleed Analysis
Three independent neuroradiologists evaluated the images
individually, blinded to medical history. In order to precisely
identify CMBs, the exclusion of SWI lesions that mimic CMBs
(intersection of veins, bottom of sulci, calcium deposits, artifacts
caused by air-tissue interfaces, or macroscopic bleeding caused
by, e.g., an intraventricular drain) was carried out (Greenberg
et al., 2009; Yakushiji, 2015). The number and location of CMBs
were obtained according to the clinically validated Microbleed
Anatomic Rating Scale (MARS) (Gregoire et al., 2009). This scale
distinguishes the number of definite and possible lesions and
precisely localizes the CMBs according to anatomic regions as
follows: (1) infratentorial: brainstem or cerebellum; (2) deep:
basal ganglia, thalamus, internal or external capsule, corpus
callosum, or either the periventricular or deep white matter; (3)
lobar: cortex or subcortical white matter. In this study, we present
only the definite lesions (Figure 1).

Statistical Analysis
A Kolmogorov–Smirnov test was performed to determine
whether the sample data have the characteristics of a normal
distribution. In order to compare the presence of microbleeds,
the number of lesions, and specific distribution in different
sample groups, Kruskal–Wallis with post hoc Dunn’s multiple
comparison tests and Mann–Whitney U tests were performed.
To evaluate the effect of comorbidities on the number of CMBs,
Fisher’s exact tests were performed. Differences were considered

1http://www.slicer.org
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FIGURE 1 | Axial susceptibility weighted (SWI) MRI (three Tesla) of a young control patient (Y, 38-year-old, male), a young patient following mild traumatic brain injury
(Y + mTBI, 36-year-old male, GCS: 15), an aged control patient (A, 67-year-old male), and an aged patient with a mild TBI (A + mTBI, 65-year-old male, GCS: 15).
Cerebral microbleeds (CMBs) appear as ovoid, hypointense lesions and are indicated by the red squares (R, right; L, left).

significant at p < 0.05. Statistical analysis was performed using
the Origin Pro 2018 software.

RESULTS

The Effect of Mild Traumatic Brain Injury
on the Formation of Cerebral
Microbleeds in Aging
The characteristics of the patients in each group are shown in
Table 1. There were no differences in the assessed cerebrovascular
risk factors between the groups.

We found that aging exacerbated the formation of CMBs
significantly (p < 0.05) compared with young patients
(Figure 2A), confirming the results of previous studies
showing that aging is an independent risk factor for the

development of CMBs (Greenberg et al., 2009; Toth et al., 2015;
Irimia et al., 2018). Importantly, the number of CMBs in elderly
patients was not further increased by mTBIs (Figure 2A). An
mTBI did not enhance the number of CMBs in young patients
either (Figure 2A). We found that aging also significantly
exacerbated (p < 0.05) the incidence of patients with CMBs
regardless of the number of bleedings (percent of patients
with CMBs in the given group of patients) compared with
the young patients (Figure 2B), who were not affected by
mTBIs (Figure 2B).

Location Characteristics of Aging and
Mild Traumatic Brain Injury-Induced
Cerebral Microbleeds
We found the majority of CMBs in the supratentorial
compartment (lobar and basal ganglion); however, a small
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TABLE 1 | General description and main cardiovascular comorbidities of the study groups.

Group Age
(Mean ± SD)

Sex Hypertension Smoking Urea Creatinine Totalcholesterol Low density
lipoprotein

Female Male Yes No Yes No Normal Abnormal Normal Abnormal Normal Abnormal Normal Abnormal

Young
control (Y)

25.09 ± 5.63 50% 50% 10.0% 90.0% 5.0% 95.0% 85.0% 15.0% 85.0% 15.0% 90.0% 10.0% 95.0% 5.0%

Young
trauma
(Y + mTBI)

24.65 ± 10.22 61.1% 35.3% 5.88% 94.12% 0% 100% 88.24% 11.76% 76.47% 26.53% 94.12% 5.88% 100.0% 0%

Aged
control (A)

68.36 ± 4.88 69.6% 30.4% 60.87% 39.13% 4.35% 95.65% 91.3% 8.7% 91.3% 8.7% 56.52% 48.43% 78.26% 21.74%

Aged
trauma
(A + mTBI)

71.86 ± 7.31 52.9% 47.1% 88.24% 11.76% 17.65% 82.35% 82.35% 17.65% 52.94% 47.06% 82.35% 17.65% 100.0% 0%

number of microbleeds appear in the infratentorial location
in aged patients after an mTBI. The difference did not reach
statistical significance (Figure 2C). Analysing the distribution
of supratentorial CMBs across cerebral lobes (frontal, temporal,
parietal, and occipital), we found that aging enhances the number
of parietal and occipital CMBs after an mTBI (P < 0.05 vs.
Y + mTBI), and that an mTBI leads to the formation of more
CMBs in the parietal lobes in aging (P < 0.05 vs. A; Figure 2D).

DISCUSSION

It has been shown previously that both TBIs and aging induce
the development of CMBs (Huang et al., 2015; Toth et al., 2015;
Ungvari et al., 2017; Irimia et al., 2018; Wang et al., 2018;
Griffin et al., 2019). In both cases, CMBs are associated with
long-term cognitive deficits and gait dysfunctions and determine
the outcome of patients (Werring et al., 2010; de Laat et al.,
2011; Huang et al., 2015; Toth et al., 2015, 2020; Yakushiji,
2015; Akoudad et al., 2016; Ungvari et al., 2017, 2018; Irimia
et al., 2018; Nyúl-Tóth et al., 2020). Previous epidemiological
studies have proposed that the TBI-related development of
CMBs is exacerbated in aging (Irimia et al., 2018). However, the
effect of an mTBI, which is the most frequent form of brain
trauma, on the development of CMBs in aging, has not been
established (Wang et al., 2014; Krishnamoorthy et al., 2015;
Rauen et al., 2020). Here, we show (Figure 2) that significantly
more microbleeds can be found in aging human brains than in
the brains of young healthy individuals, confirming the results
of previous studies (Greenberg et al., 2009; Werring et al., 2010;
Toth et al., 2015; Akoudad et al., 2016; Wang et al., 2018). We
also found significantly more CMBs in elderly patients after an
mTBI compared with young patients with an mTBI; however,
we did not observe a significant difference in the number of
cerebral microhemorrhages between aged and aged patients with
mTBIs. This suggests that aging and mTBIs do not synergize the
induction of the development of CMBs.

The clinical consequences of CMBs, such as the development
of cognitive decline, are most likely due to the cumulative effects
of the lesions and the damage in specific anatomical locations
(Werring et al., 2010; Ding et al., 2017; Ungvari et al., 2017).

For example, damage to the fronto-subcortical circuits linking
prefrontal areas to basal ganglia is associated with impairments
in executive function, and the disarrangement of pathways
from the mentioned areas projecting to the thalamus results
in memory disturbances (Werring et al., 2010; Ding et al.,
2017; Levit et al., 2020). Although morphological characteristics
based on MRI examinations are not helpful in distinguishing
CMBs of different etiologies, specific locations suggest the
pathophysiological reasons of CMB formation (Greenberg et al.,
2009; Wang et al., 2014; Yakushiji, 2015; Ding et al., 2017; Ungvari
et al., 2017). For example, the typical brain areas for traumatic
CMBs are the corona radiata and longitudinal fasciculus (Wang
et al., 2014; Ungvari et al., 2017; Toth et al., 2020). Cerebral
microbleeds in deep cerebral areas are thought to be due to
cerebral angiopathy induced by hypertension, and lobar CMBs
are likely due to amyloid angiopathy (Wang et al., 2014; Yakushiji,
2015; Ding et al., 2017; Ungvari et al., 2017). We found that
aging alters the distribution of CMBs after an mTBI (Figure 2),
namely, in elderly patients following an mTBI, the number of
occipital and parietal bleedings was exacerbated compared with
young patients. This may affect the functional consequences of
these bleedings. Accordingly, the occipital and parietal lobes are
responsible for integrating visual and cognitive information, and
play an important role in voluntary coordination, posture and
motor control, spatial cognition, and the rapid corrections of
movements (Galletti et al., 2003; Niogi et al., 2008; Freedman and
Ibos, 2018; MacKinnon, 2018). Specific tests should be part of
the patient characterization after an mTBI to assess the region-
specific consequences of CMBs in aging (and also in young
patients), such as the trail making test, Beck’s depression test, and
Montreal Cognitive Assessment test. This possibility should be
verified in the future.

Limitations and Perspectives
The major limitations of this study are its retrospective design
and relatively small sample size. Future prospective studies
should verify the findings of this study with a large number of
healthy control volunteers. We used the Mayo criteria to define
an mTBI. Since other guidelines suggest slightly different scoring
systems, it would be important to compare the CMB formation
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FIGURE 2 | Effect of mild traumatic brain injury on the development and characteristics of cerebral microbleeds in the elderly. (A) Mean number of CMBs in young
control (Y) patients (n = 20, age: 25.09 ± 5.63 years), young patients after an mBTI (Y + mTBI) (n = 17, age: 24.65 ± 10.22 years), aged control patients (A) (n = 23,
age: 68.36 ± 4.88 years), and aged patients with mTBIs (A + mTBI, n = 17, age: 71.86 ± 7.31 years). Data are mean ± SEM, ∗P < 0.05 vs. YC, ns: non-significant.
(B) Number of patients with CMBs in the studied groups is expressed as the percent of the total number of patients in each group [young control (Y) patients (n = 20,
age: 25.09 ± 5.63 years), young patients after mBTIs (Y + mTBI) (n = 17, age: 24.65 ± 10.22 years), aged control patients (A) (n = 23, age: 68.36 ± 4.88), and aged
patients with mTBIs (A + mTBI) (n = 17, age: 71.86 ± 7.31 years)]. ∗P < 0.05 vs. YC. Panel (C) depicts the localization of CMBs in each group as number of lobar,
deep-seated (basal ganglion), and infratentorial CMBs expressed as the percent (%) of the total number of CMBs. Note that the majority of CMBs can be found
supratentorially (lobar and basal ganglion); however, a small number of microbleeds appear in the infratentorial location in aged patients after an mTBI. The difference
did not reach statistical significance. (D) Lobar distribution of supratentorial CMBs in each studied group of patients (frontal, temporal, parietal, and occipital). Please
note that aging enhances the number of parietal and occipital CMBs after an mTBI (P < 0.05 vs. Y + mTBI), and that an mTBI leads to the formation of more CMBs
in the frontal, parietal, and occipital lobes in aging (P < 0.05 vs. A). (Y): n = 20, 10 females, 10 males, age: 25.09 ± 5.63 years; young + mTBI (Y + mTBI): n = 17, 11
females, 6 males, age: 24.65 ± 10.22 years; aged (A): n = 23, 16 females, 7 males, age: 68.36 ± 4.88 years; aged + mTBI (A + mTBI): n = 17, 9 females, 8 males,
age: 71.86 ± 7.31 years.

in TBI groups as defined by various scoring systems. Aging
and mTBIs may interact in altering regulatory mechanisms of
cerebral blood flow (CBF) in a functional manner. Accordingly,
the changes in neurovascular coupling, autoregulation of CBF,
and cerebrovascular reactivity should be assessed and correlated
with the cognitive and gait functions in different age groups
after mTBIs. Finally, the possible mechanisms through which
aging and TBIs may interact to alter cerebrovascular function
and the formation of CMBs should be studied, with a special
focus on mitochondrial oxidative stress, the activation of
redox-sensitive matrix metalloproteinases, the modification of
the cerebrovascular wall, the production of proinflammatory
cytokines, and the disruption of the blood-brain barrier (Lewén
et al., 2001; Greenberg et al., 2009; Werring et al., 2010;

de Laat et al., 2011; Toth et al., 2015, 2020; Yakushiji, 2015;
Ungvari et al., 2018; Levit et al., 2020).
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