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Blast-induced traumatic brain injury (bTBI) is one of the major causes of persistent

disabilities in Service Members, and a history of bTBI has been identified as a primary risk

factor for developing age-associated neurodegenerative diseases. Clinical observations

of several military blast casualties have revealed a rapid age-related loss of white matter

integrity in the brain. In the present study, we have tested the effect of single and tightly

coupled repeated blasts on cellular senescence in the rat brain. Isoflurane-anesthetized

rats were exposed to either a single or 2 closely coupled blasts in an advanced blast

simulator. Rats were euthanized and brains were collected at 24 h, 1 month and 1 year

post-blast to determine senescence-associated-β-galactosidase (SA-β-gal) activity in the

cells using senescence marker stain. Single and repeated blast exposures resulted in

significantly increased senescencemarker staining in several neuroanatomical structures,

including cortex, auditory cortex, dorsal lateral thalamic nucleus, geniculate nucleus,

superior colliculus, ventral thalamic nucleus and hippocampus. In general, the increases

in SA-β-gal activity were more pronounced at 1 month than at 24 h or 1 year post-blast

and were also greater after repeated than single blast exposures. Real-time quantitative

RT-PCR analysis revealed decreased levels of mRNA for senescence marker protein-30

(SMP-30) and increased mRNA levels for p21 (cyclin dependent kinase inhibitor 1A,

CDKN1A), two other related protein markers of cellular senescence. The increased

senescence observed in some of these affected brain structures may be implicated in

several long-term sequelae after exposure to blast, including memory disruptions and

impairments in movement, auditory and ocular functions.
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INTRODUCTION

The incidence of blast-induced traumatic brain injury (bTBI) in the military increased significantly
after the introduction of improvised explosive devices, with recent reports that 80% of mild TBI
cases are related to blast exposure (1). The symptoms of mild TBI include headache, dizziness,
fatigue, fogginess, as well as impairments in cognitive, vestibular, oculomotor, and psychological
functions (2–5). Blast exposure is also known to cause acute and chronic neurobehavioral
abnormalities whose severities increase with greater blast intensity (overpressure) and number of
blast exposures. The acute effects of mild TBI resulting from explosive blast typically resolve within
1 to 3 weeks, but chronic symptoms of TBI develop in 15 to 30% of the cases (3, 6).
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Both clinical and pre-clinical observations have prompted
suggestions that bTBI yields a predisposition to age-related
neurodegenerative disorders (7–12). Neuropathological
evaluations in blast victims and in mice exposed to blast
revealed that blast exposure promotes chronic traumatic
encephalopathy (12). Acute and chronic development of
tauopathy has been reported after blast exposure (8, 13), in
which the phosphorylation of Tau protein disrupts microtubule
assembly in neurons yielding tauopathy characterized by the
formation of neurofibrillary tangles seen in neurodegenerative
disorders such as Alzheimer’s disease (AD) (14–16). Brain injury
has been proposed as a factor enhancing the likelihood of early
onset or acceleration of AD (9, 17). Although the neuropathology
of AD is associated with aging, no studies have yet definitively
illustrated whether brain injury after blast exposure accelerate
the aging process.

Blast exposure has been reported to cause chronic white
matter abnormalities which are associated with long-term
memory impairments (18, 19). Initial clinical observations using
diffusion tensor imaging to evaluate military victims of blast
revealed a rapid age-related loss of white matter integrity in the
brain, and the severity of the changes increased with number of
exposures (19). In a concurrent study, loss of myelin integrity was
similarly observed in primary blast casualties with and without
mild TBI symptoms (18). Even though it is known that white
matter integrity declines with aging, no further studies were
carried out to determine whether the aging of brain cells after
blast was associated with loss of white matter integrity.

Senescence-associated β-galactosidase (SA-β-gal) is a
lysosomal enzyme expressed only in cells undergoing senescence
processes and it is not normally expressed in presenescent,
quiescent or immortal cells. It hydrolyzes β-galactosides to
monosaccharides and the enzyme is active even at acidic pH
(6.0). SA-β-gal activity has been widely used as a reliable marker
of cellular senescence in brain (20–22) and other organs (23, 24).
In the present study, using an advanced blast simulator (ABS)
to expose animals to single and tightly coupled repeated blasts,
we have carried out postmortem evaluation of SA-β-gal activity
in different anatomical regions of the brain at various time
points up to 1 year post-blast exposures to determine whether
blast exposure accelerate cellular senescence, an indicator of
aging processes.

MATERIALS AND METHODS

Animals
All animal experiments were conducted in accordance with the
Animal Welfare Act and other federal statutes and regulations
relating to animals and experiments involving animals, and
adhered to principles stated in the Guide for the Care and Use
of Laboratory Animals (NRC Publication 2011 edition) using
an Institutional Animal Care and Use Committee approved
protocol. Male Sprague Dawley rats, 9–10 weeks old that weighed
300–350 g (Charles River Laboratories, Wilmington, MA) were
housed at 20–22◦C (12 h light/dark cycle). Rats were given free
access to nutritious rat chow (Prolab IsoPro RMH 3000 from

LabDiet, St. Louis, MO) and water ad libitum till 1 month after
the blast exposure, when they reached a body weight of 400–
450 g. We restricted diet for all rats including sham controls after
1 month so that the weight of the rats maintained between 450
and 500 g until the completion of the study (1 year). Body weights
were recorded 3 days a week and adjustments were made in
the quantity of diet to maintain body weights within this range.
This diet restriction was required since, although not reported
here, these animals underwent neurobehavioral functional tests
reported by us elsewhere (25) and the weight gain otherwise
resulting from feeding ad libitum adversely impacts performance
on the neurobehavioral tests.

Primary Blast Exposure
The ABS described previously was used for the study (25, 26). For
blast exposure, the rats were anesthetized with 4% isoflurane for
8min and secured in a longitudinal (i.e., rat facing the oncoming
shockwave) prone orientation in the test section of the ABS. To
produce moderate TBI in rats in these experiments, we used
Valmaxmembranes yielding peak positive static pressures of∼19
psi with a positive phase duration of 4–5ms. For tightly coupled
repeated blast exposures, the rats were exposed to two 19 psi blast
overpressure waves separated by 2min as described earlier (25).
The sham control rats were handles and exposed to 4% isoflurane
anesthesia for 8min, but were not subjected to blast exposure.
After blast exposure, the rats were euthanized at 24 h, 1 month,
or 1 year.

Senescence Marker Staining
In order to determine whether blast exposure increases brain
aging, we used senescence detection kits (BioVision, Milpitas,
CA) according to the manufacturer’s instructions. The kit
stains only cells expressing senescence-associated β-galactosidase
(SA-β-gal) enzyme and won’t stain presenescent, quiescent or
immortal cells. Briefly, at each time point after blast exposure,
the animals were anesthetized by inhalationally administering
5 % isoflurane for 6min and then were transcardially perfused
first with normal saline followed by 4% paraformaldehyde. The
brains were collected and post-fixed in 4% paraformaldehyde for
6 h followed by cryopreservation using 20% sucrose immersion
overnight and finally stored in 30% sucrose. For tissue staining
using the kit, 30µm coronal brain sections were prepared using
a cryostat. The sections were incubated overnight at 37◦C with
the senescence detection reagent. The sections weremounted and
mosaic (12 × 14) pictures of different brain regions were taken
using an Olympus BX61 microscope (Olympus Corporation,
Center Valley, PA) and Stereo Investigator virtual image tool
(MBF Biosciences, Williston, VT). The blue color developed
inside the cells, which is a measure of SA-β-gal enzyme activity,
was used for quantitation using densitometry. The densitometry
analysis, to measure the density of blue coloration developed due
to SA-β-gal enzyme activity, was performed using the Image-Pro
Premier software (Media Cybernetics Inc., Rockville, MD). For
densitometry measurements, those cells stained intensely were
included and those cells that showed<50% of maximum staining
intensity were excluded. A total of 6 shams, 5 single blast exposed,
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and 4 repeated blast exposed rats were used at each time point for
senescence staining.

Quantitative Real-Time Polymerase Chain
Reaction (qRT-PCR)
The differential expressions of senescence marker protein-
30 (SMP-30) and p21 (cyclin dependent kinase inhibitor 1A,
CDKN1A) were determined in the brain cortex at 1 month post-
blast using qRT-PCR. We selected the 1 month time point since
the activity of SA-β-gal was the highest compared to 24 h and
1 year. We chose brain cortex for these measurements since
among brain regions the activity of SA-β-gal was greatest in
the cortex at both 24 h and 1 month after single and repeated
blast exposures. Total RNA was extracted from the brain cortex
using the RNeasy mini kit (Qiagen, Germantown, MD). Equal
amounts of RNA were reverse transcribed into cDNA using
RT2 first strand kit (Qiagen, Germantown, MD). qRT-PCR
was performed using the RT2 SYBR green reagents in the
QuantStudio 6 Flex qPCR system (Life Technologies, Grand
Island, NY) using the proprietary primers from Qiagen (SMP-
30, Cat. No: PPR44609A; p21, Cat. No: PPR06378B; β-actin, Cat.
No: PPR06570C), and β-actin was used as an internal control.
The relative gene expression was analyzed using the threshold
cycle 2−11Ct method. A total of 6 rats per group were used for
analysis and the results are presented as fold changes compared
to control groups.

Statistical Analysis
Statistical analysis was carried out by Two-way Analysis of
Variance followed by Tukey’s post-hoc test using HSD multiple
comparisons (GraphPad Prism 6 software). The density values of
the blue stain were expressed as mean ± standard error of the
mean (SEM). For each time point, the density values of all three
treatment groups were compared to each other. A p < 0.05 was
considered significant.

RESULTS

Blast Exposure Increased the Activity of
SA-β-gal in Different Regions of the Brain
Cortex
In the cerebral cortex, significantly increased activity of SA-β-
gal was observed at 24 h and 1 month after single and repeated
blast exposures compared to sham controls (Figure 1). No
statistically significant differences were observed between single
and repeated blast exposed rats at any of the three time points
evaluated. Compared to 24 h assessment, all the rats including
sham controls showed increased activity of SA-β-gal at 1 month,
but showed activity levels returning to those seen at 24 h by
1 year.

Auditory Cortex
Compared to sham controls, rats exposed to single and repeated
blasts showed increased activity of SA-β-gal in the auditory cortex
at 1 month post-blast (Figure 2). In all the rats, including sham
controls, the maximum activity of SA-β-gal was observed at 1
month. No significant differences were observed between the
single and repeated blast exposed groups.

Dorsolateral Thalamus
Compared to sham controls, rats exposed to single and repeated
blasts showed a statistically significant increase in the activity of
SA-β-gal in the dorsolateral thalamus at 1 month and a trend
toward increased activity at other times evaluated (Figure 3). At
no timewere statistically significant differences observed between
the single and repeated blast treatment groups, and sham control
rats showed a sustained increase in SA-β-gal activity across the
observation times.

Superior Colliculus
SA-β-gal activity in the superior colliculus of sham controls
showed a sustained decrease from 24 h to 1 year (Figure 4).
Compared to sham controls, rats exposed to single and repeated

FIGURE 1 | Activity of SA-β-gal in the motor cortex at different intervals post-blast exposures. Density values are expressed as mean ± SEM. Values of all three

groups were compared to each other at each time point for statistical significant differences. *Blast exposed groups at each time point were compared to

corresponding sham controls (*p < 0.05; **p < 0.01; n = 4–6).
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FIGURE 2 | SA-β-gal activity in the auditory cortex at different intervals post-blast exposures. Density values are expressed as mean ± SEM. Values of all three groups

were compared to each other at each time point for statistical significance. *Blast exposed groups at each time point were compared to corresponding sham controls

(*p < 0.05; **p < 0.01; n = 4–6).

FIGURE 3 | Dorsolateral thalamus showing the differential activity of SA-β-gal at different intervals post-blast exposures. Density values are expressed as mean ±

SEM. Values of all three groups were compared to each other at each time point for statistical significance. *Blast exposed groups at each time point were compared

to corresponding sham controls (*p < 0.05; n = 4–6).

blasts showed a statistically significant increase in the activity of
SA-β-gal in the superior colliculus at 1 month and a trend toward
increased activity at other time points evaluated (Figure 4). No
statistically significant differences were observed between the
single and repeated blast treatment groups at any time.

Geniculate Nucleus
Compared to sham controls, rats exposed to single and repeated
blasts showed a statistically significant increase in the activity of
SA-β-gal in the superior colliculus at 1 year and a trend toward
increased activity at other time points evaluated (Figure 5).
Once again, no statistically significant differences were observed
between single and repeated blast exposed animals. Compared
to 24 h measurements, sham control animals showed an upward
trend in the activity of SA-β-gal at 1 month which by 1 year
returned back below the 24 h levels.

Ventral Thalamic Nucleus
Compared to sham treatment, activity of SA-β-gal in the ventral
thalamic nucleus was significantly increased at all the three time
points evaluated after repeated blast exposures (Figure 6). In the
case of single blast exposed group, statistically significant increase
in SA-β-gal was observed at 1 month and 1 year compared to
sham controls (Figure 6). Once again, no statistically significant
differences were observed between single and repeated blast
exposed groups at all three evaluation times and the maximum
activity of SA-β-gal was observed in the ventral thalamic nucleus
of sham animals at 1 month.

Hippocampus
Single and repeated blast exposures significantly increased the
activity of SA-β-gal in the hippocampus at 1 month and 1 year
post-blast (Figure 7) and no statistically significant differences

Frontiers in Neurology | www.frontiersin.org 4 May 2020 | Volume 11 | Article 438

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Arun et al. Blast Exposure Promote Cellular Senescence

FIGURE 4 | Activity of SA-β-gal in the superior colliculus at different intervals post-blast exposures. Density values are expressed as mean ± SEM. Values of all three

groups were compared to each other at each time point for statistical significance. *Blast exposed groups at each time point were compared to corresponding sham

controls (*p < 0.05; n = 4–6).

FIGURE 5 | Geniculate nucleus showing the differential activity of SA-β-gal at different intervals post-blast exposures. Density values are expressed as mean ± SEM.

Values of all three groups were compared to each other at each time point for statistical significance. *Blast exposed groups at each time point were compared to

corresponding sham controls (*p < 0.05; n = 4–6).

were observed between single and repeated blast exposure
groups. As was seen in other brain regions, the hippocampus
again showed maximum activity of SA-β-gal at 1 month.

Blast Exposure Leads to Differential
Expression of Both SMP-30 and p21
mRNAs in the Cerebral Cortex
Evaluation of the cerebral cortex tissue using qRT-PCR analysis
revealed differential expression of both SMP-30 and p21 mRNAs
at 1 month after repeated blast exposures (Figure 8). The mRNA
levels of SMP-30 were decreased and p21 mRNA increased
significantly in the cortex at 1 month after repeated blast
exposures. In rats exposed to a single blast, the mRNA levels
of p21 increased significantly, whereas those of SMP-30 did not
significantly decrease, although the levels were generally lower

than in shams. Neither mRNA was expressed differently between
single and repeated blast exposed groups.

DISCUSSION

The results of this preclinical study support previous indirect
clinical observations and speculations that blast exposure may
accelerate brain aging processes (18, 19). Those clinical findings
focused on the integrity of white matter, which is known to
diminish with age, whereas our preclinical evaluation was mostly
on gray matter regions. Using diffusion tensor imaging (DTI),
a large number of military service members were evaluated
to determine whether blast exposure affected the integrity
of brain white matter (19). The diffusion contrast measures,
fractional anisotropy and radial diffusivity, showed that white
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FIGURE 6 | SA-β-gal activity in the ventral thalamic nucleus at different intervals post-blast exposures. Density values are expressed as mean ± SEM. Values of all

three groups were compared to each other at each time point for statistical significance. *Blast exposed groups at each time point were compared to corresponding

sham controls (*p < 0.05; n = 4–6).

FIGURE 7 | Activity of SA-β-gal in the hippocampus at different intervals post-blast exposures. Density values are expressed as mean ± SEM. Values of all three

groups were compared to each other at each time point for statistical significance. *Blast exposed groups at each time point were compared to corresponding sham

controls (*p < 0.05; n = 4–6).

matter integrity in blast-exposed veterans and pre-deployed
service members was significantly lower than was recorded
in military personnel without a history of blast exposure,
and further suggested that the degree of the loss of white
matter integrity was directly proportional to the severity and
number of blast exposures (19). Loss of myelin integrity after
primary blast exposure in victims with and without mild
TBI symptoms was similarly described in a concurrent study
employing DTI and comparing the same diffusion contrast
measures, fractional anisotropy and radial diffusivity (18). In
that report, all blast exposed victims had decreased fractional
anisotropy and increased radial diffusivity irrespective of having
mild TBI symptoms, suggesting that primary blast exposure
affects the integrity of myelin and may thereby accelerate brain
aging processes. Their results also suggest that the absence of

clear TBI symptoms following primary blast may not accurately
reflect or predict the severity of underlying brain injury. Even
though it is known that loss of white matter integrity occurs with
aging, no further studies have connected cellular aging processes
with loss of white matter integrity after primary blast exposure.
In the present study, using an advanced blast simulator (ABS) to
expose animals to single and tightly coupled repeated blasts, we
have carried out postmortem evaluations of various brain regions
at different time points up to 1 year post-blast exposures and
have shown that blast exposure accelerates cellular senescence,
an indicator of aging processes, in different parts of the brain.

Our data showed that blast exposure, especially repeated
blast exposure, significantly increased the activity of SA-β-gal in
different regions of the rat brain in a time dependent manner
(Figures 1–7). We did not observe uniformly increased activity
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FIGURE 8 | Differential expression of SMP-30 and p21 mRNAs in the cerebral cortex at 1 month post-blast exposures. Values of the blast exposed groups are

expressed as mean ± SEM. Fold changes in the expressions of mRNAs of blast exposed groups were compared to those of sham controls (*p < 0.05; n = 6).

of SA-β-gal throughout the brain; rather, changes were restricted
to several specific regions of the brain and occurred at different
times post-injury. Here, we have shown only those brain regions
that showed a significant increase in the activity of SA-β-gal after
blast exposure. In most of the brain regions evaluated, sham
control rats showed an increase in the activity of SA-β-gal at 1
month compared to that measured at 24 h, possibly reflecting
a normal increase in cellular senescence with age. However,
compared to the 1 month measurements, the activity of SA-β-
gal in sham controls decreased at 1 year and was comparable to
that recorded at 24 h in multiple brain regions with the exception
of the dorsolateral thalamus, which showed a continued increase,
and the superior colliculus, which showed a sustained decrease
from 24 h to 1 year. As described in the methods, diet restriction
was initiated at 1 month and was continued through 1 year to
prevent weight gain during that time and allow neurobehavioral
assessments to be performed (25). Since diet/calorie restriction
has been shown to inhibit cellular senescence in pre-clinical and
clinical studies (27, 28), it is quite possible that the decrease
in cellular senescence in some of the brain regions at 1 year
compared to 1 month or 24 h was due to the diet restriction.
The decreased activity of SA-β-gal at 1 year could also possibly
be due to the removal of senescent cells, by the immune system.
Cells undergoing senescence are reported to display a pro-
inflammatory phenotype and the immune system typically clears
such cells (29, 30). It is also possible that the initiation and
progression of cellular senescence in the dorsolateral thalamus
and superior colliculus could simply differ in timing and scope
from that occurring in the other brain regions evaluated.

Significant increases in the activity of SA-β-gal were observed
at 24 h and 1 month post-blast in the cerebral cortex and ventral
thalamic nucleus. These findings are potentially important in
view of the observation that victims of blast exposure often
suffer from significant movement and balance dysfunctions
(31, 32). In uninjured individuals, movement and balance
functions deteriorate with aging and if blast exposure hastens

the senescence of cells in these brain regions, it may account
at least in part for hastened and worsened balance problems
observed among blast casualties (32). Cerebral cortex is one
of the frequently evaluated brain regions after blast exposure,
but not much information is available on the effect of blast
exposure on the ventral thalamic nucleus. Single and repeated
blast exposures have been shown to cause blood-brain barrier
disruption, oxidative stress, pro-inflammatory processes, and
phosphorylation of tau proteins in the cerebral cortex (12, 33–
35). Inflammation and oxidative stress are known to be associated
with cellular senescence (36, 37).

We have observed increased activity of SA-β-gal in the
dorsolateral thalamic nucleus, geniculate and superior colliculus
suggesting that senescence process is accelerated in those brain
regions after blast exposure. All three of these brain regions
play critical roles in the processing of visual signals in the
brain; consequently, it is possible that accelerated cellular
senescence in these neuroanatomical structures might promote
early deterioration of vision. Preclinical studies have shown that
blast exposure leads to axonal fiber degeneration in the superior
colliculus and geniculate resulting in ocular dysfunctions (38, 39).
Exposure to blast waves has been implicated as the major cause
of visual dysfunction in veterans involved in combat operations,
with deficits being primarily attributed to ocular injury (40, 41).
Perturbation of brain visual signal processing centers by shock
waves also contribute to these deficits (2, 42–44). A long-term
study carried out in patients with blast-inducedmild TBI without
immediate eye injuries revealed that 68% nevertheless had visual
dysfunctions, confirming the prominent role of injuries to these
structures (43).

Large numbers of cells in the auditory cortex showed
increased SA-β-gal activity at 1 month after single and repeated
blast exposures, although immediate changes observed at day 1
post-blast were modest. Since the auditory cortex is the most
important brain region involved in auditory signal processing,
the rapid cellular senescence in this brain region may have
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implications concerning the chronic auditory dysfunctions that
are widely seen after blast exposures. Preclinical studies have
shown acute and chronic neuronal degeneration in the auditory
cortex after blast exposure (45). Electrophysiological evaluations
of the auditory cortex after blast exposure showed spontaneous
firing of neurons up to 3 months post-blast indicative of blast-
induced tinnitus (46). Blast-induced auditory dysfunctions are
considered as the most prevalent disabilities resulting from
Operation Iraqi Freedom andOperation Enduring Freedom (47),
with up to 62% of blast injured patients exhibiting hearing loss
and tinnitus (48). Hoffer et al. evaluated US Marines with mild
traumatic brain injuries (mTBI) from combat-related blasts and
found that prevalence of hearing loss was 33% in acute patients
and 49% in chronic patients (32). In many victims of blast
exposure, severe auditory dysfunctions occur despite an intact
tympanic membrane, suggesting that hearing loss can result from
both inner ear injury and central auditory processing defects
(CAPD) (47). It is notable that SA-β-gal activity in auditory
cortex was increased by exposure to blast, but it is presently
unclear what if any role this might play in chronic CAPD.

The hippocampus is widely studied after blast exposure since
it is the vital neuroanatomical structure in the brain involved
in short and long-term memory signal processing. Oxidative
stress, neuroinflammation, phosphorylation of tau protein and
axonal degenerationwere reported in the hippocampus after blast
exposure (41, 49–52). The significantly increased activity of SA-
β-gal in the hippocampus at 1 month and 1 year after single
and repeated blast exposures in the present study is noteworthy
in view of the fact that blast exposed victims experience short
and long-term memory problems (53–57) and acute and chronic
memory deficits have been reported in a number of different
animal models of blast TBI (58, 59). In particular, it has been
shown that casualties as a result of exposures to blast within a
10 meter radius will likely develop memory problems in the later
stages of life (60).

Although the increase in the activity of SA-β-gal is a reliable
marker of cellular senescence, it was necessary to examine a few
other known indicators of cellular senescence to rule out the
possibility that blast exposure is only increasing the activity of
SA-β-gal and not leading to the senescence process. The qRT-
PCR results obtained in the cerebral cortex at 1month after single
and repeated blast exposures are consistent with the increased
activity of SA-β-gal observed in the cortex at 1 month, suggesting
that the increased activity of SA-β-gal after blast exposure is
associated with cellular senescence. The expression of p21 is
widely used as a marker of senescence in combination with the
activity of SA-β-gal (61–63). The increased expression of p21 in
the cells undergoing senescence leads to cell-cycle arrest through
inhibition of cyclin-dependent kinases. Upregulation of the p21
pathway of cellular senescence in human neuroblastoma cells has
been shown to trigger cellular senescence and accumulation of α-
synuclein, the protein that accumulates in the brain of patients
with Parkinson’s disease (64). Compared to p21, only very few
studies have applied SMP-30 as a marker of senescence along
with SA-β-gal (65, 66). SMP-30 protein expression is known
to decrease in the cells with age (67, 68). The combination
of decreased mRNA levels of SMP-30 and increased mRNA
levels of p21 along with increased activity of SA-β-gal protein

in the cerebral cortex at 1 month after repeated blast exposures
strongly suggest that the affected cells are undergoing accelerated
senescence process after blast exposures. It is presently unclear
from these measurements whether neurons or glial cells or
both are undergoing senescence; further studies are required to
distinguish specific cell type(s) undergoing senescence in this and
other regions of the brain after blast exposure.

Increased senescence after brain injury has been reported
previously in other experimental animal models (21, 69). In a
very recent study, brain injury resulting from controlled cortical
impact (CCI) in mice caused increased activity of SA-β-gal in
the ipsilateral cerebral hemisphere on days 4, 7, and 14 with a
maximum increase on the 7th day, along with significant changes
on the contralateral side as well (21). Significantly increased
expression of p21 was observed in both neurons and microglia
in the ipsilateral side on days 1, 4, and 14, indicating that both
neurons and microglia might be undergoing senescence (21). In
addition, increased expression of p16, another known marker of
senescence, was observed in astrocytes in the ipsilateral cerebrum
on days 1, 4, and 14, prompting the suggestion that astrocytes
also may be undergoing accelerated senescence after injury (21).
Another recent study using CCI in mice showed that several
markers of senescence, including p21 and p16, were increased in
microglia at 72 h after the injury, providing additional indications
that accelerated senescence after brain injury is not limited to
neurons (69). Both of these studies included evaluations only at
acute and subacute times after brain injury and were limited to
observations mostly in the injured hemisphere. In the present
study, we have greatly expanded this timeline and have observed
indications of accelerated cellular senescence through 1 year
following single and repeated blast exposures. Further studies are
now warranted and required to determine the specific cell types
undergoing the accelerated senescence process and to discern the
mechanisms triggering cellular senescence after blast exposure.
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