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Abstract: Microfluidics has become a very promising technology in recent years, due to its great
potential to revolutionize life-science solutions. Generic microfabrication processes have been
progressively made available to academic laboratories thanks to cost-effective soft-lithography
techniques and enabled important progress in applications like lab-on-chip platforms using
rapid-prototyping. However, micron-sized features are required in most designs, especially in
biomimetic cell culture platforms, imposing elevated costs of production associated with lithography
and limiting the use of such devices. In most cases, however, only a small portion of the structures
require high-resolution and cost may be decreased. In this work, we present a replica-molding method
separating the fabrication steps of low (macro) and high (micro) resolutions and then merging the
two scales in a single chip. The method consists of fabricating the largest possible area in inexpensive
macromolds using simple techniques such as plastics micromilling, laser microfabrication, or even by
shrinking printed polystyrene sheets. The microfeatures were made on a separated mold or onto
existing macromolds using photolithography or 2-photon lithography. By limiting the expensive
area to the essential, the time and cost of fabrication can be reduced. Polydimethylsiloxane (PDMS)
microfluidic chips were successfully fabricated from the constructed molds and tested to validate our
micro–macro method.

Keywords: microfabrication; soft lithography; microfluidics

1. Introduction

Microtechnology has contributed greatly to the progress of society thanks to the incredible growth
of electronics that it has permitted. Photolithography has been the central process enabling fast
miniaturization of individual components and complex layouts with metal, oxides and semiconductors
required in circuit integration. Although the cost of materials and infrastructure required by this
technology has always been relatively elevated, the high integration levels enabled by this technology
have decreased the overall cost per chip. This said, when different construction materials such as
polymers are required, or if small-volume rapid-prototyping devices are sought, microtechnology
remains too expensive for many laboratories, especially in low-resource universities or developing
countries. After the development of a more accessible method was introduced mainly thanks to the
work of George Whitesides in soft-lithography [1,2], the fabrication of on-demand microchips has now
become very popular, because it is more accessible. The techniques used in modern microtechnology
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have been greatly simplified and the catalog of compatible materials expanded significantly, hence
broadening the range of possible applications [1,3,4]. The capability to pattern many materials at
the microscale in a low-resource laboratory, even at a small production volume has increased the
potential of prototyping and testing lab-on-chip technology, especially in biomedical applications where
polymers in general, and poly-dimethylsiloxane (PDMS) in particular, are often used to guarantee
a better transition from the laboratory to the market [5–8]. However, a serious limiting parameter
in developing biomicrofluidic platforms is the geometric resolution [9]; the tools required to yield
resolutions below 50 µm are still expensive [10,11]. One critical step in microfabrication using soft
lithography, for instance, is the inevitable need for high-resolution micromolds used in replica-molding
(REM) to reproduce the micropatterns with high fidelity in polymer materials such as PDMS. When
high resolution is required, photolithographic processes are thus still used in order to obtain the master
molds, although large low-resolution areas (such as those of the interconnection pads) do not necessarily
need expensive patterning tools. Indeed, the cost associated with fabricating large areas on resist
patterns transferred onto the mold substrates for subsequent replicas in PDMS is not ideal, as these
common structures shared by all microfluidic chips usually do not require high-resolution processes
with a very high associated cost per area. and different strategies may be employed nowadays [12].

Several simple solutions exist to create molds of direct fabrication: the use of thermoshrinkable
polymers, the desktop cutter plotter or the combination of both are examples of these affordable
techniques [10,13,14]. In our group, we have also developed a low-cost laser microfabrication system
that also enables the construction of plastic micromolds [15]. This process appears to solve a cost
issue when high-resolution features need to be integrated inside PDMS microfluidic chips using soft-
lithography and rapid-prototyping. Indeed, usually photoresists are used to transfer patterns onto
a wafer or a glass slide using a photomask, that also needs to be fabricated and usually presents a
high associated cost that is not suitable for testing and prototyping. Other maskless techniques such
as 2-photon lithography also guarantee high resolutions but their cost per area and processing time
are too high for large surfaces (Table 1). Finally, the low-cost techniques widely used in low-resource
laboratories are somehow limited to low-resolution features (Table 1). Therefore, we have decided
to merge micro- and macro-fabrication procedures to restrict the area of high-resolution features
fabricated by 2-photon lithography to the absolute minimum and hence greatly limit the cost and time
of fabrication. Although large-scale structures have been manufactured using the 2-photon technique,
there are still area limits and there is a need to use micromanipulators to make the connections with
tubings and external pumps, which with our method may not be necessary [16].

Table 1. Comparison of the resolution, area and speed of the different fabrication methods used in this
work. The reported fabrication speed is calculated with the different fabrication parameters used for
each technique.

Fabrication Method Minimum Feature Size Maximum Fabrication Area Fabrication Speed

2PP 300 nm 3 × 3 × 2 mm 99–6000 min/mm3

Direct laser writing 10–20 µm 25 × 25 mm 5–500 min/mm3

CNC micromilling 127 µm 150 × 150 × 150 mm 0.37–202 min/mm3

Shrinky Dinks®molding 200 µm 1/3 of an A4 sheet 0.02–1 min/mm3

2PP—2-photon laser polymerization; CNC—Computer Numerical Control.

In this work, we proposed to limit the area of micron-scale features to the absolute minimum in
order to save process time and budget and hence present a standard procedure for the construction of
microstructured PDMS microfluidic platforms useful for a low-resource laboratory or in educational
laboratories. It is based on the separated design and fabrication of large areas of low- resolution
structures for user-friendly interconnects as well as the high-resolution features but restricted to a
smaller area, in a different step. This process allowed us a more efficient use of resources by producing
the inlets/outlets layouts and larger channels of our chips in a very simple fashion, hence lowering
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the overall cost of the molds for the rapid prototyping of PDMS chips. It is now possible to design
a “one-design-fits-all” macromold with interconnect layouts that may be readily made using simple
techniques while micron-scale features are designed and fabricated apart and limited to the smallest
area possible. Both molds are then replicated in PDMS using soft lithography and then bonded
together to construct a single chip that integrates both micro- and macro-features. The ports (inlets
and outlets) can be designed as a unique generic footprint with n available openings shared between
multiple common microchannel designs. The openings may be designed sufficiently large in order to
be compatible with any microfluidics connector (luers, reservoirs, micropipette tips, syringes, etc.).

Generic macro-layouts can thus be readily made in any laboratory using one of the multiple
macromold techniques presented in our process, and it is then possible to outsource only a delimited
area for the high-resolution micropatterns. The macromold fabrication process was validated here with
several techniques such as plastics micromilling, laser microfabrication of plastics, or fabrication of
molds using commercial shrinkable polystyrene sheets (Shrinky Dinks®, Alex Toys Inc., Fairfield, NJ,
USA) [10,11]. The micron-range features were made using photolithography or 2-photon lithography,
limiting the overall area to the essential in order to lower the cost. These high-resolution patterns were
transferred either on a different mold or directly onto the macromold when possible for obtaining a
single mold. In both micro and macro designs, special attention was drawn to the correct alignment of
interconnections between both molds for the micro–macro process to be successful in the fabrication of
microfluidics platforms. In order to validate the proof-of-concept, different chips were fabricated and
are shown in this paper. Other similar methods have been proposed [17–19] but it is the combination of
low-cost methods and the ability to create three-dimensional structures that make our work innovative.

2. Materials and Methods

2.1. Micro-Macro Integration Processes

The micro–macro process used in this work is aimed at integrating high-resolution (micro) patterns
readily inside a larger low-resolution (macro) area in the design and fabrication of master molds in
order to fabricate microfluidics chips with both large structures or interconnections and micro-sized
features easily and almost directly for rapid-prototyping applications. The general process is presented
in Figure 1 and the diagrams of Figures 2 and 3 present the detailed procedures that were tested
successfully in this work for two molds or a single mold respectively.

In the 2-mold option, the critical step was the alignment of the areas where the two layers of
the chips had to be united correctly in order to ensure the flow from larger to smaller cross-sections
(Figure 2). In the single-mold option, this step could be cancelled as the micro-features were directly
fabricated on a pre-existing low-resolution mold, but particular attention was paid in precisely focusing
the laser on the correct area to ensure continuity between large and small channels in the final
chips. Different low-resolution macromolds were designed and fabricated with larger interconnects
for inlet and outlet areas on the outer regions and smaller-size areas for interconnects with the
high-resolution micro-features. The outer interconnects were made large to punch vias and holes
compatible with all typical microfluidics interconnections depending on the application (luers, syringe
needles, micropipette tips and commercial reservoirs). Both the low-resolution and high- resolution
patterns of interest were fabricated using different techniques that are shown in Figures 2 and 3 and
detailed in the following sections.



Micromachines 2019, 10, 576 4 of 16

Micromachines 2019, 10, x 4 of 18 

4 

 

Figure 1. General principle of the Micro–macro process. (a) interconnect layouts are made in a 

macromold using low-resolution techniques while micron-scale features are designed and fabricated 
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Figure 2. Micro–macro chip fabrication process using soft-lithographic replica-molding (REM) 

technique with 2 master molds. (a) A low-resolution mold of the larger features is developed with 

one of the multiple fabrication options: Computer Numerical Control (CNC) micromilling, laser 

ablation, laser direct-writing or polystyrene sheets molding (the pattern is printed 7 times on the same 

polystyrene (PS) sheet to add relief). (b) In parallel, a high-resolution mold is developed with one of 

the multiple options (photolithography, 2-photon polymerization or laser micromachining). (c,d) 

Figure 1. General principle of the Micro–macro process. (a) interconnect layouts are made in a
macromold using low-resolution techniques while micron-scale features are designed and fabricated
apart; (b) both molds are then replicated in polydimethylsiloxane (PDMS) and bonded together to
create a single chip integrating both micro- and macro-features; (c) the ports (inlets and outlets)
can be designed as a unique footprint with n available openings shared between multiple common
microchannel designs. The openings may be designed sufficiently large in order to be compatible with
any microfluidics connector (luers, reservoirs, micropipette tips, syringes, etc.).
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Figure 2. Micro–macro chip fabrication process using soft-lithographic replica-molding (REM) technique
with 2 master molds. (a) A low-resolution mold of the larger features is developed with one of the
multiple fabrication options: Computer Numerical Control (CNC) micromilling, laser ablation, laser
direct-writing or polystyrene sheets molding (the pattern is printed 7 times on the same polystyrene
(PS) sheet to add relief). (b) In parallel, a high-resolution mold is developed with one of the multiple
options (photolithography, 2-photon polymerization or laser micromachining). (c,d) Then, two PDMS
replicas are made using the REM technique. (e) Replicas are activated, aligned and bonded to each
other to assemble the final chip, connecting micro features with macro patterns.
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Figure 3. Micro–macro process using a single mold with both low-resolution and high resolution
pattern transfer. (a) First, a low-resolution mold is made with CNC micromilling or laser-direct
writing on a substrate compatible with the 2-photon laser polymerization (2PP) process. (b) Then a
computer-aided design (CAD) containing microfeatures is transferred directly to the previous mold by
2PP to a compatible photoresin, developed and rinsed. (c) Finally, the single mold is used for the REM
technique to obtain the final PDMS replica with macro- and micro-patterns on it.

For low-resolution mold fabrication, any of the following techniques was successfully employed:
Computer Numerical Control (CNC) micromilling in an acrylic sheet, infrared laser ablation in an
acrylic sheet, laser direct-writing to pattern a photoresin on a glass substrate, or shrinkable polystyrene
sheet molding. In the case of the high-resolution mold, we used mask photolithography and 2-photon
laser polymerization (2PP) of a photoresin. Each mold is then used in a replica-molding (REM)
technique to obtain a high-fidelity PDMS replica of each mold, as described in detail in a following
section. Then, both replicas are activated using plasma, UV-ozone, or corona discharge to promote
PDMS–PDMS bonding. They are finally aligned carefully (using alignment marks that may be
specifically designed, if necessary) under a stereoscopic microscope in order to assemble the final chip
with interconnections easily accessible. The correct alignment of the micro- and macro-parts of the chip
and absence of leaky joints is then verified by flowing a colored liquid inside the chip and visualizing
the flow under a microscope.

In the case of the micro–macro single-mold process (Figure 3), only one substrate is used to obtain
a single PDMS replica with both micro- and macro-features on them. The process is more sequential,
as the high-resolution pattern is directly transferred onto the low-resolution mold using 2PP. In this
case, only two of the four low-resolution techniques presented above were successfully used, due to
two additional requirements of the 2PP technique. First, the substrate material needs to be compatible
with the 2PP photoresin development process as the developer chemicals may be aggressive. Then, and
more importantly, a smooth and flat substrate surface with a high enough refractive index is needed
on the macromold to guarantee precise laser focusing and interface finding. Unfortunately, this high
surface quality was not achieved in our laboratory with the other techniques and we thus restricted the
low-resolution mold to CNC micromilling and laser direct-writing. Once these requirements were
fulfilled, once the macromold was obtained, the substrate was inserted inside the 2PP laser system
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in order to transfer the desired CAD design onto the macromold. After development, the final mold
contained both micro- and macro-features for subsequent REM and chip assembly processes.

2.2. Fabrication of Low-Resolution Macromolds

In this work, we tested four different techniques to fabricate the low-resolution or “macro” molds,
accessible to most laboratories and relatively simple to implement rapidly. The molds obtained with
these techniques consisted basically of substrates with larger structural parts or fluidic interconnect
access ports of the final chip platforms. The exact procedures used in this work are detailed in
the following.

2.2.1. Low-Cost Shrinky Dinks®Molding

The use of commercial polystyrene (PS) sheets known as Shrinky Dinks®to construct 3D
microfluidics channels very rapidly and at an affordable cost was first reported in 2008 [11] and our
technique was based on this protocol. As mentioned in the literature, this technique offers great
reproducibility from design to design, operator to operator and run to run. However, it is limited
to structures with relatively low aspect ratios and usually presents a relatively high roughness that
limits its use to low-resolution molds. Here, the desired macro pattern was designed in 2D using any
design software and then printed 7 times at the same position of the PS sheet employing a 600 dpi
commercial printer (Laser Jet CP1025nw, Hewlett-Packard, Palo Alto, CA, USA). After washing the
surface carefully with a solution of 5% v/v of acetone in isopropyl alcohol (IPA) for several minutes in
order to obtain well-defined boundaries, the polymer sheets were placed in a convection oven with
homogeneous heating at 175 ◦C for 5 min until the shrinkage occurred. The samples were cooled down
at ambient temperature for several minutes and stored hermetically until further use. The resolution of
the 2.5D features of this kind of mold depends mainly on the quality of the printer and in this work a
resolution of 200 µm was obtained for the macro-molds.

2.2.2. Low-Cost Infrared Laser Ablation

Another low-cost and rapid technique used here for the low-resolution molds consisted of poly-
methylmetacrylate (PMMA) laser ablation with a custom-made laser platform based on a motorized
CD–DVD pickup head unit. The detailed procedure employed here was described in a previous
work [15,20]. In this work, PMMA used as the laser platform offered excellent reproducibility and
control of etched dimensions, including depth, over relatively large areas [15]. However, this process
still was not suitable for applications where high resolution features of less than 20 µm are required.

2.2.3. Low-Cost Blu-Ray Laser Direct Writing

Similarly to IR laser ablation, a blu-ray pickup head unit was mounted on the previous platform to
crosslink photosensitive resins [15]. In this work, we used a commercial UV-sensitive glue, Loctite 3525
(Henkel Corp., Düsseldorf, NRW, Germany), to construct macro-molds, using the procedure detailed
in a previous work [15]. Simple 3D structures were readily made with this setup and technique, but the
final resolution of the structures after development was not acceptable for high- resolution applications
and its use was limited to the fabrication of low-resolution molds.

2.2.4. CNC Micromilling

The last option that was tested and presented excellent results to build macro-molds was CNC
micromilling [21–23]. This subtractive manufacture technique is used to etch micrometric size patterns
by means of a 3-axis motorized high-speed rotating cutting tool that removes bulk material. The
precise position of this tool is controlled by Computer Numerical Control (CNC) via G-Code. In this
work, we used a Mini-Mill/4 (Minitech Machinery Corp., Norcross, GA, USA) with up to 10 µm of
resolution in each axis. The G-Code was generated with computer-aided design (CAD) software
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Fusion 360 (Autodesk Inc., San Rafael, CA, USA), which allows the straightforward translation of
a 3D CAD model into a computer-aided manufacturing (CAM) cutting operation. The workflow
followed here is a common CNC micromilling procedure, described as follows. First, the desired 3D
structures were designed in CAD. In the case of the single-mold procedure where the CNC mold
is then processed in 2PP, the CAD design integrated two separated bodies, both the micro- and the
macro-features. In the macro-design, one or multiple alignment marks were added without affecting
the function of the structures. In a second step, the G-Code instructions were created in order to
engrave the structures correctly. Indeed, in this CAM, all manufacturing considerations that have
to be followed in order to achieve optimum results were integrated: the size of the endmill, its feed
rate, and the spindle speed were carefully selected after a proper characterization (presented in a
following section) in order to achieve a low roughness surface in the lowest time possible. Another
important factor in fabricating a mold for REM is the cutting strategy to guarantee a flat, even surface
and homogeneous height across features. Because of its excellent performance for soft lithography
REM using PDMS and its compatibility with the 2PP high resolutions process, in this work we used
PMMA sheets (75 mm × 25 mm × 2 mm) to fabricate the macro-molds. To hold the polymer samples
in place and guarantee a correct transfer, we used double sided tape [21].

2.3. Fabrication of Inner High-Resolution Micromolds

High-resolution features are usually expensive. Although our process is compatible with any
high-resolution technique to fabricate molds, in this work the microstructures were fabricated using
2-photon polymerization of photosensitive resins. A Photonic Professional GT (PPGT) system from
Nanoscribe GmbH (Eggenstein-Leopoldshafen, BW, Germany) was used with one of its proprietary
resists (IP-S). Although the process enables a rapid, fully-automated transfer of a 3D pattern on
compatible substrates from a simple CAD design, it is usually limited to relatively small areas for
cost reasons. Moreover, in spite of some studies reporting the possibility to replicate the molds into
PDMS layers, we found that the substrates typically require special treatment with silanes compounds
for replication: first, adhesion promoters were needed on the clean substrates for the resin to attach
and then fluorinated silanes had to be evaporated on the developed structures in order to avoid
PDMS– resin adhesion when detaching in the REM process. In particular, we found that very small
high-resolution patterns usually remained inside PDMS. Because the cost and risk of destructing the
2PP molds were high, we decided to limit the 2PP area to its absolute minimum, as presented in
Figures 2 and 3. In both cases of single or two-mold options, special attention was paid on the end-
to-end connection area (low-resolution to high-resolution channels merging). A correct overlap was
required to avoid possible leakage at high pressure when superficial tension needs to be broken for the
flow to take place. In the case of the two-mold method, the connection area of both molds had enough
tolerance to allow for a small misalignment. For the one mold method, visible alignment marks were
designed and fabricated, easy to identify under the PPGT microscope to avoid any misalignment
between the low and high-resolution processes. The discrepancy of the 2PP system is evaluated every
6 months in our laboratory and there is an average maximum difference of 0.35 µm between design
and fabricated structures. This is below the 10% margin of permissible tolerance in our laboratory for
the structures reported in this work.

2.4. Fabrication of Soft-Lithographic Replicas

The soft lithography technique of replica-molding (REM) was used to replicate the micro-
and macro-molds in PDMS. This method consists in curing the elastomer on top of the master
mold and transferring a negative copy of the geometries and structures of the mold into PDMS [1].
PDMS is the most common candidate to perform REM due to its interesting characteristics such
as biocompatibility, non-cytotoxicity, simple surface treatment, and optical transparency, useful for
microfluidics, microscopy, and cell culture. We used Sylgard®184 Silicone Elastomer kit (Dow Corning,
Midland, MI, USA) in a 10:1 w:w proportion of prepolymer and curing agent. The prepolymer and



Micromachines 2019, 10, 576 8 of 16

curing agent were mixed with a rotating tool at a constant speed for 5 min to ensure the homogeneity
of the mixture. The mixture was then placed in a vacuum desiccator to remove bubbles formed during
mixing. To ensure the PDMS replica detaching of the different molds, three methods were used to avoid
adherence between the polymer and the substrate and detachment control (detailed below): no surface
treatment in case of the low-resolutions molds, and evaporation of dichlorodimethylsilane (DMDCS) or
trichloro(1H,1H,2H,2H-perfluorooctyl)silane (PFOCTS) (Sigma Aldrich, San Luis, MO, USA) in case
of high-resolution molds. Indeed, the low-resolution molds did not require any surface treatment to
obtain PDMS replicas. The molds were introduced in an aluminum- foil container. Then, the degassed
PDMS was emptied into the container with the mold taking care not to create new bubbles between the
mold and the PDMS interface. Immediately, the samples were placed in a convection oven preheated
at 60 ◦C for 48 h. Although greater temperatures may be used to cure PDMS, it has to be avoided
with the polystyrene sheets as the ink would melt and the mold would be destroyed. Finally, after
the polymerization of the PDMS, the replicas were allowed to cool down so that the detachment of
PDMS replica could be easily achieved. For the molds that used photoresins such as those made by
laser direct-writing, or the high-resolution molds fabricated with photolithography, the substrates with
negative structures had to have been previously silanized with DMDCS by evaporation. The molds
were placed in an airtight container with a droplet of 1 mL of DMDCS for one hour at room temperature
in an extraction hood. All the residual chemical vapors were finally allowed to evaporate by opening
the container for 20 min at the end.

For the molds printed using 2PP, a 10 µL droplet of PFOCTS was used and in this case the mold
and the silane droplet were placed together, 1 cm apart, in a vacuum chamber for 2 h. When replicating
high-resolution micro-molds, it was found that submerging the mold/replica in IPA helped reducing
the risk of breaking or detaching the mold microstructures. Indeed, we had to use an IPA wash in order
to eliminate the silane excess (manifesting itself as microscopic droplets) that only appears on 2PP
high-resolution molds, probably caused by the reaction with the photocured Nanoscribe proprietary
resins or with the substrate; generally, the 2PP photolithography is made on an ITO (Indium Tin
Oxide) surface. The PFOCTS and DMDCS create Si–O covalent bonds with the oxygen at the surface,
responsible for the droplets.

2.5. Microfluidic Interconnection

Alignment of micro- and macro-molds is very important to make proper interconnects between
the channels fabricated with different techniques and then to guarantee conservation of flow and proper
functioning of the chip. It is also important to avoid possible leaks or contamination. First, the alignment
had to be ensured by the design of the different structures and molds (Figure 4). Then, the positive
PDMS molds were cut to the desired size, leaving at least 5 mm of separation from the channels to the
edge to avoid possible cracks when connecting luers, reservoirs, or pipette tips. The surface of the
PDMS slabs were treated either with plasma etching (PE25-JW, PlasmaEtch inc., Carson, NV, USA)
or a homemade corona discharge in order to expose the hydroxyl groups and bond them together.
The PDMS layers were then always handled facing down to avoid adhering dust or any other particle
to the surface, comprising the adhesion between the different faces of the chips. Using a stereoscopic
microscope, the coupling of the micro- and macrostructures were finally aligned and bonded before
placing the chip at 90 ◦C on a hotplate for 30 min and cooling it down slowly to room temperature.
For 2-level chips (Figure 4a), the open surface where the channels for micro–macro interconnects
were located was easy to align even without any reference marks. In the case of structures with 3
levels or more (Figure 4b), it was necessary to design and place alignment marks to ensure the correct
positioning between the different layers. The above procedure is carried out for the two lower layers,
making sure to make the holes in the middle layer that connect the upper layer to the lower layer
before joining it, Figure 4b. Subsequently, the third layer is attached in the same way with the other
two layers, following the alignment marks and with the help of the stereoscopic microscope (SMZ
745T, Nikon Instruments Inc., Melville, NY, USA). Hole punching (EMS-Core, Electron Microscopy
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Sciences, Hatfield, PA, USA) can be made at any moment of this process although it is easier at the
very end of the procedure.
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3. Results and Discussion

3.1. Microfluidic Platforms

3.1.1. Multi-Mold Microfluidic Chips

Several designs were achieved in order to test the multi-mold process with several combinations
of macro- and micromold (Figure 4). The 2-level chips tested in this work all succeeded in replicating
both the low and high-resolution features in PDMS and the chips were then punched and successfully
tested for flows. We also fabricated three microfluidic levels in one single chip for the fabrication of a
complex platform to produce microdroplets for several applications like drug delivery and lab- on- chip
assays: indeed, this type of chip required multiple inlets and outlets, with some inside existing layers,
that could not be achieved with only two molds/layers [24–26]. Table 2 shows a practical comparison
between single- and multi-mold methods.
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Table 2. Comparison between single- and multi-mold methods in terms of flexibility, need of alignment.
and compatible fabrication methods.

Method of
Integration

Compatible “Macro”
Fabrication Methods

Need for
Alignment

Alignment
Tolerance Flexibility

Single-mold CNC micromilling
Once with the
fabrication of

the mold
Up to 10 µm Only works with one

design

Multi-mold
Direct laser writing

Every chip Up to 300 µm
One “macro” design can

be used with several
“micro” designs

CNC micromilling
Shrinky Dinks®molding

3.1.2. Single-Mold Microfluidic Chips

In order to fabricate single-mold chips and thus reduce the cost and fabrication time, we followed
the procedure depicted in Figure 3. Laser direct-writing was implemented using our blu- ray system [15]
in order to fabricate the macro-regions of a mold for further use in 2PP. In this case, it was important to
select carefully a low-resolution resin (the photosensitive material for the low-resolution mold) that
would be compatible with the high-resolution process: (1) first, the refractive index mismatch between
the cured low-resolution resin and the uncured resins used in the 2PP process had to be sufficient for the
2PP laser to be precisely focused at the interface between the two materials; (2) then, the low-resolution
resin had to comply with laser exposure during 2PP and not burn or explode under such radiation;
(3) and finally, as the high-resolution resin for the 2PP process has to be developed and cleaned using
special chemicals (Figure 3b), it was important that the structures in the first low-resolution resins were
not impaired during the second development step. The different photoresins that were tested with our
laser direct-writing system either did not enable laser focusing but did burn under 2PP laser exposure,
or suffered structural or mechanical modifications during the 2PP development process, especially
after a few minutes of immersion. The low-cost commercial Loctite 3525 curable glue compatible with
additive manufacturing using our blu-ray system and reported in ref. [15] was found to be an excellent
material for the single mold fabrication presented in Figure 3. Loctite 3525 was developed in acetone
after laser direct-writing, presents a refractive index of 1.51 which is greater than that of Nanoscribe
proprietary resins in their liquid form used in this work (1.486), and it resisted the development step of
the 2PP resins used in this work if development lasted less than 15 min. Although this single mold
fabrication process was successfully achieved (Figure 3b), the total area that is patternable using laser
direct-writing with our system was limited and large areas usually took much more time, compared
with CNC micromilling of hard substrates. Although it offers excellent control of the macro- and
micro-patterns in a relatively simple manner, for the particular case of large microfluidic chips we
preferred the CNC micromilling solution. Interestingly, for other types of applications such as the
microfabrication of optical waveguides where the combination of macro- and microstructures are
required [27], both cured refractive indices are 1.51.

The preparation of PMMA molds using CNC micromilling is very reproducible and may be used
either for micromachining carved features (depths) or out-of-plane structures for mold fabrication.
Although the resolution is different for each of the structure types, it is important to test two critical
parameters that are dependent on the system used to micromachine the surface of the polymer substrates
on which the 2PP laser is then focused to transfer the micropatterns: roughness and resolution [21].
The carved channels are usually the most limiting features in size for CNC micromilling, and as this
type of mold was then processed with 2PP where laser focusing is critical, in this work we tested the
roughness and resolution of carved structures obtained with our CNC system with different end mill
diameters (127 µm, 254 µm, and 381 µm) and speeds (in kRPM) at different feed rates to reproduce a
set of flat rectangular structures at a constant depth in order to assess the resulted roughness after the
process in flat PMMA molds by performing measurements using a profilometer (KLA Tencor D600,
Milpitas, CA, USA). After milling, the samples were placed in a closed reservoir with acetone vapor
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at 40 ◦C for 90 s to smoothen the surface. The final roughness was calculated as Rq =
√

1
n
∑n

i=1 y2
i

and the results are presented in Figure 5a. Although we found that the roughness may improve with
smaller end-mill sizes, it only did very slightly and always at lower feed rates. This would considerably
slow the process for large areas and thus limit the rapid prototyping of our molds. Moreover, it is
usually recommended to use the most robust tips in solid, stiff materials such as PMMA and the
largest end-mill that guarantees a low roughness is often selected. We decided to set the optimized
micromilling conditions as follows: 381 µm end-mill, at 50 mm/min and 5 kRPM. When an even faster
feed-rate is desired (500 mm/min) we used an end- mill of 3.17 mm at a spindle speed of 10 kRPM.
With this configuration a macromold can be milled in less than 5 min with the trade-off of the surface
roughness which can be around 300 nm, this value can be further improved with a post-treatment of
acetone vapor at 40 ◦C for 90 s.

After setting the CNC milling conditions for the best roughness and robustness with the conditions
mentioned above, we tested the in-plane resolution of PMMA etching for squares of several dimensions
from 5 µm to 500 µm with depths ranging from 5 µm to 100 µm. Figure 5b shows the results of the
transferred feature size measured by profilometry against the expected (designed) feature size for all
the patterns. As can be seen, our system reproduced the features in both X and Y axes with great fidelity,
although an offset of approximately 30 µm was found in each direction. This shows that the CNC
micromilling technique is an excellent process for our low-resolution (above 30 µm) mold fabrication
and that a high-resolution technique is required for lower resolution. As the PMMA substrates are
compatible with the 2PP technique using the Nanoscribe PPGT system, we then used this type of mask
for our micro–macro process.
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Figure 5. (a–c) CNC micromilling roughness tests using 3 different end-mill diameters, 381 µm, 254 µm,
127 µm, respectively; the Rq roughness is plotted as a function of both the feed rate and the spindle
velocity, the blue points represent our experimental data. (d) Comparison between the designed
dimension of the features in the resolution test sample and its measurement, the blue line shows the
linear fit made to X-Axis data and in red the linear fit of the Y-Axis data, for comparison in yellow the
identity function is plotted, each measurement was repeated 6 times, scale bars represent the standard
deviation. (e) Sample of the out-of-plane square pillars used for the resolutions test. Scale bar is 500 µm.
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3.2. Biochip Platforms

In order to further prove that our technique was robust to fabricate designs that would normally
require photolithographic molds for both large (macro) and small (micro) features in bioplatforms,
we designed and fabricated two micro–macro molds using a single mold processed first with CNC
and then transferred high resolution microstructures using the PPGT. The first design was made for
further construction and use of a PDMS microfluidic chip for yeast trapping and study (the study itself
is outside the scope of this work and will be reported elsewhere). The design replicated an existing one
made with a different process [28] and is presented in Figure 6. As can be seen, after the full design
was made, the CNC process transferred the low-resolution channels into a PMMA mold that was
subsequently cleaned and placed inside the 2PP system to transfer the microtraps inside the desired
channels that had been marked with small, non-intrusive alignment marks outside them. A manual
approach had to be made inside the channels as the low-resolution channels needed to be less than
10 µm deep (7.48 µm was measured by profilometry). After carefully developing and rinsing the
substrate, IPA created some small non-superficial cracks in the mold (apparent in Figure 6); however,
the profilometry and PDMS replicas proved that they did not affect the integrity of the structures as
they did not appear at the surface. The process limited the area of the microtraps to a minimum, thus
lowering the cost and time of fabrication of the high-resolution features.
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Figure 6. Fabrication process of a master mold for a microfluidic platform replicating an existing one for
yeast trapping and study [28]. From a full design including both low- and high-resolution features (a),
a PMMA sample is first processed using CNC micromilling (b) and then transferred to the 2PP system
for the fabrication of the microtraps locally, inside a designated small-area of the microchannels (c).
Although PMMA cleaning with alcohol may generate internal cracks, it was found that the cracks were
not transferred in any area of the PDMS replica. (d) The surface profile of the PDMS surface, shows the
integrity of the microtraps on the replica.
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For the second mold and in order to validate the use of the multiresolution fabrication technique
presented in this work, HepG2 cells (ATCC, Manassas, VA, USA) were cultured in the central channel
of a three-channel chip (Figures 7 and 8). It is known that multiresolution in microfluidics is essential
for mimicking the in vivo microenvironment that is needed for the correct development of in vitro
models. Hepatic cells are very sensitive to native microarchitecture and blood flow, thus highlighting
the relevance of integrate multiresolution in microfluidics for spatial confinement and nutrient diffusion
without applying shear stress on cultured cells. A three-channel microfluidic chip, similar to that of
Figure 4a, was designed and successfully fabricated for proof-of-concept. In this design, fabricated using
the single-mold technique, a central microfluidic channel 200 microns wide is connected to two lateral
1 millimeter wide channels by much smaller microchannels (500 µm (L) × 10 µm (W) × 3 µm (H)).
The three large channels were fabricated for the low resolution part of the mold, this channels
are designed to confine the cells (central channel) and transport the nutrients (lateral channels).
The microchannels (high resolution part of the mold) are used for single-cell migration or nutrient
diffusion without applying shear stress on cells cultured in the main central channel [29,30]. After the
CNC micromilling mold was made and inspected, the mold was cleaned and the microchannels were
successfully transferred to the existing mold following the steps of the 2PP process described in a
previous section. After inspection of the final mold, a PDMS replica was obtained using REM, the chip
was sealed and the diffusive function of the microchannels fabricated with 2PP was successfully tested
using fluorescein inside the central channel and observing fluorescence inside lateral channels (Figure 7).
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Figure 7. Test of diffusion inside the three-channel microfluidic chip. (a) The low-resolution mold
for three large channels was made by CNC micromilling (outer channels marked with red lines,
central filled with fluorescein in (b), the micromold of the smallest connecting microchannels was
microfabricated by 2-photon polymerization. (b) The channels were first filled with IPA and at time
zero, a droplet of fluorescein was deposited at the inlet of the central channel. (c) After 19 s, without flow,
the fluorescein started to diffuse towards the lateral channels through the connecting microchannels.
(d) 5 min later, the fluorescein was visible inside the lateral external channels (d). Scale bars are all
800 µm.
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Figure 8. Culture of HepG2 cells inside the central channel with nutrients diffusing from side channels
through the lateral high-resolution microchannels. The images were captured with a fluorescence
microscope for Calcein AM stained HepG2. Scale bar: 500 µm.

Finally, the microchannels were sterilized with three 70% ethanol washes and followed by 30 min
UV exposure (λ = 253.7 nm). In order to promote the cell adhesion to the channels a 1 mg/mL collagen
I (Corning Inc., Corning, NY, USA) coating was performed and incubated for 2 h before seeding.
Collagen was replaced with culture medium: MEM + 10% FBS and 1% penicillin-streptomycin (all from
Gibco, Waltham, MA, USA). Then, 200 µL of concentrated HepG2 cells suspension was injected in
the central channel, filling it by diffusion. Before the cells were introduced, they were incubated for
15 min in a 1 µmol/L calcein AM (Invitrogen, Waltham, MA, USA) medium and observed after the
medium of the channel was changed, 2 h after they were introduced. The fluorescence emitted by
activated calcein was elected as a signal of cell viability (Figure 8). The fluorescence was observed until
24 h later, at the end of this experiment, only used as a proof-of-concept test to prove the compatibility
of our technique with cell culture protocols such as sterilization, protein coating to increase the cell
adhesion, cell seeding, and cell imaging inside the channels. On further biological applications, other
conditions such as flow rate will be studied.

4. Conclusions

We showed that it is possible to fabricate microfluidics devices integrating expensive micron-range
features with a simple rapid-prototyping technique by separating the costly master molds containing the
high-resolution (“micro”) patterns from low-resolution molds with the generic larger (“macro”) channels
and connection ports. While common photolithographic strategies were used for the high-resolution
parts of the designs, several simpler options were successfully tested for the interconnects, such as
CD-DVD-Bluray laser micromachining, micromilling and polystyrene sheet-controlled shrinkage.
It was possible to merge both designs in one PDMS chip by simple alignment and assembly of two or
more microfluidic levels. It was also possible to transfer the micropatterns directly onto an existing
macromold by using a 2-photon polymerization technique thus obtaining a single mold for ease of use
in replica molding. We believe this micro–macro process presented here is an excellent solution for
small-budget laboratories as it limits greatly the cost and time of fabrication or outsourcing of a limited
area containing expensive micropatterns.
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