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Abstract

Mountain pine beetle (MPB) has become an invasive forest pest of mature pine in western

North America as it spreads beyond its former endemic range. Management actions such

as timber harvest can reduce the spread of MPB but may affect species of conservation con-

cern like woodland caribou. Our goal was to inform MPB management within caribou ranges

by exploring the impacts of MPB on caribou habitat–focusing on terrestrial lichens, an impor-

tant winter food for caribou. We evaluated differences in lichen cover among four MPB man-

agement actions: timber harvest, wildfires, leaving MPB killed trees as-is, and single-tree

cut-and-burn control. We found little evidence that leaving MPB killed trees as-is or control-

ling MPB using single-tree cut-and-burn impacted lichen cover. However, we found that

lichen cover was lower in timber harvested and burned areas compared to intact undis-

turbed forest but only 10 to 20 years post-disturbance, respectively. Our results suggest that

despite short-term reductions in lichen cover, using timber harvesting and prescribed burns

to control MPB may balance management needs for MPB while maintaining lichen cover

over time. However, using timber harvesting and prescribed burns to manage MPB is likely

to have detrimental population-level effects on caribou by increasing the proportion of dis-

turbed habitat and thus predators within caribou ranges. Among the four management

actions that we evaluated, the cut-and-burn control program balances the need to limit the

spread of MPB while also limiting negative impacts on caribou food. Our work addresses

some of the challenges of managing competing forest and ecosystem values by evaluating

the consequence of forest pest management actions on an important food resource for a

species-at-risk.

Introduction

Invasive species are a major source of ecological and economic loss [1–3]. In an effort to miti-

gate negative impacts of invasive species, land managers typically employ aggressive eradica-

tion programs [4,5]. However, management actions for species eradication can have
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unintended and detrimental ecological consequences on non-target organisms [6,7]. Because

of this risk, managers should evaluate the potential for unintended outcomes prior to any

intervention, especially in areas where management actions for invasive species could nega-

tively impact species of conservation concern [8,9]. In such areas, evaluating the consequences

of management actions on non-target species under alternate management scenarios could

allow for proactive and informed invasive species mitigation [10,11].

Since the early 1990’s, land managers in western North America have attempted to control

the spread of mountain pine beetle (Dendroctonus ponderosae; hereafter MPB); an endemic

forest pest of mature pine west of the Rocky Mountains [12]. MPB breached the Rocky Moun-

tains in the mid-2000s, spreading north and east at approximately 80km/year [13]. MPB has

also spread from lodgepole (Pinus contorta) into jack pine (Pinus banksiana) [14,15] and

whitebark pine (Pinus albicaulis) [16]. The spread of MPB into new regions, including western

Alberta, is thought to be a result of decades of fire suppression associated with forest manage-

ment coupled with increasingly warm winters and summers [15]. MPB is responsible for the

death of millions of hectares of forest in Canada and the United States [17,18], with cascading

and significant impacts on ecosystem function [19–21]. In an effort to eradicate and slow the

spread of MPB, and to mitigate the economic impact on the forest industry, MPB control has

focused on accelerated harvest of mature pine [22], single-tree cut-and-burn control programs

of infested trees [23,24], and prescribed burning in protected areas [25]. However, MPB infes-

tation and associated management actions can affect non-target organisms; a process that has

already been observed in the boreal forest [26].

MPB and MPB management alter the forest structure by decreasing canopy cover and cre-

ating canopy gaps [27], which impacts understory vegetation by increasing light penetration

and reducing snow interception [26,28,29]. For some boreal species, these impacts may be

beneficial since species that prefer early seral habitats may benefit from changes in understory

vegetation resulting in more food resources, and cavity-nesting birds may benefit from an

increase in standing dead trees [26,29,30]. However, not all species benefit from MPB. For

instance, elk (Cervus canadensis) avoid beetle-killed stands despite having abundant early seral

forage, likely because of the increased costs of locomotion necessary to move through MPB-

killed stands with dead and downed trees [31]. For species that prefer mature forest, MPB and

MPB management may have significant and detrimental impacts on the availability of habitat

and food resources [26,32]. For such species, specifically species that are of conservation con-

cern, there is a need to evaluate whether MPB infestations could be less detrimental for spe-

cies-at-risk compared to a range of MPB management actions.

Woodland caribou (Rangifer tarandus; hereafter ‘caribou’) are a threatened species [33–35]

that prefer mature forest stands [36,37], which are habitats susceptible to MPB (e.g., mature

pine). This preference for mature forest is driven by multiple factors but in part mature, open

conifer stands provide abundant terrestrial and arboreal lichen that are important food for car-

ibou during winter [38–40]. In addition, mature forest with sparse understory vegetation sup-

ports low densities of other ungulates and consequently, predators occur at low densities–

effectively making contiguous mature forest stands predator refugia for caribou [41–43]. Loss

and fragmentation of mature forest caused by habitat disturbances resulting in unstainable

high predation rates is the main driver of caribou declines [44–46]. Because of this, federal and

provincial caribou recovery strategies aim to reduce habitat disturbances such as timber har-

vest and wildfires within caribou ranges [34,35,47]. Because caribou conservation plans resolve

to protect mature forest, they directly contradict the management actions for MPB

eradication.

Management actions used to eradicate and slow the spread of MPB mainly accelerate har-

vest of mature pine in combination with single-tree cut-and-burn of infested trees at the
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leading edge of MPB spread [22,23,48]. In addition, stands that have already been killed by

MPB may be salvage logged or burned [49] with prescribed burns being the main MPB man-

agement approach used in protected areas like National Parks [25]. These management actions

are likely detrimental to caribou, but allowing MPB infestations to linger in caribou range may

not guarantee the protection of caribou habitat either. For example, in British Columbia,

Cichowski and Haeussler [50] reported a 9% decrease in percent cover of terrestrial lichens a

decade after MPB infestation. These opposing management actions operating in the same

region create a need to understand their potential impact to caribou habitat.

The goal of our study was to determine how MPB and alternative MPB management

actions affect the distribution and abundance of terrestrial lichen in western Alberta. We

focused on the impacts of MPB and MPB management on terrestrial lichen (hereafter

“lichen”) because adequate food resources and nutrition are necessary to maintain sustainable

caribou populations [51,52], and because caribou habitat use can be closely linked to the avail-

ability of forage [53,54]. First, we determined how MPB and actions to manage MPB affect

lichen cover by constructing spatiotemporal lichen cover models. Specifically, we 1) modeled

lichen cover in a) timber harvested stands, b) stands burned by wildfire, c) MPB single-tree

cut-and-burn control stands, d) MPB infested stands, and e) intact stands. We then 2) simu-

lated future lichen cover under different management actions. Second, we used resource selec-

tion functions (RSF; [55]) to evaluate the predictive ability of the lichen cover models based on

the presumption that caribou should select habitats with higher predicted lichen cover. The

results of this research are intended to help guide MPB management actions in support of cari-

bou recovery in the boreal forest.

Material and methods

Ethical statement

Weyerhaeuser Company provided caribou GPS collar data with animal care protocols com-

pleted by Alberta Environment and Parks (AEP). AEP adhered to capture and handling guide-

lines under the Canadian Council on Animal Care [56] and the Government of Alberta’s

Animal Care Protocol No. 008 [57]. Lichen data collection occurred on public lands and in

provincial parks, and permission for field sampling and helicopter access was granted under

the authority of the Government of Alberta (permit #14–109).

Study area

The study area was approximately 33,000 km2, encompassed nine natural sub-regions [58],

and included caribou ranges in west-central (53.857, -119.109) and north-western Alberta,

Canada (57.675, -119.037). In west-central, forests are a mosaic of lodgepole pine, white

spruce, and aspen, with black spruce, larch, and muskeg in low-lying areas [58–60]. Higher ele-

vations have Engelmann spruce and subalpine fir below tree-line and graminoid, sedge, and

herbaceous ground cover or exposed rock above tree-line. In the north-west, forests are white

spruce, trembling aspen, and balsam poplar with black spruce, larch, and muskeg and fen in

low-lying areas [58,61]. The study area included 2,032 km2 of federally protected land, 5,410

km2 of provincially protected land, and 25,761 km2 of provincial land-base. Hunting and other

recreational activities occurred within protected lands but mostly on the provincial land-base.

Industrial activities associated with the energy (mining, oil, and natural gas) and forest indus-

try occur exclusively within the provincial land-base.

PLOS ONE Mountain pine beetle and the caribou conservation dilemma

PLOS ONE | https://doi.org/10.1371/journal.pone.0232248 April 30, 2020 3 / 19

North Saskatchewan Watershed Alliance, Northern

Rockies Museum of Culture and Heritage,

Norwegian University of Life Sciences, Norwegian

Institute of Bioeconomy Research, Oldman

Watershed Council, Paramount Resources Ltd.,

Parks Canada, Pembina Pipeline Corporation,

Peregrine Helicopters, Peter J. Murphy Forest

Consulting Ltd., Petroleum Technology Alliance

Canada, Red Deer River Watershed Alliance,

Repsol Oil and Gas Inc., Scandinavian Brown Bear

Research Project, Seven Generations Energy Ltd.,

Shell Canada Ltd., South East Alberta Watershed

Alliance, Spray Lake Sawmills, St’at’imc

Government Services, Suncor Energy Inc.,

Sustainable Forestry Initiative, TAQA North Ltd.,

Teck Resources Ltd., TerrainWorks, Timberworks

Inc., Tolko Industries Ltd., Tom Peterson, Toronto

Zoo, Tourmaline Oil Corp., Town of Hinton,

TransCanada Corporation, Trout Unlimited Canada,

United States Department of Agriculture (United

States Forest Service), University of Alberta,

University of British Columbia, University of
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Lichen absence and abundance

Field data collection. We used a geographic information system (GIS) and a random

number generator to identify transects within forests stratified into five categories: timber har-

vest (Cut), wildfire (Fire), MPB kill (MPB), single-tree cut-and-burn control program (Single-
Tree), and intact undisturbed forest (Forest)–see S1 Appendix for details. For ease of access, we

constrained 80% of transects to within 1 km of roads or pipelines and accessed the remainder

via helicopter. We did not survey SingleTree within the north-western study area because at

the time of data collection (2014 and 2015), there was no single-tree cut-and-burn manage-

ment in the area. We collected data from 776 transects between June and October of 2014 and

2015 (S1 Appendix, Table 1).

Field surveys and field-derived explanatory variables. We focused field surveys on four

terrestrial lichen genera (Cetraria spp., Cladina spp., Cladonia spp., and Flavocetraria spp.)

preferred by caribou [62]. At each transect, we visually estimated percent cover of lichens

within six subplots placed at 5-m increments along a 25-m transect line. Because forest canopy

cover and over-story species are known to influence the distribution and percent cover of

lichen [63,64], we also estimated percent canopy cover at each subplot and recorded character-

istics of the three nearest trees (species, MPB killed, and single-tree cut-and-burn control).

Field data collection described in detail in S1 Appendix and field variables are in S2 Appendix.

GIS-derived explanatory variables. We linked transects to GIS-derived variables previ-

ously reported to influence the distribution and percent cover of lichen (Table B in S2 Appen-

dix). For forest stand age, we used forest inventory data provided by forest companies to

calculate years since timber harvest, or we used provincial wildfire data to calculate years since

wildfire. For climate, we used data from western Canada adjusted for elevation [65] to interpo-

late climate normals (circa 1961–1991) across our study area. Climatic growing condition data

included mean annual precipitation (cm), mean summer precipitation, number of consecutive

frost free days, degree-days > 5 ˚C, and summer heat-moisture index. For forest canopy, in

west-central we used a percent canopy cover and height layer derived from LiDAR data [66].

For north-western, we used field-derived visual estimate of canopy cover because LiDAR-

derived canopy cover data were not available (S1 Appendix).

For terrain, we used a LiDAR-derived depth to water estimation, a metric of soil wetness

based on local topography and modeled hydrologic flow [67,68]. To represent the diminishing

effect of the depth to water on vegetation growth, we transformed the variable using an expo-

nential decay function 1 –e−1.55×Depth2Wat(m) [69]. This decay function caused depth to water to

Table 1. Transects surveyed among sampling strata.

Sampling strata Description Range (age in years) West-central North-western

Cuta Regenerating timber harvest 1–49 193 65

Fireb Regenerating natural wildfires 3–71 24 61

MPBc Standing dead MPB killed pine trees 1–8 61 33

SingleTreec Single-tree cut-and-burn control area 1–8 133 0

Forest No history of timber harvest or natural disturbance 54–404 156 50

Number of transects surveyed in west-central and north-western Alberta, Canada among the five sampling strata during the summers of 2014 and 2015.
a partitioned into time-since-disturbance in five year increments.
b partitioned into time-since-disturbance in 10 year increments.
c partitioned into time-since control or infestation in one year increments.

https://doi.org/10.1371/journal.pone.0232248.t001
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rapidly decrease at depths greater than 2 m and to become constant at depths greater than 3 m,

reflecting the root depth of boreal forest vegetation [70]. We also used the Canadian Digital

Elevation Model [71] to extract values of elevation, terrain wetness (compound topographic

index, CTI; [72]), and solar radiation based on latitude, topographic position, and terrain shad-

owing intersecting each transect [73,74]. We used CTI rather than depth to water for north-

western because LiDAR-derived depth-to-water data were not available for all transects sur-

veyed in that region. We used ArcGIS 10.3 [75] to extract GIS-derived variables intersecting

each transect.

Data analysis

We carried out statistical analysis using R [76] within R-studio [77]–package names are indi-

cated with quotations. To assess differences in mean percent lichen cover among the five sam-

pling strata in each region, we used a Kruskal–Wallis test (‘stat’ [78]) and post hoc pairwise

Nemenyi-tests [79] in ‘PMCMR’ [80].

Modelling lichen occurrence and abundance. Before analyzing lichen occurrence and

abundance, we screened explanatory variables following Zuur et al. [81]. We did not include

variables in the same model if they were strongly correlated (|rp|> 0.60); using univariate

models and Deviance Information Criterion (DIC, [82]) to identify which of any two corre-

lated variables to include in downstream analyses. We also excluded variables from models

with variance inflation factor (VIF) >2 (‘usdm’; [83]). We standardized continuous variables

before fitting models (Table C in S2 Appendix).

We used zero-inflated beta regression [84] to model presence-absence and abundance of

lichen along transects within each region. Beta regression is appropriate for analysis of propor-

tional data [85–87], and has previously been used to model terrestrial lichen [88]. We fit zero-

inflated beta regression models with ‘zoib’ [89,90], which derives inference for model parame-

ters using a Bayesian framework via the Markov Chain Monte Carlo (MCMC) approach

implemented in JAGS [91]. We chose a Bayesian framework over a likelihood-based approach

because a Bayesian framework helped avoid issues of non-convergence and biased parameters.

We surveyed lichen within a 1 m2 subplot during the first year of data collection, but increased

the subplot size to 10 m2 during the second survey year to capture more of the variability pres-

ent in lichen distribution. We accounted for potential bias in occurrence or percent cover of

lichen caused by combining data from 1 m2 subplots in the first survey year with 10 m2 sub-

plots in the second survey year by including a fixed effect ‘scale’ variable in west-central models

(we only surveyed lichen in north-western during 2014). We accounted for the clustered

nature of the dataset (i.e., six subplots along a 25-m transect) by treating transect as the sample

unit with subplots nested within.

Before fitting models, we combined percent cover of the four lichen genera because com-

bining information from similar rare species improves model predictability relative to individ-

ual species models [92]. We built separate models for west-central and north-western, and

separate models for Fire and Cut. We combined Forest,MPB, and SingleTree within a single

model. Combining multiple strata into a single model allowed us to explore MPB and single-

tree cut-and-burn control effects relative to intact forest by including covariates within the

combined model, specifically percent of MPB killed trees and the presence/absence of MPB

control along the transect. We expected explanatory variables for occurrence and percent

cover to differ, and therefore performed model selection on each part of the zero-inflated

equation separately while holding the other side of the equation at the intercept. We evaluated

competing models using DIC, and if any two models were within�4 ΔDIC of one another, we

chose the model with fewer parameters. We considered non-linear effects for the stand age
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and canopy structure variables by including squared terms (Table B in S2 Appendix). Addi-

tional variable details within each strata and region are provided in Table B in S2 Appendix.

We carried out model selection using an iterative process. We started with a global model

that included all of the variables of interest for that sampling strata/region (Table B in S2

Appendix), and following the principle of parsimony, we removed uninformative variables

[93] from the global model for each sampling strata using a “drop one” approach. For the

“drop one” approach, we used DIC to compare alternative models with each variable removed

in turn, and removed uninformative variables in an iterative manner from the downstream

analysis until removing a variable did not further reduce model DIC. We reported final model

results as mean beta (β) coefficients with 2.5% and 97.5% posterior predictive values, or as the

relative probability of occurrence (Eq 1) or abundance (Eq 2).

1 �
ebAbsence

1þ ebAbsence
ð1Þ

ebAbudance

1þ ebAbudance
ð2Þ

Because we modelled presence-absence using a zero-inflated model, positive β coefficients

indicate a negative relationship between lichen occurrence and a variable (i.e. probability of

lichen being absent), and a positive relationship between percent lichen cover and a variable.

We also reported final model results as spatial maps of the predicted mean percent lichen

cover given occurrence (Eq 1 � Eq 2) for landscape conditions in 2017. We evaluated the pre-

dictive ability of final models using mean absolute error (MAE) and root mean square error

(RMSE) calculated from model residuals [94]. MAE is the mean difference between the

observed and predicted percent cover in absolute terms. RMSE can be interpreted as the stan-

dard error in a model’s unexplained variance. Lower values of MAE and RMSE indicate a bet-

ter predictive model.

Simulating lichen abundance across MPB management actions. To evaluate how per-

cent lichen cover may change in the future under different MPB management approaches, we

used the final zero-inflated lichen models to simulate changes. Because the final models for

MPB and Control did not include age since disturbance (see Results), we focused on Cut and

Fire; simulating changes in lichen cover over a forty year period, the maximum age of the strata

sample. We used the final lichen model for each strata and region as our baseline landscape

condition and evaluated the potential effects of timber harvesting and wildfires on lichen cover

into the future by increasing age of the disturbance within models from 0 to 40 years while

holding all other variables at their mean. For Forest, we added 0 to 40 years to the mean stand

age within each region (mean stand age west-central = 119 years, north-western = 97 years).

When simulating changes in percent cover of lichen over time, we held all other spatial vari-

ables constant at their respective means for each region.

Model evaluation and caribou habitat selection

To help evaluate the predictive ability of the lichen cover models, we assessed whether caribou

in west-central Alberta selected for areas predicted to have higher lichen cover. We focused

our analysis on the early and late winter seasons (30 November– 5 February; 6 February– 9

May respectively; see MacNearney et al. [95]) because lichens are an important food resource

during winter [39,40]. We used GPS data collected from 100 caribou collared between 1998

and 2016 in the Redrock Prairie Creek population. We only used GPS collar data with a dilu-

tion of precision (DOP)� 12 for analysis. We rarefied GPS location data to 2-hr intervals
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before building models to account for variable fix rates. We then used mixed effects logistic

regression within ‘lme4’ [96] to build Resource Selection Function (RSF) models. We con-

structed RSFs at the home range scale (i.e., 3rd order, [97]); generating 20 random available

locations for each GPS location within seasonal caribou home ranges defined by a minimum

convex polygon (MCP).

To evaluate the link between caribou habitat selection and lichen, we used a two-step pro-

cess. First, we used Akaike’s information criterion (AIC) [93,98] and a “drop one” approach to

identify a suite of variables related to topography and habitat disturbance to include within a

baseline model explaining caribou habitat selection (Table D in S5 Appendix). These variables

are known to be important predictors of caribou habitat selection in our study area

[95,99,100]. Second, we added the predicted percent lichen cover derived from our zero-

inflated lichen models to the baseline model and used AIC to evaluate performance of the

baseline model with and without percent lichen cover. We present RSF results as Relative

Selection Strength (RSS) and lower and upper 95% confidence intervals (LCL, UCL) of the

predictor variables [101]. RSS greater than one indicated a positive relationship between cari-

bou habitat selection and a variable, whereas RSS less than one indicated a negative relation-

ship between habitat selection and a variable.

We evaluated the ability of the final RSF models to predict caribou habitat selection with k-

fold cross validation where 20% of the data were withheld for testing [102]. We followed the

approach of Boyce et al. [103] and calculated the spearman correlation (rs) between RSF ranked

values and the frequency of used points within ten equal area bins across 100 iterations. For k-

fold cross validation, rs values closer to 1 indicate a model with better predictive ability. We also

calculated the area under the receiver operator curve (AUC) [104] with ‘caret’ [105]; a measure

of model performance [106]. AUC values between 0.7 and 0.8 are considered acceptable dis-

crimination, 0.8 to 0.9 are considered excellent, and above 0.9 is considered outstanding [106].

Results

Mean differences in lichen among sampling strata

Mean percent lichen cover differed across strata (west-central χ2 = 42.3, df = 4, P< 0.001; north-

western χ2 = 33.0, df = 4, P< 0.001; Fig B in S3 Appendix). In west-central, SingleTree andMPB
had lower lichen cover compared to Cut (SingleTree P = 0.008;MPB P< 0.001) and Forest (Sin-
gleTree P = 0.001;MPB P< 0.001). In north-western, Cut andMPB had lower lichen cover rela-

tive to Fire (Cut P< 0.001;MPB P< 0.001) and Forest (Cut P< 0.001;MPB P< 0.001).

Lichen occurrence and abundance

Final zero-inflated model coefficients are presented in Tables 2 and 3. In west-central, the

model for Cut indicated that the probability of lichen occurrence increased in conifer forest

and was highest at intermediate cutblock age (~25 years; Fig C in S3 Appendix). The Cut
model indicated that lichen abundance increased with cutblock age. The model for Fire indi-

cated that the probability of lichen occurrence increased with wildfire age, but that there was

no relationship between wildfire age and lichen abundance. The model for Forest,MPB, and

SingleTree suggested that the probability of lichen occurrence was higher in conifer forest,

decreased with decreasing stand age, and increased with decreasing summer precipitation.

This model also showed that the probability of lichen occurrence was highest when canopy

height was ~9 m (Fig C in S3 Appendix), and that percent lichen cover increased linearly with

increasing stand canopy height. The model for Forest,MPB, and SingleTree also indicated that

the probability of lichen occurrence decreased with increasing percent of mountain pine beetle

killed trees.
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In north-western, the model for Cut indicated that the probability of lichen occurrence

increased at dry sites (i.e., high CTI) within cutblocks and at high elevation. This model also

showed that lichen occurrence and percent cover increased with cutblock age. The model for

Fire suggested that the probability of lichen occurrence increased with wildfire age. The model

for Forest,MPB, and SingleTree indicated that the probability of lichen occurrence decreased

with increasing percent of MPB-killed trees.

In west-central, MAE and RSME pointed to better model fit for the Forest,MPB, and Single-
Treemodel (MAE 1.7%, RSME 1.8%) when compared to Cut (MAE 2.7%, RSME 2.9%) and

Firemodels (MAE 1.8%, RSME 1.9%). In north-western, MAE and RSME indicated better

model fit for Cut (MAE 0.8%, RSME 0.9%), relative to Forest,MPB, and SingleTree (MAE

5.1%, RSME 5.8%) and Fire (MAE 9.2%, RSME 10.4%) models. Based on landscape conditions

in 2017, we found that in west-central, predicted percent lichen cover tended to be higher in

the mountains when compared to the lower elevation foothills (Fig 1; Fig D in S4 Appendix).

Higher elevation was associated with older forest stands with lower canopy heights, and with

areas with higher mean summer precipitation (Fig E in S4 Appendix).

Simulating changes in lichen abundance in timber harvested and burned

areas

In west-central, although Cut and Fire had the lowest initial percent lichen cover, our models

predicted that percent lichen cover in Cut and Fire would exceed percent lichen cover in Forest

Table 2. Lichen occurrence and abundance model coefficients for the west-central study area.

Absence Abundance

Variable β 2.5% 97.5% β 2.5% 97.5%

Cut

Intercept 1.073 0.735 1.423 -2.884 -3.116 -2.658

Lichenscale -2.219 -2.568 -1.888 -0.553 -0.785 -0.317

CutAge -1.177 -1.529 -0.821 0.262 0.031 0.516

Cutage2 2.798 2.099 3.523 - - -

Conifer -0.958 -1.299 -0.622 0.009 -0.140 0.163

Retention - - - -0.158 -3.116 0.281

Fire

Intercept 1.600 1.036 2.229 -2.885 -3.269 -2.524

Lichenscale -0.585 -1.645 0.458 -0.573 -1.285 0.129

FireAge -2.500 -3.429 -1.638 - - -

Forest|MPB|SingleTreea

Intercept 7.393 4.908 9.931 -3.098 -3.274 -2.930

Lichenscale -2.398 -2.618 -2.179 -0.556 -0.732 -0.375

StandAge -1.092 -1.616 -0.569 - - -

Conifer -0.678 -0.924 -0.436 -0.015 -0.157 0.134

CanopyHGT -0.539 -0.822 -0.258 0.477 0.297 0.659

CanopyHGT2 0.554 0.293 0.821 - - -

%MPB 0.387 0.186 0.590 -0.135 -0.318 0.045

Posterior inferences of the coefficients (β, logit scale) of the most parsimonious Bayesian zero-inflated beta distribution model of lichen occurrence and abundance in

west-central Alberta, Canada in 2015 across five management or mountain pine beetle scenarios (Cut, Fire, Forest,MPB, and SingleTree). Mean, 2.5% and 97.5%

posterior β predictive values are shown. Variables are explained in S2 Appendix and strata are explained in Table 1.
athe SingleTree (ctrl) variable was removed from the final model during model selection.

https://doi.org/10.1371/journal.pone.0232248.t002
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within forty years (Fig 2). In north-western, Cut had the lowest initial percent lichen cover and

Fire had the highest initial percent lichen cover, and our models predicted that percent lichen

cover would remain relatively stable over time (Fig 2).

Caribou habitat selection and lichen abundance

During early winter, the baseline RSF included elevation, cutblocks, seismic lines, and winter

roads, while during late winter, the baseline RSF included cutblocks, seismic lines, and roads.

During early and late winter, adding percent lichen cover to the baseline model improved

model AIC, fit, and predictive ability (Table 4). The combined base and lichen model indicated

that caribou selected areas with higher predicted lichen cover during early (RSS 1.58, LCL

1.57, UCL 1.60) and late winter (RSS 1.63, LCL 1.62, UCL 1.64]. Complete model parameters

are in Table E in S5 Appendix.

Discussion

Landscape management that aims to balance resource extraction and species conservation is

complex. Our study evaluated the potential impact of MPB and MPB management on an

important winter food resource of threatened caribou. Overall, we found little effect of single-

tree MPB cut-and-burn control or standing dead MPB killed trees on terrestrial lichen cover

in western Alberta, at least in the eight years after infestation. We did find that timber har-

vested areas and wildfires had lower lichen cover compared to forests that have not been dis-

turbed, but lichen cover increased with age of timber harvest and wildfire. Our results suggest

that in areas where caribou and MPB overlap, single tree cut-and-burn control or leaving

infested forest stands as-is may be the preferred management approach. By evaluating the

Table 3. Lichen occurrence and abundance model coefficients for the north-western study area.

Absence Abundance

Variable β 2.5% 97.5% β 2.5% 97.5%

Cut

Intercept 1.078 0.795 1.372 -3.857 -4.046 -3.671

CutAge -1.297 -1.824 -0.784 0.320 0.023 0.618

DEM -1.781 -2.959 -0.715 - - -

cti -1.218 -1.885 -0.548 - - -

Fire

Intercept -0.022 -0.246 0.203 -2.259 -2.582 -1.958

FireAge -0.419 -0.835 0.000 - - -

DEM 0.264 -0.211 0.758 - - -

cti -0.199 -0.656 0.269 - - -

Forest|MPB|SingleTreea

Intercept 0.538 0.345 0.727 -2.578 -2.875 -2.308

StandAge - - - 0.114 -0.351 0.568

SolarRad - - - -0.214 -0.638 0.220

%MPB 1.283 0.854 1.726 - - -

Posterior inferences of the coefficients (β, logit scale) of the most parsimonious Bayesian zero-inflated beta distribution model of lichen occurrence and abundance in

north-western Alberta, Canada in 2015 across five management or mountain pine beetle scenarios (Cut, Fire, Forest,MPB, and SingleTree). Mean, 2.5% and 97.5%

posterior β predictive values are shown. Variables are explained in Table B in S2 Appendix and strata are explained in Table 1.
athe SingleTree (ctrl) variable was removed from the final model during model selection.

https://doi.org/10.1371/journal.pone.0232248.t003

PLOS ONE Mountain pine beetle and the caribou conservation dilemma

PLOS ONE | https://doi.org/10.1371/journal.pone.0232248 April 30, 2020 9 / 19

https://doi.org/10.1371/journal.pone.0232248.t003
https://doi.org/10.1371/journal.pone.0232248


impacts of management actions, the results of this study help to mitigate the unintended con-

sequences of MPB management on caribou where MPB and caribou co-occur.

Our study linking lichen cover to MPB kill and MPB control showed that although lichen

abundance was not affected by MPB-killed trees, age of MPB, and MPB control, lichens were

less likely to occur in areas with more MPB-killed trees. It is possible that we did not detect an

effect of MPB control on lichen cover because cut-and-burn crews operate on foot and during

winter, therefore limiting ground disturbances that would damage terrestrial lichen. Even for-

ests timber harvested by mechanized equipment in winter retain high cover of terrestrial

lichen, at least in the short term [107]. However, our findings may also be an artifact of the age

of the MPB infestation in Alberta because eight years may not be sufficient to detect any appre-

ciable change in slow-growing species such as lichen. Similar research in British Columbia

only detected a decrease in lichen cover 10 to 15 years after the initial MPB infestation [108]. It

is also possible that the impacts of MPB and MPB control may be more apparent with faster

growing understory species like shrubs and forbs [109]. Continuing to assess the availability of

lichen in MPB infested and controlled stands at later stages of infestation (> 8 years) would

provide additional information to guide forest management decisions.

Fig 1. Map of predicted terrestrial lichen cover. Predicted terrestrial lichen cover (Cetraria spp., Cladina spp., Cladonia spp. and

Flavocetraria spp.) in west-central and north-western Alberta, Canada, mapped using landscape conditions in 2017. Blank areas within

caribou range in west-central denote rock and ice covered mountain tops.

https://doi.org/10.1371/journal.pone.0232248.g001
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If we consider alternate MPB management actions, which are timber harvesting and wild-

fire, our research showed that there was less lichen cover initially in timber harvested and

burned areas, but that lichen increased with age. These findings are in line with previous

research [110,111], because timber harvested areas generally have more terrestrial lichen cover

than fire-origin stands of the same age [112–114]–with low lichen cover after timber

Fig 2. Simulated terrestrial lichen cover under different management actions. Lichen cover simulated over forty years using the zero-

inflated lichen models in west-central and north-western Alberta, Canada. Cut and Fire simulations assumed that the disturbances were

created at year zero (2017), whereas for the Forest strata simulations the stand age at year zero was the mean stand age in each study area

(west-central = 119 years, north-western = 97 years).

https://doi.org/10.1371/journal.pone.0232248.g002

Table 4. RSF model comparison between the baseline and lichen models.

Season Model ΔAIC rs [LCL—UCL] AUC [LCL—UCL]

Early Winter Lichen 0 0.95 [0.95–0.96] 0.60 [0.59–0.61]

Baseline 3942 0.93 [0.92–0.93] 0.58 [0.57–0.58]

Late Winter Lichen 0 0.99 [0.98–0.99] 0.63 [0.62–0.64]

Baseline 13387 0.97 [0.97–0.98] 0.54 [0.53–0.55]

Comparison of lichen and baseline RSF models for Redrock-Prairie Creek caribou in west-central Alberta, Canada,

between 1998 and 2016, based on Akaike information criterion (AIC), mean spearman correlation coefficient (rs),

and area under the receiver operator curve (AUC) with lower (LCL) and upper (UCL) 95% confidence intervals. The

rs and AUC were averaged over 100 iterations of a k-fold cross validation, where 20% of the data were withheld for

testing.

https://doi.org/10.1371/journal.pone.0232248.t004
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harvesting [107]. Lichen cover can remain low in timber harvested stands until they reach 30

years old, with the highest lichen abundance occurring in stands between 50 and 100 years old

[113]. Our results and simulations for the north-western region support this pattern of higher

lichen cover in burned areas and a slight increase in lichen cover over time. However, in the

west-central region, lichen cover in timber harvested areas was slightly higher than lichen

cover in burned areas. These regional differences in lichen cover may be driven by differences

in local environmental conditions with the north-western region having flat topography and

wet conditions relative to the west-central region.

Indeed, even within regions, we found that lichen cover was higher within older, higher ele-

vation, drier mature forests with low-to intermediate canopy heights. The association between

lichens, stand age, and stand height was expected because lichens are slow to establish and

grow, and they typically reach a peak in abundance within forests with moderate canopy cover

and age [115–117]. Forests with more enclosed canopy, humidity, and reduced light transmis-

sion to the forest floor are often dominated by mosses [108,113]. We found that lichen cover

increased with elevation in the west-central region, consistent with the transition from foot-

hills forests to subalpine areas [58]. In the subalpine, the long 110 to 162 year fire interval

[118,119], and harsh climatic conditions [58], likely promote high percent lichen cover by

allowing for very old forest stands (i.e., > 300 years), while still maintaining the short-open

canopy that lichen thrive in [120]. Our study showed that quantifying relationships between

forest attributes and percent lichen cover could help identify forest stands with more abundant

winter forage for caribou.

Our habitat selection analysis helped to support the lichen cover models because caribou

were more likely to select areas predicted to have greater lichen cover. Other studies that have

considered caribou food availability with broad scale habitat characteristics within models

have found similar links between caribou and lichen [121–123]. The purpose of the habitat

selection analysis herein was to simply evaluate the predictive ability of the lichen cover mod-

els. Concluding that lichen cover is the main driver of caribou distribution in west-central

Alberta would require a comprehensive comparison of caribou habitat selection relative to

lichen cover and competing habitat variables such as terrain, land cover, and predation risk

[59,100].

If the ultimate goal of forest management associated with MPB were to retain caribou food

supply, then our results would suggest that despite short-term reductions in caribou forage,

using timber harvesting and prescribed fire to control MPB could balance management needs

and caribou food supply over time. However, we would caution against such an approach

because timber harvesting and prescribed fires could have long-term population-level effects

on caribou by reducing available caribou habitat [59,123,124], increasing predation risk

[45,125,126], and contributing to population declines [36,127]. To address this uncertainty,

future studies should expand upon our examination of MPB management actions and caribou

food supply by exploring how different MPB management actions change caribou predation

risk, especially because unsustainably high predation rates is the primary cause of caribou pop-

ulation declines [128–130].

Conclusions

We evaluated the potential impacts of managing an invasive forest pest on a species-at-risk.

Overall, we found limited evidence that MPB killed trees impact lichen cover. However, our

study was restricted to eight years after infestation and management, and further impacts may

emerge over time. Leaving MPB killed forest as-is could benefit caribou conservation but this

would need to be evaluated against the potential for increased wildfire risk and need to be
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balanced with socio-economic considerations [131]. Of the four MPB management actions

that we evaluated, the MPB cut-and-burn control program appears to balance the need to limit

the spread of mountain pine beetle and negative impacts of MPB and MPB management on

caribou food. Our work helps address the challenge of managing forests under competing eco-

logical values, specifically species-at-risk conservation versus invasive species control. When

developing management strategies across the boreal forest, understanding potential unin-

tended consequences of management actions on non-target species can improve conservation

planning in a changing landscape.
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