
Modulating membrane fluidity corrects Batten disease 
phenotypes in vitro and in vivo

Mark L. Schultza,1, Luis Tecedorb,1, Elena Lysenkob, Shyam Ramachandranb, Colleen S. 
Steina, Beverly L. Davidsonb,c,*,1

aDepartment of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States

bThe Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children’s 
Hospital of Philadelphia, Philadelphia, PA 19104, United States

cDepartment of Pathology & Laboratory Medicine, Philadelphia, PA 19104, United States

Abstract

The neuronal ceroid lipofuscinoses are a class of inherited neurodegenerative diseases 

characterized by the accumulation of autofluorescent storage material. The most common neuronal 

ceroid lipofuscinosis has juvenile onset with rapid onset blindness and progressive degeneration of 

cognitive processes. The juvenile form is caused by mutations in the CLN3 gene, which encodes 

the protein CLN3. While mouse models of Cln3 deficiency show mild disease phenotypes, it is 

apparent from patient tissue- and cell-based studies that its loss impacts many cellular processes. 

Using Cln3 deficient mice, we previously described defects in mouse brain endothelial cells and 

blood-brain barrier (BBB) permeability. Here we expand on this to other components of the 

BBB and show that Cln3 deficient mice have increased astrocyte endfeet area. Interestingly, this 

phenotype is corrected by treatment with a commonly used GAP junction inhibitor, carbenoxolone 

(CBX). In addition to its action on GAP junctions, CBX has also been proposed to alter lipid 

microdomains. In this work, we show that CBX modifies lipid microdomains and corrects 

membrane fluidity alterations in Cln3 deficient endothelial cells, which in turn improves defects in 

endocytosis, caveolin-1 distribution at the plasma membrane, and Cdc42 activity. In further work 

using the NIH Library of Integrated Network-based Cellular Signatures (LINCS), we discovered 

other small molecules whose impact was similar to CBX in that they improved Cln3-deficient 

cell phenotypes. Moreover, Cln3 deficient mice treated orally with CBX exhibited recovery of 

impaired BBB responses and reduced auto-fluorescence. CBX and the compounds identified by 

LINCS, many of which have been used in humans or approved for other indications, may find 

therapeutic benefit in children suffering from CLN3 deficiency through mechanisms independent 

of their original intended use.
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1. Introduction

The neuronal ceroid lipofuscinoses (NCLs) are progressive neuro-degenerative diseases 

characterized by the accumulation of auto-fluorescent material in multiple cell types. The 

most common NCL has a juvenile onset and is commonly caused by mutations in CLN3 
(referred to as CLN3 deficiency) (Williams and Mole, 2012). CLN3 deficiency generally 

manifests with early visual deficits followed several years later by seizures with mental and 

physical decline (Phillips et al., 2005). To date, only palliative care is available for this 

invariably fatal disease.

The CLN3 gene encodes the protein CLN3 (also known as battenin), which is a 438 amino 

acid hydrophobic, multi-pass transmembrane protein of unresolved function (Cotman and 

Staropoli, 2012; Phillips et al., 2005). Work in model systems over the last two decades 

suggest that CLN3 impacts multiple cellular functions including lysosomal pH (Golabek et 

al., 2000; Holopainen et al., 2001; Pearce et al., 1999; Pearce and Sherman, 1998), vesicular 

trafficking (Cao et al., 2006; Codlin and Mole, 2009; Fossale et al., 2004; Kama et al., 

2011; Metcalf et al., 2008), palmitoyl desaturase activity (Narayan et al., 2006), endocytosis 

(Codlin et al., 2008; Fossale et al., 2004; Luiro et al., 2001; Luiro et al., 2004; Schultz et al., 

2014; Tecedor et al., 2013; Vidal-Donet et al., 2013), and membrane microdomain formation 

or stability (Tecedor et al., 2013).

Using a Cln3 reporter mouse we previously showed that Cln3 is highly expressed in 

brain vasculature endothelial cells (Eliason et al., 2007). Brain endothelial cells are a 

component of the blood-brain barrier (BBB) and are vital for the maintenance of neuronal 

health and CNS function. In some neurodegenerative diseases, such as Alzheimer’s disease, 

endothelial cell dysfunction (Sagare et al., 2013) at the BBB is a critical element in disease 

pathogenesis. Intriguingly, CLN3 disease patients and mouse models display autoantibodies 

against CNS antigens in peripheral blood. Concurrently, high levels of storage material 

accumulate in endothelial cells (Lamb et al., 2006; Lim et al., 2007). Additionally, Cln3­

null mice have abnormal BBB responses to hypotonic stress in vivo (Tecedor et al., 

2013). Whether other components of the BBB, for example astrocytes whose endfeet are 

a constituent of the BBB, are affected in CLN3 deficiency is not known.

Here, we report that Cln3-null mice have increased astrocyte endfeet area in the BBB. 

Increased astrocyte endfeet size could reflect defects in astrocyte communication, which 

occurs at GAP junctions. Indeed prior work in slice culture models have shown excessive 

astrocytic GAP junction connectivity (Burkovetskaya et al., 2014). Interestingly, we found 

that oral treatment of Cln3−/− mice with the GAP junction inhibitor Carbenoxolone (CBX) 

significantly corrects astrocyte endfeet area. CBX exerts its impact on GAP junction/

hemichannel activity upon intercalation into the plasma membrane, which likely alters 

membrane microfluidity (Davidson and Baumgarten, 1988; Goldberg et al., 1996; Tovar 
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et al., 2009). Interestingly, we previously described altered plasma membrane fluidity in 

endothelial cells derived from Cln3−/− mice (Tecedor et al., 2013).

We next tested the hypothesis that CBX improves Cln3 phenotypes in vitro and in vivo 
by improving membrane fluidity defects. Our results show that, in vitro, CBX corrects 

previously reported lipid microdomain changes, caveolar and fluid phase endocytosis 

defects, and other downstream cellular pathologies reported in Cln3−/− mice cells including 

altered Cdc42-GTP levels. In vivo, CBX corrected altered BBB responses in Cln3 deficient 

mice in addition to improving astrocyte endfeet phenotypes. Also, we took advantage of 

the NIH Library of Integrated Network-based Cellular Signatures (LINCS) database to 

identify other compounds that behave similarly to CBX in model systems. Overall our data 

present evidence supporting further testing of 7 compounds for potential treatment for CLN3 

deficiency.

2. Materials and methods

2.1. Mice

All animal experiments were approved by the University of Iowa animal care and use 

committee and conducted in accordance with institutional and federal guidelines. Here 

we used WT, Cln3lacZ/+ (Cln3−/+), and Cln3lacZ/lacZ (Cln3−/−) mice (Eliason et al., 2007) 

backcrossed to the C57BL/6J background. Mixes of male and female mice were used for 

experiments.

2.2. MBEC cell lines

Due to the low yield of primary MBECs, we used previously described immortalized MBEC 

from Cln3−/− mice (Tecedor et al., 2013). Cln3 expression was stably restored in Cln3−/− 

MBEC using a lentivirus vector as described previously (Tecedor et al., 2013), creating the 

Cln3R, sister cell line. Cln3R and Cln3−/− MBECs behave similarly to primary wildtype 

and Cln3−/− MBECs (Schultz et al., 2014; Tecedor et al., 2013). Immortalized MBECs are 

positive for Von Willebrand factor and ZO-1 (Tecedor et al., 2013).

2.3. FRAP

2.3.1. Membrane fluidity—Cells were incubated with Alexa 488-CTB (Invitrogen) in 

the dark for 30 min on ice. Cells were briefly rinsed with ice-cold media and placed on 

ice in the dark until use. Imaging and photobleaching were conducted on a Zeiss LSM510 

microscope (Carl Zeiss) equipped with an Ar 488 nm laser. 60 iterations at 100% of 488 

nm excitation was used to photobleach a small portion (31 px diameter) of the membrane. 

Adjacent non photobleached membrane areas of the same size were used as a control for 

sequential bleaching as previously described (Tecedor et al., 2013).

2.3.2. GAP junction connectivity—MBECs were incubated with 5 μM calcein-AM 

(Molecular probes) for 30 min at 37 °C in the dark, then rinsed briefly with cold cell 

culture media. Whole cells were photobleached as described above in the Membrane fluidity 
section. Post-bleached images were captured every 5 s. Neighboring cells were used as 

controls for sequential bleaching due to the imaging process. FRAP was quantified as 
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described previously (Kenworthy, 2007). Results from three independent experiments were 

analyzed together (n = 76, 42, 52, 52 for Cln3−/−, Cln3R, Cln3−/−+CBX, Cln3R+CBX 

respectively). Two-way ANOVA resulted with significant interaction. Data was analyzed for 

each time point by one-way ANOVA followed by Tukey’s post-hoc analysis.

2.4. Cholesterol quantification

Detergent-free carbonate extraction and discontinuous sucrose density centrifugation was 

used to enrich plasma membrane and separate lipid microdomain fractions as before 

(Tecedor et al., 2013). Cholesterol was quantified by amplex red assay (Life Technologies). 

Briefly, cell fractions were diluted in reaction buffer and incubated with the amplex red 

reagent per the manufactures instructions. Cholesterol intensity was quantified for each 

membrane fraction with a monochrome microplate reader Safire2 (Tecan Group Ltd. 

Mannedorf, Switzerland). Results were normalized to total amount of quantified cholesterol 

per the manufacturer’s instructions.

2.5. Cdc42-GTP analysis

The Cdc42 G-Lisa® from Cytoskeleton Inc. was utilized for measurement of Cdc42-GTP 

levels. Briefly, 0.8 mg/ml of snap frozen lysate was incubated in the ELISA plate and the 

manufactures instructions were followed for detection and analysis as previously described 

(Schultz et al., 2014). Data were normalized to the protein standard and significance was 

tested by one-way ANOVA with Tukey post-hoc analysis.

2.6. Fluid-phase endocytosis

Subconfluent cells were incubated with 0.5 mg/ml Alexa 488 10,000 MW dextran 

(Invitrogen) for 20 min. Then cells were briefly washed 3× with 37°C PBS to remove 

unbound dextran and immediately fixed with 4% PFA at 37 °C. Membrane impermeable 

200 mM Red-40 was added to quench extra cellular dextran signal allowing quantification 

of only internalized dextran (Schultz et al., 2014). Cells were immediately imaged on an 

Olympus IX81 microscope and fluorescent intensity was calculated by ImageJ. Significance 

was determined by a one-way ANOVA with Tukey post-hoc (Fig. 5C) analysis or one­

way ANOVA with Holm-Sidak’s multiple comparisons post-hoc (Fig. 6B) comparing each 

treatment with the Cln3−/− MBEC + vehicle group.

2.7. Scratch assay

MBECs were grown to confluence and a pipette tip was used to create a wound. Cells 

were briefly washed with PBS and cell culture media was added for the remainder of 

the experiment. Cells were imaged every hour on an automated live cell Olympus IX81 

microscope overnight. T-Scratch software (Geback et al., 2009) was used to quantify wound 

closure. Significance was assessed by 2-way ANOVA with Bonferroni post-hoc test (Schultz 

et al., 2014).

2.8. Immunofluorescence

Sub-confluent MBECs were briefly washed and fixed in 4% PFA, permeabilized with 0.01% 

Trition-X-100, washed three times with PBS, and blocked for 1 h with 10% goat serum. 
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Cells were incubated overnight with Cav-1 antibody (1:200) Abcam, washed three times, 

and incubated with goat anti-rabbit Alexa 488 secondary for 45 min in the dark. After 

mounting with Vectashield, cells were imaged on a Zeiss 710 confocal microscope.

2.9. Protein analysis

Three confluent 160-mm-diameter dishes of MBECs were harvested and plasma membranes 

were isolated as previously described (Yao et al., 2009). Protein concentrations were 

determined by Bio-Rad Dc-Protein assay (Bio-Rad). Samples were mixed with Bio-Rad XT 

sample buffer and reducing agent, run on Criterion™ XT 4–12% Bis-Tris Gels (Bio-Rad), 

and transferred onto PVDF membranes. Immunodetection was performed with (1:100) 

rabbit anti-connexin 43 antibody (Invitrogen), (1:500) mouse anti phospho-caveolin1 (pY14) 

(BD Transduction Laboratories), (1:5000) rabbit anti-β-catenin (Abcam), (1:1000) rabbit 

anti-Cav-1 (Abcam), or (1:1000) mouse-anti-transferrin receptor (Life Technology) followed 

by HRP-coupled secondary antibodies (Jackson ImmunoResearch), and developed with 

ECL-Plus (GE Healthcare). Protein bands were quantified by densitometry using Image 

Lab 5.1 (Bio-Rad) software. Plasma membrane connexin43 levels were normalized to 

plasma membrane transferrin receptor. This value was normalized to total β-catenin as a 

housekeeping reference protein.

2.10. BBB hypotonic treatment

Mice were anesthetized and perfused with a Gilson minipulse 3 pump (set to a speed of 

2). We sequentially perfused i) 175 μl Alexafluor 488 WGA (1 mg/ml) (preloaded into 

the needle); ii) Hoechst 33258 (100 μg/ml in 1 mM CaCl2 hypotonic solution), injected 

for 2 min and 15 s; iii) saline, perfused for 30 s; iv) 4% PFA, perfused for 2 min. Each 

solution was passed through an IV drip tube to create continuous flow and pressure. After 

dissection and removal, brains were post-fixed in 4% PFA for 3 h, embedded in agar and 

set on ice to solidify. Solidified blocks were trimmed and further post-fixed in 4% PFA 

at 4 °C overnight. 50-μm vibratome sections were mounted onto slides, cover-slipped with 

Fluorogel and immediately imaged on a Leica Leitz DMRBE microscope or Zeiss LSM710 

confocal microscope. Images were captured in the green (WGA), blue (Hoechst), and red 
(autofluorescence) channels and channels combined in Adobe Photoshop.

2.11. Astrocyte endfeet quantification

3 mice per group were perfused with 2.5% glutaraldehyde in 0.1 M sodium cacodylate 

buffer using a Gilson minipulse 3 at ~1.3 ml/min flow ratio for maintaining BBB integrity. 

Motor cortex samples of 1mm2 were collected, and 50 μm vibrotome sections were 

obtained. Samples were then postfixed in 1% osmium tetroxide for 1 h., stained with uranyl 

acetate, dehydrated in a graded ethanol series, and embedded in Epon resin. Ultrathin 70 

nm sections were cut on a Leica UC6 ultra-microtome (Leica Microsystems) and 12–23 

cortical capillaries per animal analyzed with a 1230 JEOL-JEM transmission EM (Jeol 

USA) or a Zeiss Libra 120 transmission EM. Microvasculature was recognized by detecting 

the basal lamina which is localized between endothelial cells and astrocytic endfeet. Only 

long processes surrounding the basal lamina were measured to exclude neuronal terminals. 

The area surrounded by astrocytic endfeet plasma membrane was measured using ImageJ 

software (NIH). Endfeet data did not follow a normal distribution so it was normalized 

Schultz et al. Page 5

Neurobiol Dis. Author manuscript; available in PMC 2018 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



by lognormal transformation. Statistical significance of the normalized data was tested by 

two-tailed t-test.

2.12. Autofluorescence

Brains were collected as explained above in the BBB hypotonic treatment method. From 

each brain, 20 X images were taken from four different sections of medial cortex. 

Autofluorescence images were collected in the red channel and intensity calculated using 

ImageJ. Significance was calculated by a one-way ANOVA with Tukey post-hoc analysis.

2.13. Drug treatment

Carbenoxolone disodium salt (Abcam) was dissolved to 0.5 M in ethanol:water (1:1), 

and further diluted in cell culture media to obtain the following final concentrations and 

treatment durations: 50 μM for 2 h. (G-LISA), 25 μM for (30 min fluid-phase endocytosis; 

2 h. FRAP, cholesterol, cav-1 trafficking), and 3 μM overnight (scratch assay). In the 

multidrug screening experiment, CBX was dissolved with DMSO and diluted in cell culture 

media to a final concentration of 3 μM for a 24 h. treatment. For in vivo experiments, a 30 

mg/ml stock solution of carbenoxolone was prepared in saline (vehicle) and diluted to 2.0 

mg/ml for gavage. Mice were administered 20 mg/kg CBX or vehicle by gavage, given at the 

same time each morning for 14 days.

Enoxenolone (Enx, Abcam) was dissolved in ethanol:water (1:1) and diluted in cell culture 

media to a final concentration of 3 μM.

Drugs tested in the multidrug screening test were dissolved in DMSO and then 

diluted in cell culture media for 24 h. treatment. Experimental concentrations matched 

those recommended on the LINCS database: Prednisolone (Prd, Sigma-Aldrich) and α­

ketocholesterol (α-KC, Sigma-Aldrich) at 10 μM, BRD-K95814727 (K8, Broad Institute), 

-K30446755 (K4, Broad Institute), -K33258928 (K2, Broad Institute) at 5 μM, and BRD­

K95985487 (K9, Broad Institute) at 0.5 μM.

2.14. LINCS database analyses

Cln3−/− MBE cells were treated with 3 μM CBX or no-treatment for 18 h., following which 

RNA was harvested from 6 wells per condition using the mirVana™ total RNA isolation 

kit procedure. Total RNA was tested for quality on an Agilent Model 2100 Bioanalyzer 

(Agilent Technologies), and gene expression profiles were generated using the MouseRef-8 

V2 BeadChip Kit (Illumina).

Differential gene expression analysis was performed using the Partek® Genomics Suite®, 

Gene Expression workflow to identify the most significant up- and down-regulated genes. 

LINCS queries are based on a set of 1000 landmark genes which are representative of the 

whole transcriptome. To acquire the required number of genes we used a p value cutoff < 

0.02 and > 1.2 gave roughly 200 genes in each category, which is required for reaching 

150–200 up or down regulated landmark genes for the query. The fold changes of the genes 

were then uploaded onto the Apps.lincscloud.org/start (now https://clue.io/) to query the 

LINCS database.
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Every reference signature in the database is compared with the query signatures and given 

a score termed the “connectivity score” based on the extent of similarity between the two. 

Scores range from +1 meaning higher similarity, to 0 meaning no similarity, to −1 meaning 

opposite similarity. We removed all non-compounds and negative connectivity scores, and 

sorted the remaining compounds by connectivity score alone. We prioritized the top 70 

compounds with the highest connectivity score for further analysis.

2.15. Experimental design and statistical analysis

Data are presented as mean ± s.e.m. with p values, and sample size (n). Prism v6 (GraphPad 

Software) was used for statistical analyses. Comparisons between different datasets were 

made depending on data distribution tested by the D’Agostino normality test. Parametric 

tests were used for normally distributed data (two-tailed t-test for comparing two groups and 

ANOVA for comparing three or more groups). A two-way ANOVA was used to determine 

significance in experiments with multiple time points and groups. When a significant 

interaction was found between factors by two-way ANOVA, one-way ANOVA were used 

to determine significance between experimental groups. When the normality assumption 

was violated, nonparametric tests were performed (Mann-Whitney test for two groups 

and Kruskal-Wallis for three or more groups) unless the n was high enough to allow the 

transformation of the data to a normal distribution using lognormal function. Differences 

were considered statistically significant at p < 0.05. Different levels of significance between 

groups were denoted as * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001.

3. Results

3.1. An astrocyte endfeet phenotype in Cln3-null mice is corrected by CBX

At the BBB, astrocytes and brain endothelial cells are juxtaposed at astrocyte endfeet, which 

together serve to regulate BBB maintenance and function (Abbott et al., 2006). As we 

previously described structural alterations in mouse brain endothelia in vivo (Tecedor et al., 

2013), we next tested cerebral sections for structural changes in Cln3−/− mice astrocytes. 

Transmission electron microscopy (TEM) analysis revealed astrocyte endfeet area in Cln3−/− 

mice was significantly increased at 0.2661 μm2 (± 0.03003) compared to 0.0003332 μm2 (± 

0.02956) in Cln3+/+ littermates (Fig. 1A). Given prior work showing impaired GAP junction 

connectivity in JNCL astrocytes (Burkovetskaya et al., 2014) we subsequently tested if 

treating Cln3−/− mice with the GAP junction inhibitor carbenoxolone (CBX) could impact 

this phenotype. CBX was administered daily to Cln3−/− mice or normal littermates for two 

weeks by oral gavage, and endfeet area assessed as before by TEM. CBX reduced astrocyte 

endfeet area in Cln3−/− mice to 0.1291 μm2 (± 0.03120), which is similar to that found in 

control littermates (0.01833 ± 0.03310 μm2; Fig. 1B).

3.2. CBX modifies microdomain fluidity

Gap junctions are produced by coupling the plasma membrane-resident hemichannels of 

adjacent cells allowing the exchange of cytoplasmic molecules and electrical signals. Due 

to the crosstalk between astrocytes and brain endothelial cells, we investigated in vitro 
GAP junction activity in brain endothelial cells derived from Cln3−/− mice. We used our 

previously established mouse brain endothelial cell lines (MBECs) for this work; this 
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includes a Cln3-null line (Cln3−/− MBECs), and a line in which Cln3 expression was 

restored (Cln3R MBECs). These cells behave similarly to primary MBECs from null or 

WT mice, respectively (Schultz et al., 2014; Tecedor et al., 2013). To study the impact of 

Cln3 deficiency on GAP junction connectivity, MBEC mono-layer cultures were incubated 

with calcein-AM, which moves between cells using GAP junctions and the cell-cell transfer 

rate quantified using whole cell fluorescence recovery after photobleaching (FRAP). For 

FRAP, the fluorescent calcein-AM in one cell is photobleached and then sequential images 

taken to determine the rate by which the dye enters the photobleached cell from neighboring 

cells. FRAP analysis revealed that Cln3−/− cells have a faster calcein-AM fluorescence 

recovery (one-way ANOVA, F(3,112) = 30.22, p < 0.0001) relative to Cln3R cells, indicating 

increased flow of calcium-AM through GAP junctions with neighboring cells (Fig. 2A). 

As expected, treating cells with the reported GAP junction inhibitor CBX blunted the rate 

of fluorescence recovery in the photobleached cells (Fig. 2A). Connexin 43 (Cx43) levels, 

which is a main component of GAP junctions in the brain, were similar between Cln3−/− 

and Cln3R MBECs (Fig. 2B; Kruskal-Wallis, p = 0.1085). This indicates that increased GAP 

junction activity is not caused by more Cx43 protein and suggests another mechanism for 

increased calcium-AM flow.

Although CBX is commonly used as a GAP junction inhibitor, data also support the 

notion that it directly modifies cell membranes. Administration of CBX to purified 

lysosomes stabilizes membranes (Porta et al., 1986; Symons et al., 1978), and incubation of 

enveloped viral particles with CBX reduces adsorption (Dargan and Subak-Sharpe, 1986) 

and viral release (Dargan and Subak-Sharpe, 1986). As GAP junctions are associated 

with cholesterol-rich domains (Schubert et al., 2002) and regulated by membrane fluidity 

(Bastiaanse et al., 1993), we tested if CBX influences lipid microdomain dynamics by 

evaluating GM1 ganglioside movement in the plasma membrane. GM1 gangliosides were 

labeled in living MBECs with Alexa-488-cholera toxin subunit B (A488-CTB) and a 

high intensity laser was used to photobleach a A488-CTB-positive region of the plasma 

membrane. Sequential images were captured to assess the rate of A488-CTB movement 

into the photobleached area. Consistent with our previous report (Tecedor et al., 2013), 

Cln3−/− MBECs displayed significantly faster recovery compared to Cln3R cells, indicating 

enhanced membrane fluidity (Fig. 3A). When MBECs were tested after 2 h of CBX 

treatment, fluorescence recovery in Cln3−/− cells was normalized (one-way ANOVA F 

(3,108) = 18.10, p < 0.0001) (Fig. 3A).

To determine if CBX corrects the previously described abnormal distribution of 

microdomain lipids (Tecedor et al., 2013), plasma membranes were isolated and fractionated 

over sucrose gradients using a detergent-free extraction method and cholesterol levels 

quantified. Similar to our earlier data (Tecedor et al., 2013), Cln3−/− MBECs demonstrated 

cholesterol partitioning into more buoyant fractions, with the highest concentration found in 

the first (lightest) fraction compared to a cholesterol peak in the second fraction for Cln3R 

MBEC (two-way ANOVA of “membrane fraction” factor F(11,96) = 60.30, p < 0.0001; Fig. 

3B). Pretreatment with CBX normalized the profile of Cln3−/− MBECs such that cholesterol 

concentration peaked in fraction 2. (Fig. 3B, Fig. S1).
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Cumulatively, these data support a model where CBX is a novel modifier of lipid 

microdomains. Interestingly, CBX did not significantly alter microdomain dynamics or the 

partitioning of cholesterol in Cln3R MBECs.

3.3. CBX restores Cav-1 plasma membrane distribution

Since CBX corrected membrane fluidity dynamics in Cln3−/− MBECs, we subsequently 

investigated if CBX corrects caveolar defects. Caveolae are flask-shaped invaginations that 

form within distinct cholesterol/sphingolipid-enriched lipid microdomains on the plasma 

membrane. Caveolae are common in BBB endothelia, where they serve as signaling 

platforms, mediate endocytosis, and transcytosis. The primary structural protein of caveolae 

is caveolin-1 (Cav-1). Cav-1 inserts into membranes at the ER and traffics through the 

Golgi where high-order oligomerization drives transport to the plasma membrane (Chadda 

et al., 2007). We previously found enhanced microdomain fluidity in Cln3−/− MBECs and 

modified Cav-1 distribution as assessed by fractionation and immunofluorescence of the 

plasma membrane. Altered plasma membrane Cav-1 distribution causes reduced caveolae 

formation in vitro and in vivo (Tecedor et al., 2013). As shown in Fig. 4, CBX treatment 

of Cln3−/− MBECs increased Cav-1 immunosignal at the plasma membrane, evaluated by 

immunocytochemistry (Fig. 4A); western blot analysis of membrane enriched fractions 

showed no differences in Cav-1 protein levels (one-way ANOVA, F(3,20) = 0.3744, p = 

0.7724; Fig. 4B) implying that trafficking not protein expression levels were impacted by 

CBX treatment. The corrective effect of CBX on these phenotypes is similar to our prior 

work where addition of exogenous lipids recovered Cav-1 plasma membrane localization 

(Tecedor et al., 2013). Cumulatively, the data support that CBX is acting to modify 

membranes in MBECs.

3.4. CBX corrects Cdc42-dependent defects in Cln3−/− MBECs

In addition to caveolar endocytosis, Cln3−/− MBECs have decreased levels of fluid-phase 

endocytosis (FPE) and increased GTP-loaded Cdc42 (Schultz et al., 2014). Cdc42 is a 

small GTPase that cycles between GTP-bound (active, effector-binding) and GDP-bound 

(inactive) states (Chadda et al., 2007; Nevins and Thurmond, 2006; Rojas et al., 2001). 

Cdc42 GTP-to-GDP cycling is required for fluid-phase endocytosis and cell migration, both 

of which are reduced in Cln3−/− cells (Schultz et al., 2014). This suggests that inefficient 

cycling of Cdc42 to the “off” state underlies multiple actin-related defects in MBEC, and 

suggests further that drugs able to promote cycling may have beneficial effects.

We incubated subconfluent MBECs with CBX and quantified Cdc42-GTP levels. As 

expected, in vehicle-treated cells, active Cdc42 levels were significantly higher in Cln3−/− 

compared to Cln3R MBECs (Fig. 5A). In Cln3R MBECs, CBX did not significantly alter 

Cdc42-GTP levels (Fig. 5A), likely due to the already low baseline levels of Cdc42-GTP as 

shown previously (Schultz et al., 2014). In contrast, CBX treatment significantly reduced the 

levels of Cdc42-GTP in Cln3−/− MBECs (Fig. 5A; ANOVA, F(3, 16) = 9.947, p = 0.0006).

Correction of Cdc42-GTP suggested that CBX may mitigate the downstream actin­

dependent cell migration and fluid-phase endocytosis defects previously found in Cln3−/− 

cells (Schultz et al., 2014). To test for correction of cell migration, a scratch wound was 
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made in confluent monolayers of Cln3R and Cln3−/− MBECs. Cells were subsequently 

treated with vehicle or CBX overnight and imaged using live cell microscopy to assess cell 

migration over time, and the percentage of wound remaining at each time point calculated. 

As in our former report (Schultz et al., 2014), Cln3R MBECs migrated significantly faster 

than Cln3−/− cells at all-time points past 6 h (Fig. 5B). Importantly, CBX treatment 

improved Cln3−/− MBEC migration, such that there was no significant difference between 

Cln3R, Cln3R + CBX or Cln3−/− + CBX groups (Fig. 5B, Fig. S2). Thus, CBX is effective at 

correcting the cell migration defect in Cln3−/− MBECs.

In addition to the role of Cdc42 on cell migration, Cdc42 is a key regulator of fluid­

phase endocytosis (Kumari and Mayor, 2008; Schultz et al., 2014). Impaired fluid phase 

endocytosis has been reported for Cln3 mutant yeast, Cln3−/− mouse brain endothelial cells, 

Cln3−/− neuronal cells, and in fibroblasts harvested from patients with CLN3 deficiency 

(Codlin et al., 2008; Fossale et al., 2004; Luiro et al., 2004; Schultz et al., 2014; Vidal-Donet 

et al., 2013). We therefore measured fluid-phase endocytosis by uptake of fluorescently 

labeled dextran in cells treated with CBX or vehicle. CBX pretreatment of Cln3−/− MBECs 

for 30 min prior to dextran addition corrected Cln3−/− fluid-phase endocytic defects (Fig. 

5C; (ANOVA, F(3, 8) = 10.68, p < 0.0036) to levels similar to Cln3R cells. Together these 

results show that in Cln3−/− MBECs, CBX improves Cdc42 regulation and the associated 

actin-dependent functions. To our knowledge, the impact of CBX on Cdc42 activity and 

Cdc42-dependent cellular processes has not been previously tested.

3.5. LINCS compounds correct fluid-phase and caveolar defects in Cln3−/− MBECs

We next employed a transcriptome-based discovery approach to identify drugs that may 

mimic the effects of CBX (Fig. 6A). We generated gene expression signatures from 

Cln3−/− MBEC cells treated with 3 μM CBX vs. vehicle treated cells and normal cells. 

These signatures were used to mine the NIH Library of Integrated Network-based Cellular 

Signatures (LINCS) (Lamb et al., 2006) to identify small molecules that induced gene 

expression profiles similar to that induced by CBX. We also analyzed the effect of 

enoxolone, a metabolite of CBX (Iveson et al., 1971). Of hits, we focused on hydrophobic, 

neutral molecules that could impact membrane fluidity, and screened these for their ability 

to correct FITC-dextran uptake. The top six molecules (Prd, α-KC, K8, K9, K4, and 

K2) significantly increased fluid-phase endocytosis in Cln3−/− MBEC (Fig. 6B; one-way 

ANOVA, F(9,128) = 15.58, p < 0.0001), similar to CBX.

For caveolar endocytosis to occur, plasma membrane Cav-1 is phosphorylated. In Cln3−/− 

MBECs, the altered distribution of Cav-1 at the plasma membrane coincides with a decrease 

of caveolae number and reduction in phosphorylated Cav-1 (P-cav-1) (Tecedor et al., 2013). 

We therefore tested if plasma membrane-resident phospho-cav-1 was corrected by the 

LINCS hit compounds. Interestingly, we found that P-cav1 levels significantly recovered 

after treatment with CBX, its metabolite enoxolone, α-KC, K8, or K9 (Fig. 6C; Mann­

Whitney test). Treatment with Prd, K4, or K2 did not reach statistical significance but 

showed a positive trend (Fig. 6C).
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3.6. In vivo CBX treatment increases BBB responses and reduces autofluorescence

Brain endothelial cells are vital for maintaining the integrity of the BBB. Interestingly, 

injecting hypotonic solutions into blood induces an osmotic gradient across the BBB 

endothelium (Tecedor et al., 2013). In wildtype mice, this osmotic gradient triggers 

endothelial cell swelling followed by over-shrinkage, allowing small molecule access to 

the underlying neuropil (Kozler and Pokorny, 2003; Reid and O’Neil, 2000; Tecedor et 

al., 2013). The in vivo response to hypotonic shock is defective in Cln3−/− mice, as 

demonstrated by impaired passage of small molecule reporters into the brain (Tecedor et al., 

2013). Here we tested if short-term oral dosing of CBX corrects this defect in aged (8-month 

old) Cln3-null mice. For this, Cln3−/− and Cln3+/+ mice were gavaged daily with low-dose 

CBX or vehicle for two weeks, after which they were subjected to hypotonic challenge 

along with a dye that, unless the vasculature is compromised (e.g., by hypotonic challenge), 

remains restricted to the vascular lumen. As before, we used Hoechst dye penetration as 

a readout for the leakiness of the vasculature (Tecedor et al., 2013). For optimal detection 

of dye leaking into brain parenchyma, our procedure was modified to include sequential 

delivery of i) labeled Alexa488-conjugated wheat germ agglutinin (WGA) to label the 

luminal surfaces of the vasculature, ii) isotonic (control) or hypotonic solution containing 

Hoechst dye, and iii) fixative (Fig. 7A). As expected, Cln3+/+ mice treated with isotonic 

solution do not show extravasation of dye into the brain parenchyma but instead, the dye 

remains confined to the vessel lumen (Fig. 7A). In vehicle-gavaged mice, hypotonic-induced 

Hoechst penetration was evident in Cln3+/+ mice, but minimal in Cln3−/− mice (Fig. 7B), in 

line with our previous report (Tecedor et al., 2013). In contrast, CBX-treated Cln3−/− mice 

had substantially increased Hoechst signal in the parenchymal tissue, with the amount of 

Hoechst dye penetration similar to Cln3+/+ mice treated with CBX (Fig. 7B). These data 

indicate that CBX normalizes the impaired BBB response of Cln3−/− mice.

In addition to the various BBB defects, JNCL patients and Cln3 mutant mouse models 

display progressive accumulation of auto-fluorescence in multiple cell types (Cotman et 

al., 2002; Mole et al., 2005; Stein et al., 2010). Due to the close proximity of the BBB 

to brain neuropil, we next investigated if CBX alters the accumulation of parenchymal 

autofluorescence. For this study, aged (8 month old) Cln3+/+ and Cln3−/− mice were gavaged 

with CBX or vehicle for two weeks and cortical autofluorescence quantified. As expected, 

vehicle treated Cln3−/− mice showed extensive autofluorescence levels compared to wildtype 

mice. Of note, there was significant reduction of auto-fluorescence (Kruskal-Wallis, p = 

0.0234) in CBX-treated Cln3−/− mice relative to those that received vehicle-treatment (Fig. 

7C).

4. Discussion

We show that Cln3−/− mice have increased astrocytic endfeet area (Fig. 1A). Interestingly, 

enlarged astrocytic endfeet were lacking the notable organelles or membrane inclusions 

typically seen in these structures. Astrocyte endfeet swelling is an indicator of BBB 

dysfunction and is commonly found in stroke (Xiang et al., 2016). Post stroke, astrocyte 

endfeet swelling is hypothesized to prevent serum protein entry into the brain (Xiang et 

al., 2016). Enlarged astrocyte endfeet in Cln3−/− deficient mice may explain the decreased 
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permeability of the Hoechst dye into the brain during hypotonic stress (Fig. 7). Interestingly, 

this phenotype improved with CBX treatment (Fig. 1B).

Additionally, we found increased GAP junction activity in MBECs which was corrected 

with CBX (Fig. 2). Although CBX is a GAP junction inhibitor, our data support that 

it also modifies lipid microdomains, affecting fluidity and correcting the regulation and 

function of caveolar and fluid-phase endocytosis (Figs. 2–5). CBX is hypothesized to alter 

hemi channel opening or synaptic transmission by directly intercalating into the plasma 

membrane (Davidson and Baumgarten, 1988; Goldberg et al., 1996; Tovar et al., 2009). This 

is consistent with previous reports where CBX was shown to have membrane stabilizing 

effects, which are dependent on lipid concentration (Symons and Parke, 1980). Interestingly, 

CBX application to wild type cells had little effect, suggesting that the microdomain 

modifying effect of CBX may be context dependent.

Although we demonstrate an effect on membrane dynamics, the exact mechanism of how 

CBX modifies lipid microdomains or corrects the in vitro and in vivo phenotypes tested 

here is not known. CBX can modify lysosomal permeability (Symons and Parke, 1980), 

reduce fatty acid induced reactive oxygen species, inhibit sterol regulatory element binding 

protein-1c (Rhee et al., 2012), alter calcium signaling (Liu et al., 2010), inhibit 11-beta 

hydroxysteroid dehydrogenase (Monder et al., 1989), and increase heat shock protein 

expression (Nagayama et al., 2001). One could argue that modulation of one or more of 

these pathways could influence the cellular phenotypes investigated in this study. However, 

we found that CBX restores most in vitro cell phenotypes quickly (within 1–2 h), and 

speculate that it has a direct influence on cell membranes, creating conformational shifts and 

altered functions of membrane-associated proteins.

We also found other small molecules that behaved similarly to CBX (Fig. 6). These 

were identified using an unbiased genomics-based drug-discovery strategy (NIH Library 

of Integrated Network-based Cellular Signatures, LINCS). Compound screening allowed us 

to prioritize six small molecules that rescued membrane dynamics to levels comparable to 

CBX. Interestingly, all six small drugs are uncharged and hydrophobic. These drugs have 

the potential to intercalate into membranes and produce physicochemical effects on lipid 

bilayers (Royer et al. 2009, Ragot et al. 2013, Heier et al. 2013). These drugs were effective 

at correcting fluid-phase endocytosis and Cav-phosphorylation in Cln3−/− cells, and support 

the hypothesis that correcting membrane deficiencies in JNCL may be therapeutically 

beneficial (Fig. 6).

CXB has a steroid-like structure and a blood half-life of 13–26 h (Baron et al., 1978; 

Davidson and Baumgarten, 1988; Hayes et al., 1977). Recently a BBB-permeable derivative 

of CBX (Leshchenko et al., 2006), INI-0602, was used to alleviate excessive hemichannel 

activity associated with Cln3−/− mouse glial cells, and this drug showed positive effects 

in Cln3−/− mouse slice culture models (Burkovetskaya et al., 2014). Using a novel BBB 

permeability assay, we found that CBX treatment restored the BBB response to hypotonic 

shock. Moreover, two-weeks of CBX treatment resolved autofluorescence in Cln3−/− mouse 

brain (Fig. 7).
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Rodent gut microflora hydrolyzes CBX into sulfate conjugates of enoxolone (Iveson et 

al., 1971), which enters the blood stream with subsequent presence in the brain and CSF 

(Tabuchi et al., 2012). Interestingly, both CBX, and enoxolone corrected the in vitro 
phenotypes. As CBX does not cross the BBB (Leshchenko et al., 2006; Takeuchi et al., 

2011), the metabolite enoxolone may be responsible for the reduced autofluorescent storage 

either by improving the astrocytic phenotype, the endothelial phenotype, or both. Studies 

show that amyloid-β accumulation in Alzheimer’s disease brain is due in part to faulty 

clearance by brain endothelial cells (Sagare et al., 2013), and recent work in the JNCL field 

shows that, in vitro, normalizing astrocytes can improve neuronal phenotypes (Parviainen 

et al., 2017). Regardless of the exact cell type and mechanism of action, CBX and the 

LINCS compounds provide promising therapeutic avenues for treatment of CLN3 deficiency 

disease.
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Fig. 1. 
Astrocyte endfeet in Cln3−/− mice are enlarged. A, Astrocytic endfeet in the somatosensory 

cortex from brain sections harvested from Cln3+/+ or Cln3−/− mice. B Astrocyte endfeet in 

Cln3−/− mice can be corrected by CBX treatment. CBX was administered for two weeks by 

oral gavage and brain sections harvested and evaluated by TEM. For both (A) and (B) the 

red arrows indicate astrocyte endfeet. Scale bar 1 μm. Astrocytic endfeet area was quantified 

with ImageJ, n = 342, 327, 436, 398 for Cln3−/−, Cln3+/+, Cln3−/− + CBX, and Cln3+/+ + 

CBX respectively. Results were transformed to normal distribution by log normal function, 
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and evaluated by t-test. *, p < 0.05, ****, p < 0.0001. Bars show mean ± s.e.m. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.)
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Fig. 2. 
CBX corrects GAP junction communication in MBECs. A, After calcium-AM was loaded 

into cells, whole cell FRAP analysis was used to investigate GAP junction communication 

in Cln3R and Cln3−/− MBECs. Cells were treated for 2 h with vehicle or 25 μM CBX. 

ImageJ was used to quantify FRAP over time. Scale bar 20 μm. Data show mean ± 

s.e.m. from n = 76, 42, 52, 53 Cln3−/−, Cln3R, Cln3−/− + CBX, Cln3R + CBX cells 

respectively. Statistical significance was determined by one-way ANOVA with Tukey’s 

multiple comparison test. Relative to Cln3R, Cln3−/− MBECs had significantly more 
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calcium-AM recovery at all-time points. * p < 0.05, ** p < 0.01, **** p < 0.0001. B, 

Plasma membrane enriched fractions were analyzed by western blot for Connexin 43 levels. 

Bars show mean ± s.e.m. of six independent experiments. Analysis with Kruskal-Wallis test 

showed no significant differences among experimental groups.
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Fig. 3. 
CBX treatment repairs membrane fluidity in Cln3−/− MBECs. A, MBECs were treated with 

CBX (25 μM) or vehicle for 2 h. The plasma membrane was labeled with Alexa-488-CTB 

and FRAP was performed using a live cell confocal microscope. ImageJ was used to 

quantify intensity on images collected over 300 s. Statistical significance was determined 

by one-way ANOVA with Tukey’s multiple comparison test. Relative to Cln3R, Cln3−/− 

MBECs had significantly more Alexa-488-CTB recovery at all-time points. * p < 0.05, ** 

p < 0.01, **** p < 0.0001. B, Lipid microdomains were enriched by cell fractionation and 

the amplex red assay used to quantify cholesterol levels in each fraction. Data are from three 

independent experiments. Statistical significance was determined by two-way ANOVA with 

Tukey’s multiple comparison test. ** p < 0.01. Expanded data in Fig. S1. (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of 

this article.)
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Fig. 4. 
CBX restores Cav-1 subcellular localization in Cln3−/− MBECs. A, MBECs were treated 

with CBX (25 μM) or vehicle for 2 h, fixed, and Cav-1 intracellular distribution evaluated 

using immunocytochemistry and confocal microscopy. Photomicrographs are representative 

of 3 independent experiments. Scale bar = 20 μm.B, Western blotting of plasma membrane 

enriched fractions for Cav-1 levels and quantification. Data are from six independent 

experiments. Bars show mean ± s.e.m., No statistical differences were found by one-way 

ANOVA.
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Fig. 5. 
Correction of Cdc42-dependent defects in Cln3−/− MBECs with CBX. A, MBECs were 

treated for 2 h with CBX (50 μM) or vehicle and Cdc42-GTP levels were measured. Data 

are mean ± SEM of 5 independent experiments, one-way ANOVA with Tukey’s multiple 

comparison correction. B, MBECs were grown to confluence, a scratch wound made, and 

CBX (3.5 μM) or vehicle added to cells. Cell migration was imaged overnight and quantified 

by T-Scratch software. Data are mean ± s.e.m. from 4 independent experiments evaluated 

by one-way ANOVA with Tukey’s post-hoc correction. C, MBECs were treated with CBX 

(25 μM) or vehicle and endocytic uptake assessed by A488-Dextran uptake (green). Hoechst 

33342 was used to label nuclei (blue). Non-internalized extracellular dextran was quenched 

by Red-40 and epifluorescent images were quantified by ImageJ. Data are mean ± s.e.m. 

from ~70 cells from 3 independent experiments, and evaluated one-way ANOVA with 

Tukey’s post-hoc. For all panels *, p < 0.05, **, p < 0.01, ***, p < 0.001, n.s. = not 

significant. (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.)
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Fig. 6. 
Multidrug screening. A, LINCs strategy to identify compounds with signatures similar to 

CBX. B, Fluid-phase endocytosis was analyzed by Alexa 488-dextran uptake (as in Fig. 5C). 

Data are mean ± s.e.m. from 4 to 8 independent experiments for each small molecule, one­

way ANOVA with Holm-Sidak’s multiple comparisons post-hoc for analyzing differences 

of vehicle treated Cln3R MBECs with respect to all other groups. C, Phosphorylated 

Cav-1(P-cav1) levels in Cln3R and Cln3−/− MBECs after small molecule treatment. Data 

represent mean ± s.e.m. from six independent experiments, non-parametric Mann-Whitney 
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test with Bonferroni‘s multiple comparison correction for vehicle treated Cln3−/− MBECs 

with respect to all other groups. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. 

Carbenoxolone (CBX), Enoxolone (Enx), Prednisolone (Prd), α-ketocholesterol (α-KC), 

BRD-K95814727 (K8), BRD-K30446755 (K4), BRD-K33258928 (K2), BRD-K95985487 

(K9).
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Fig. 7. 
CBX corrects regulated volume defects and reduces Cln3−/− autofluorescent inclusions 

in vivo. A, (Top) Schematic representing Hoechst entry into the brain during hypotonic 

treatment. (Bottom) Cln3+/− mice exposed to isotonic or hypotonic treatments. Animals 

were anesthetized and wheat germ agglutinin (WGA) (green) infused intravascularly to label 

endothelial cells followed by infusion of Hoechst dye (blue) in a hypotonic solution, then 

saline infusion, followed by fixation, sectioning and imaging. The Hoechst signal outside the 

WGA-labeled vascular is indicative of regulated volume decrease and dye extravasation after 

hypotonicity exposure. Scale bar = 100 μm. B, Cln3+/+ or Cln3−/− mice were treated daily 

with vehicle or 20 mg/kg CBX for two weeks. After anesthetization, mice were perfused 

as in (A). Brain slices (50 μm) were imaged by confocal microscopy and show that CBX 

permits Hoechst dye extravasation in Cln3−/− mice brain. Images are representative of 5 

mice per group performed on different days. Scale bar = 50 μm. C, Thin sections from fixed 

brains were imaged under low magnification in the red channel to detect autofluorescence. 

Scale bar = 200 μm. Cortical images (4 images/animal; 4 mice/group) were taken and 

fluorescence intensity averaged using ImageJ. Data are mean ± s.e.m., Kruska-Wallis test 

with Tukey’s multiple comparisons post-hoc, *, p < 0.05. Scale bar is 200 μm. (For 
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interpretation of the references to colour in this figure legend, the reader is referred to 

the web version of this article.)
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