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The use of plants as natural medicines in the treatment of type II diabetes mellitus (T2DM) has long been of special interest.
In this work, we developed a docking score-weighted prediction model based on drug-target network to evaluate the efficacy of
medicinal plants for T2DM. High throughput virtual screening from chemical library of natural products was adopted to calculate
the binding affinity betweennatural products contained inmedicinal plants and 33T2DM-related proteins.Thedrug-target network
was constructed according to the strength of the binding affinity if the molecular docking score satisfied the threshold. By linking
the medicinal plant with T2DM through drug-target network, the model can predict the efficacy of natural products andmedicinal
plant for T2DM. Eighteen thousand nine hundred ninety-nine natural products and 1669 medicinal plants were predicted to be
potentially bioactive.

1. Introduction

Type II Diabetes mellitus (T2DM) has been a major global
health problem and affects a large population worldwide
[1, 2]. T2DM is a multifactorial and genetically heteroge-
neous disease caused by various risk factors such as insulin
resistance, 𝛽-cell dysfunction, and obesity [2–5]. Moreover,
T2DM may cause acute cardiovascular disease, retinopathy,
nephropathy, neuropathy, and kidney-related complications
[5–7]. Therefore, it demands effective drugs with minimal
toxicity. The herbal medicines have been used for T2DM for
thousands of years and accumulated a great deal of clinical
experience. A herbal formula comprises several medicinal
plants or animals and thus can affect the biological system
through interactions between compounds and cellular targets
[3, 8–17]. The main mechanisms of herbal medicines in
treating T2DM are that it increases insulin secretion and the
sensitivity of insulin, inhibits glucose absorption, and reduces
radicals caused by lipid peroxidation [8]. However, the major
problem of herbal medicines is lack of scientific and clinical
data to evaluate their efficacy and safety.

Network pharmacology proposed byHopkins is a holistic
approach to understand the function and behavior of a
biological system at systems level in the context of biological

networks and would be the next paradigm for drug discovery
[18–20]. Several efforts have been made to explore the
mechanism of herbal medicines such as prediction of the
active ingredients and potential targets [21–26] and screening
synergistic drug combinations [11, 27, 28]. The drug-target
network (DTN) which connects drugs and their target
proteins is an important biological network and provides
an overview of polypharmacology of drugs [29–32]. Since
medicinal plants have multiple compounds and a compound
would have several target proteins, the DTN may bridge the
gap between medicinal plants and diseases. In this work,
we developed a computational approach based on DTN to
evaluate the efficacy of medicinal plants.

2. Materials and Methods

2.1. Data Collection and Molecular Docking. The path-
ogenesis of T2DM is concerned with various proteins. We
retrieved the information of these proteins from KEGG
Pathway database [33] and DrugBank [34] (Figure 1). The
pathway of T2DM was downloaded from the KEGG website
(http://www.genome.jp/dbget-bin/www bget?hsa04930),
and the information of T2DM-related proteins was collected.
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Figure 1: The work flow of this approach.

In DrugBank, we first retrieved the FDA-approved drugs
for T2DM and then found the target proteins for each drug.
Then we searched the ligand-protein complex structure
(x-ray or NMR) for each protein from RCSB protein data
bank (http://www.rcsb.org/pdb/home/home.do). Finally,
thirty-three proteins and their information were listed in
Table 1.

The 3D structures of natural products contained in
medicinal plants were retrieved from the Universal Natural
Product Database (UNPD) which comprised more than 208
thousands of natural products [54, 55].TheAutoDock 4.0 [56,
57]was adopted to perform the virtual screening, and binding
free energy-based docking score (𝑝𝐾

𝑖
) was used to evaluate

the affinity between each compound and each protein. For
each protein, the hetero atoms of the ligand-protein complex
structure were deleted and the polar hydrogen atoms were
added. The binding site of each protein was defined as
a 40 × 40 × 40 Å cube around the original ligand with a
spacing of 0.375 Å between the grid points. The center of
binding site was located in the center of the original ligand.
The molecular docking was conducted according to the
protocol described previously [58].

2.2. Drug-Target Network Construction and Analysis. The
drug-target network was constructed by linking the com-
pound with target protein if the docking score satisfied
the thresholds that were used to determine whether the
interaction between compound and protein was strong.
According to our previous study, the thresholds were set
as follow: the docking score should be greater than 7.00
and the score of original ligand of corresponding protein
and the top percentage of rank of docking score should
be less than 10% [54]. The edge value was the docking
score of corresponding compound and protein. Finally, the
DTN consisted of 32 target proteins, 18999 compounds (the
UNPD ID, chemical name, formula, molecular weight, and
CAS registry number of each compound were listed in
Table S1, see Table S1 in Supplementary Material available
online at http://dx.doi.org/10.1155/2013/203614), and 35076
edges (Supplementary Table S2).The glucocorticoid receptor

(P04150) did not have any compounds. The compounds
were derived from 1669 medicinal plants distinguished by
Latin names. The DTN of potentially active compounds and
proteins related with T2DM was used as a bridge to build
the relationship between compound or medicinal plant and
T2DM.

2.3. Chemical Space Analysis. The analysis of the distribution
of compounds in the chemical space was conducted by
principal component analysis (PCA) module in Discovery
Studio. The PCA model was built with 8 descriptors: A logP,
molecular weight, number of hydrogen-bond donors, num-
ber of hydrogen-bond acceptors, number of rotatable bonds,
number of rings, number of aromatic rings, and molecular
fractional polar surface area. The variances of PC1, PC2, and
PC3 for compounds in Figure 2 were 0.488, 0.186, and 0.145,
respectively. The PCA of 25 FDA-approved small-molecule
drugs retrieved from DrugBank was performed in the same
process as above.

2.4. Prediction Model. Natural products are multitarget
agents. The average number of target proteins was 1.84 in
the DTN.Therefore, we proposed that the prediction efficacy
(PE) of a compound for T2DM was the sum of its all edge
values (docking scores) in the DTN:

PEcompound = ∑
𝑗∈𝑃

score
𝑗
, (1)

where 𝑃 was the set of proteins related to T2DM and score
𝑗

was the docking score between this compound and jth
protein. The PEcompound for each compound was listed in
Table S3.

Similarly, the prediction efficacy of a medicinal plant was
defined as the sum of PE of compounds contained in this
plant:

PEplant =
𝑁

∑
𝑖

PEcompound
𝑖

, (2)

where 𝑁 denoted the number of compounds contained in
the medicinal plant. The PEplant for each medicinal plant was
listed in Table S4.

3. Results and Discussion

3.1. Drug-Likeness of Medicinal Natural Products for T2DM.
Thenatural products contained inmedicinal plants forT2DM
had good drug-like properties. Lipinski CA and colleagues
proposed the “rule of five” (molecular weight (MW) less than
500Da, the number of hydrogen bond acceptors (HBA) less
than 10, the number of hydrogen bond donors (HBD) less
than 5, and octanol-water partition coefficient (A logP) less
than five) [59, 60] to estimate solubility and permeability
of compounds in drug discovery. That is, a compound
was unlikely to be a drug if it disobeyed the rules. The
mean and median of MW, HBA, HBD, and A logP of these
compounds were 540.43, 494.62; 6.3, 5; 2.5, 2; and 4.94,

http://www.rcsb.org/pdb/home/home.do
http://dx.doi.org/10.1155/2013/203614


Evidence-Based Complementary and Alternative Medicine 3

Table 1: List of 33 proteins related with T2DM for molecular docking.

Index UniProt entry PDB entry Protein name
1 O43451 3CTT Maltase-glucoamylase, intestinal
2 P01308 1TYM Insulin
3 P01375 2AZ5 Tumor necrosis factor alpha
4 P04150 3H52 Glucocorticoid receptor
5 P04746 1XDO Pancreatic alpha-amylase
6 P05121 3UT3 Plasminogen activator inhibitor 1
7 P06213 3EKN Insulin receptor
8 P07339 1LYW Cathepsin D
9 P08069 3I81 Insulin-like growth factor 1 receptor
10 P11474 3K6P Steroid hormone receptor ERR1
11 P12821 3L3N Angiotensin-converting enzyme
12 P13569 3GD7 Cystic fibrosis transmembrane conductance regulator
13 P14410 3LPP Sucrase-isomaltase, intestinal
14 P14618 3BJF Pyruvate kinase isozymes M1/M2
15 P14735 3E4A Insulin-degrading enzyme
16 P19367 1DGK Hexokinase-1
17 P27361 2ZOQ Mitogen-activated protein kinase 3
18 P27487 3G0D Dipeptidyl peptidase 4
19 P27986 4A55 Phosphatidylinositol 3-kinase regulatory subunit alpha
20 P28482 3I5Z Mitogen-activated protein kinase 1
21 P30613 2VGF Pyruvate kinase isozymes R/L
22 P35557 3IMX Glucokinase
23 P35568 2Z8C Insulin receptor substrate 1
24 P37231 3H0A Peroxisome proliferator-activated receptor gamma
25 P42336 3HHM Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit alpha isoform
26 P42345 1FAP Serine/threonine-protein kinase mTOR
27 P43220 3C59 Glucagon-like peptide 1 receptor
28 P45983 3PZE Mitogen-activated protein kinase 8
29 P45984 3NPC Mitogen-activated protein kinase 9
30 P48736 3SD5 Phosphatidylinositol 4,5-bisphosphate 3-kinase catalytic subunit gamma isoform
31 P53779 3TTI Mitogen-activated protein kinase 10
32 P62508 2P7A Estrogen-related receptor gamma
33 Q9BYF1 1R4L Angiotensin-converting enzyme 2

5.07; respectively. It indicated that most compounds would
be drug-like. The wide distribution of natural products in
chemical space (Figure 2) showed that there would be vast
property (structural and functional) diversity. Moreover, the
large overlap between natural products and 25 FDA-approved
small-molecule drugs for T2DM demonstrated that natural
products contained in these medicinal plants had a hopeful
prospect for drug discovery for T2DM.

3.2. Prediction Efficacy of Natural Product and Medicinal
Plant. Herb medicines could simultaneously target multiple
physiological processes through interactions between mul-
tiple compounds and cellular target proteins. For example,
there were 105 distinct compounds contained in Hypericum
perforatum, and 21 compounds existed in DTN. The herbal
medicines could influence the biological system through
interactions between multi-component and multi-target and
thus reverse the biological networks from disease state to

health state. Since a group of compounds contained in the
herbal medicine could play a therapeutic role, the dosage
could be reduced to reduce toxicity and side effects. For exam-
ple, UNPD43323 (ormojine), UNPD194973 (ormosinin),
and UNPD194973 (strychnohexamine) were the top three
potential compounds (Supplementary Table S3). ormojine,
ormosinin, and strychnohexamine had 27, 24, and 23 targets,
respectively. The polypharmacology of natural products was
very common.

The predicted efficacy of the top twenty medicinal plants
for T2DM was listed in Table 2. There were five plants
(Hypericum perforatum, Ganoderma lucidum, Holarrhena
antidysenterica, Celastrus orbiculatus, and Murraya euchres-
tifolia) where prediction efficacy was higher than 1000.
We searched the literatures which reported the anti-T2DM
bioactivities of the top twenty medicinal plants (Table 2) and
found that 15 medicinal plants had information of definite
effectiveness against T2DM. For example, Arokiyaraj and
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Table 2: Top twenty potential medicinal plants.

Rank Latin name PEplant Reported bioactivity
1 Hypericum perforatum 1777.81 [35, 36]
2 Ganoderma lucidum 1560.05 [37]
3 Holarrhena antidysenterica 1147.22 [38, 39]
4 Celastrus orbiculatus 1089.44 N/A
5 Murraya euchrestifolia 1066.97 N/A
6 Melia azedarach 980.47 [40]
7 Datura metel 894.36 [41, 42]
8 Ficus microcarpa 837.65 [43]
9 Tripterygium wilfordii 785.30 [44]
10 Pachysandra terminalis 740.38 N/A
11 Calendula officinalis 729.77 [45]
12 Vitis vinifera 719.77 [46]
13 Melia toosendan 711.49 N/A
14 Mangifera indica 677.08 [47]
15 Piper nigrum 667.41 [48]
16 Solanum dulcamara 667.12 [49]
17 Garcinia hanburyi 641.41 N/A
18 Momordica charantia 632.37 [50, 51]
19 Lantana camara 625.64 [52]
20 Ceriops tagal 623.13 [53]
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Figure 2: The distribution in chemical space according to PCA
of natural products contained in medicinal plants and 25 FDA-
approved drugs for T2DM. The black dots and green triangles
represent natural products and FDA-approved drugs, respectively.

colleagues evaluated the antihyperglycemic activity ofHyper-
icum perforatum in diabetic rats, and it produced significant
reduction in plasma glucose level [35].

3.3. Clinical Herbal Formula. Tangminling which was a
widely used herbal formula in China to treat T2DM com-
prised eleven medicinal herbs (Trichosanthes kirilowii, Citrus
sinensis, Bupleurum chinense, Rheum officinale, Astragalus

membranaceus, Pinellia ternata, Scutellaria discolor, Cratae-
gus pinnatifida var. major, Paeonia albiflora, Prunus mume,
and Picrorhiza kurroa) [3]. The prediction efficacy of each
medicinal plant was 493.04, 199.26, 36.06, 29.08, 15.12, 14.80,
7.83, 7.09, 7.07, 7.06, and 7.04, respectively. It indicated that
all plants could play a role in the treatment of T2DM.
However, the prediction efficacy of eleven herbs differed
considerably from each other. It meant that Trichosanthes
kirilowii and Citrus sinensis played major roles (sovereign
herbs). Meanwhile, The others worked as assistants which
may strengthen the efficacy of sovereign herbs or reduce the
toxicity.

4. Conclusions

Medicinal plants are potentially important for novel ther-
apeutic drugs. It is currently estimated that approximately
420,000 plant species exist in nature [61]. However, only
10,000 of all plants have documented medicinal use [62].
Therefore, there are potentially many more important phar-
maceutical applications of plants to be exploited. Traditional
method (from selecting plants to separating compounds
following bioassay) is time-consuming. In this work, we
developed a molecular docking score-weighted prediction
model based on drug-target network to evaluate the efficacy
of natural products and medicinal plants for T2DM. Natural
products contained in the medicinal plants would target
several cellular target proteins. The prediction efficacy of this
model took into account all potential interactions between
multicomponents and targets. Therefore, the prediction effi-
cacy was an overall evaluation at systems level. Fifteen out
of the top twenty medicinal plants had reported bioactivity
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against T2DM in literatures. This approach may promote the
research on the use of medicinal plants to treat T2DM and
drug discovery from natural products.
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