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In humans, the incidence of congenital defects of the intraembryonic celom and its
associated structures has increased over recent decades. Surgical treatment of
abdominal and diaphragmatic malformations resulting in congenital hernia requires
deep knowledge of ventral body closure and the separation of the primary body
cavities during embryogenesis. The correct development of both structures requires
the coordinated and fine-tuned synergy of different anlagen, including a set of
molecules governing those processes. They have mainly been investigated in a range
of vertebrate species (e.g., mouse, birds, and fish), but studies of embryogenesis in
humans are rather rare because samples are seldom available. Therefore, we have to
deal with a large body of conflicting data concerning the formation of the abdominal
wall and the etiology of diaphragmatic defects. This review summarizes the current
state of knowledge and focuses on the histological and molecular events leading to
the establishment of the abdominal and thoracic cavities in several vertebrate species.
In chronological order, we start with the onset of gastrulation, continue with the
establishment of the three-dimensional body shape, and end with the partition of body
cavities. We also discuss well-known human etiologies.
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CONTRIBUTION TO THE FIELD
STATEMENT

Malformations of the abdominal wall and the cavities have
become increasingly frequent in everyday life of specialized
surgeons, but our knowledge of the pathomechanisms are still
incomplete.

To set adequate interventions deep and fundamental
knowledge about the organogenesis is required. This review
reflects the essential steps of body wall and cavities formation
starting with the establishment of the bilaminar disc and its
further course of establishment of the body axis and three-
dimensional patterning of the embryo. Major key genes, their
influence in these processes as well as of the result when they
are interrupted by intrinsic and extrinsic factors are
mentioned. Furthermore, the connex between individual steps
in embryogenesis and associated malformation are highlighted
with special focus on the current state of knowledge and with
special reference to recent studies on the subject. Studies on
animal models were also included, as they represent an
intrinsically important link and basis for understanding
human embryology, however, we also pointed out the
differences with human development.

This review provides a solid basis of knowledge for interested
professionals and summarizes histological and molecular events
leading to the establishment of the abdominal and thoracic
cavities in several vertebrate species.
INTRODUCTION

In vertebrates, the body wall is composed of skin, muscles, and
associated connective tissue. Its establishment requires
successive, well-coordinated processes during embryogenesis.
Because of stringent ethical standards we know little about the
development of the human body wall, few histological and
morphological data being available for researchers (1–4).
Therefore, most of our knowledge derives from animal
models, extensive research having been conducted on mice. In
murine models, several molecular signaling pathways essential
for the normal formation of abdominal wall components have
been discovered. Based on these studies, human embryology
has made tremendous progress in recent decades and several
molecular processes during early development (eight weeks
after fertilization) have been comprehensively described (5–7).
However, this promising gain in knowledge has a downside if
we consider the fundamental differences in development
between mice and humans. The time frame of differentiation
and maturation of organs differ significantly, making
comparisons between the two species difficult (8).
Furthermore, the timings of blastocyst formation and
gastrulation clearly differ (8). Although mice and humans
share many genes in common, striking differences are evident
(9, 10). The mouse genome is about approximately 14%
smaller than the human genome, and mice have twice as
many nucleotide substitutions as humans, which is reflected
not only in different body plans but also in gene expression
Frontiers in Surgery | www.frontiersin.org 2
and reproductive strategies (8, 11). Knockout mice can serve
as excellent research tools for investigating human
malformations, but it should be remembered that several of
these mice do not develop into adults, making it difficult to
determine the gene’s function in relation to human health.

The establishment of the two body cavities and the closure of
the body wall require an orchestrated synergy of multiple
developmental processes. If this fails to occur during
embryogenesis, surgeons are confronted with severe anatomical
malformations in newborns: congenital diaphragmatic hernia
and body wall defects such as gastroschisis and omphalocele.

These defects of the abdominal cavity and wall development
have become increasingly frequent in recent years but our
knowledge of the physiological and pathophysiological
processes leading to such defects is still very limited.
According to current knowledge they are mostly caused by
epigenetic factors; chromosomal aberrations often account for
only a fraction. Future research should therefore focus among
other things, on these environmental factors and their impact
on the pathogenesis of abdominal malformations. For example
in 1963, Duhamel proposed that teratogens could interrupt
the lateral folding of the embryo and therefore cause the
development of gastroschisis (12). However, this hypothesis
fell into oblivion in recent decades, the scientific focus having
been on chromosomal aberrations.

To understand the consequences of these extrinsic and
intrinsic interrupters for differentiating organ systems, one
must also understand the temporal, spatial, and
morphogenetic sequence of organogenesis. The emerging field
of genomic hybridization and third generation sequencing,
and transcriptome analysis as well as synthetic human
embryology using human pluripotent stem cells and organoids
enable researchers to study disease mechanism as well as gain
knowledge about human development (13). In the following
chapters we recapitulate human organogenesis with special
emphasize on morphological and structural differentiation. If
there are significant animal models to add molecular aspects
to the knowledge of organogenesis and its disruptions, they
will be mentioned and discussed here (Figure 1).
RECAPITULATION OF HUMAN
ORGANOGENESIS

Gastrulation
After compaction, the morula transforms into the blastocyst and
loses its totipotency. The embryoblast arranges itself from the
inner cell mass; the outer cell layer becomes the trophoblast,
which provides nutrients and ensures implantation into the
endometrium. Two distinct cell types are differentiated: the
epiblast adjacent to the amniotic cavity, and the hypoblast
facing the blastocyst cavity. The amnioblasts are located
adjacent to the trophoblast and are continuous with the
epiblast. The radially oriented cells from the epiblast are now
surrounded by the amniotic cavity. The hypoblast or visceral
endodermal cells delaminate from these epiblast cells, become
separated from them by a basal lamina, and subsequently line
2022 | Volume 9 | Article 891896
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FIGURE 1 | Schematic representation of the human organogenesis: Following fertilization the zygote transforms after cleavage and compaction into the blastocyst.
At the end of the 2nd week the primitive streak appears on the surface of the embryo which is the first evidence of the beginning of gastrulation which ends with a
trilaminar embryo. The notochord, a transient, rod-shaped structure induces neurulation and differentiation of the somites. Because of the rapid growth of the somites
and the lateral plate mesoderm (LMP) the process of folding is initiated. The yolk sac is thereby incorporated into the embryonic body and the common body cavity is
formed. The formation of the umbilical cord begins around week 3 with formation of the connecting stalk (CS). Approximately at week 7 the UC is fully established and
is able to take over the metabolic functions. Physiologic herniation, due to the rapid growth of the intestine starts at week 6 and is terminated in the tenth week by its
withdrawal into the embryonic body. If this does not take place, it comes to the formation of a omphalocele. If the amnion ruptures in the eighth to tenth week,
gastroschisis results. The transverse septum (ST), which is located behind the base of the pericardial cavity separates the common body cavity incompletely
since the pleuroperitoneal canals (PPC) on both sides are continuous between the two cavities. Due to the growth of the embryo, fusion of the pleuroperitoneal
folds (PPF) occurs which leads to an occlusion of the canals. Morphogenetic defects of the PPF s subsequently prevent proper establishment of the costal
muscles and its surrounding connective tissue with deficiencies in the diaphragmatic barrier. Differentiation of the inguinal canal closely is connected to
differentiation of the gonads and their migration into the extracorporal scrotum together with the processus vaginalis, which is guided by the gubernaculum testis
(GT). The IC acquires its adult morphology during the fetal period, due to the continuous growth of the abdominal muscles and wall, with the accompanying
displacement of the inguinal rings. Failure in obliteration of the vaginal process will result in a patent processus vaginalis (PPV).

Pechriggl et al. Embryology of the Abdominal Wall
the secondary yolk sac. The dorsoventral body axis is now
determined as these two cell layers, the epiblast and hypoblast,
emerge. During gastrulation, the two-dimensional shape
Frontiers in Surgery | www.frontiersin.org 3
transforms into a three-dimensional and trilaminar disc,
which finally comprises the three germ layers (Figures 2, 3)
(8, 14). At the end of the second week the primitive streak,
2022 | Volume 9 | Article 891896
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which ends in the primitive knot, appears on the surface of the
ectodermal layer and grows towards to the prechordal plate, a
group of enlarged hypoblastic cells underlying the epiblast (6,
7). The primitive streak is the first evidence of the beginning
of gastrulation and the subsequent establishment of the three
germ layers. It is a region of pluripotent epiblast epithelium
limited by the primitive node, which ingresses and undergoes
epithelial to mesenchymal transition (EMT) (15). The
primitive streak also indicates bilateral symmetry, with clear
distinctions of right from left and caudal from cranial. This is
evolutionarily conserved by gradients of morphogens that are
regulated by positive and negative feedback mechanisms.
Retinoid acid is one of the best studied morphogens, crucial
for the spatial patterning of the mesodermal anlagen (16).
Mouse models have revealed that Zic3 a member of the zinc
finger protein family is critical for right-left differentiation,
among other things (17, 18).

Epiblast cells migrate from the surface towards the streak,
round off, and subsequently leave the epithelial cell complex
to establish the mesodermal layer in the cleavage space
between epiblast and hypoblast. Due to the detachment of the
cell complex and the loss of apicobasal polarity, the cells lose
their epithelial properties and reassume a mesenchymal
character with the ability to migrate. This process is referred
to as “epithelial to mesenchymal transition” or ingression
(EMT). The morphological features for determining the body
axes and planes are now defined. The mesoderm created by
gastrulation is now divided into three functionally distinct
sections: paraxial, intermediate, and lateral plate. The
primitive segments, the so-called somites, originate in the
paraxial mesoderm (Figures 2, 3).

The Notochord
By the end of the third week, the embryo has acquired a typically
disc-like shape composed of three germ layers; it is positioned
between the amniotic cavity dorsally and the yolk sac
ventrally. At week four after fertilization, the epiblast cells that
invaginated the primitive knot migrate cranially towards the
prechordal plate to form the notochord, a conserved,
mesodermal, rod-shaped, and transient structure that stretches
along the entire axial anterior-posterior midline (Figures 2, 3)
(19, 20). This structure is essential for the neural and
endodermal patterning of e.g., the intestine, liver, and lungs.
In vertebrates signaling molecules such as hedgehog proteins
secreted by the notochord play key roles regarding
differentiation and growth of the surrounding tissues (21, 22).

The notochord is also the major player in establishing the
anterior and posterior body axis and the folding process in
vertebrate embryos (22–26). At the junction between the
notochord and the primitive cord, the neurenteric canal forms
as an epithelial depression and provides a temporary
connection between the amniotic cavity and the yolk sac (6).
Coordinated degradation of the notochord begins around the
fifth week of gestation and mouse models provide evidence
that the condensed cells persist into postnatal life and form
the nucleus pulposus of the intervertebral discs (27–29). It is
important to note that these observations were largely made
Frontiers in Surgery | www.frontiersin.org 4
on animal models such as rodents and birds, mainly chickens,
and cannot reliably be extrapolated to humans owing to
species differences (30, 31).

Neurulation
Neurulation not only forms the basis for the largest part of the
nervous system, but is also prerequisite for the establishment of
the three-dimensional body shape. Neurulation has been studied
in detail mainly in chickens-in addition to human and mouse
models-many of the insights gained have come from this
chicken model (32).

Neurulation comprises two processes, primary and
secondary (Figures 2, 3). Before they are initiated, neural
induction separates the primary ectoderm into neuroectoderm
and surface ectoderm (33). Thereafter, primary neurulation
starts when the neural ectodermal layer is stimulated by the
notochord to form the neural plate. This process has already
been initiated during elongation of the notochord, which acts
as an inducer for neural differentiation, in the anterior
direction. Primary neurulation is initiated at the neural plate,
a condensation of specialized ectodermal cells, and starts
around day 19 after fertilization. The plate undergoes
fundamental transformations of shape (Figure 2), cell
morphology and size, during which the neural plate bends,
the prerequisite for forming neural folds (32, 34).Furthermore
Chang et al. demonstrated in Brachyury knock out mice that
folic acid deficiency interferes neural induction via inactivation
of the FGF pathway (35).

Fusion of the neural folds through bending or buckling of
them around specifically-defined median and dorsolateral
hinge points starts cranially and progresses caudally (32)
(Figure 3). The encephalon arises from the most anterior
point and the medulla originates in the more caudal parts. In
murine models it could be shown that signaling molecules
such as PAX3, members of the Zic-family and Cdx2 have a
critical influence on primary neurulation (36–40).

Primary neurulation ends with closure of the anterior and
posterior neuroporus and is immediately followed by
secondary neurulation, which entails epithelization and
tubulogenesis of the tail bud (41). The tail bud, an aggregate
of undifferentiated, axially-condensed mesodermal cells, is
located between the notochord and the primary neural tube in
the most caudal spinal area (42, 43). Via a mesenchymal to
epithelial transition and cavitation, the neural tube is formed
from this solid epithelial cord in the lower sacral and
coccygeal regions along the rostro-caudal axis (33, 44, 45).
Subsequently, the secondary neural tube becomes continuous
with the primary neural tube at the level of somite 27 in
chickens, as demonstrated by Le Douarin et al. (46). However,
there are insufficient data on the mechanism of secondary
neurulation in human embryos. Contrary to other hypotheses,
it is now supposed that the tail bud is not a bunch of
totipotent cells but is divided into individual territories with
defined fates (33).

Meanwhile, the mesodermal layer also undergoes a
fundamental change, becoming organized into three parts
(Figure 3). The most medial part adjacent to the notochord,
2022 | Volume 9 | Article 891896
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FIGURE 2 | (A,B) Embryo GV-2 (6 somites). Stage 10 (4–12 somites; 2–3.5 mm; 22 days). Collection Orts LLorca (Complutense University of Madrid) Photos
provided by Prof. J.F. Rodriguez-Vazquez. Oblique axial sections of the cephalic segment. (A) (4X) and (B) (10X). Staining: H-E. The trilaminar disc is located
between the amniotic (ac) and yolk cavities (yc). In the ectoderm (ect) appears the neural groove (ng). The endoderm (end) is broken in segments. The
mesoderm is divided into three segments: paraxial or somites (s), intermediate (im) and lateral (lm) mesoderm. The lateral mesoderm is split into the visceral/
splanchnopleural (spl) and parietal/somatopleural (sol) layers. The notochord (n) appears as a cylindric structure with a cavity inside

Pechriggl et al. Embryology of the Abdominal Wall
the so-called paraxial mesoderm, differentiates into the somites.
The intermediate mesoderm, the anlage of the urinary system, is
more lateral. The lateral plate mesoderm (LPM) is more lateral
still, initially consisting of solid tissue next to the
extraembryonic mesoderm. Cavities arise within the LPM
during further differentiation. These cavities merge, and two
separate mesodermal layers – the parietal and visceral
mesoderm - now border the intraembryonic celomic cavity,
which is the anlage for the pleural, pericardial, and peritoneal
cavities. The parietal pleura, the pericard and the parietal
peritoneum arise from the parietal mesoderm - obsolete also
called somatopleura, and similarly the visceral pleura, the
epicard and the visceral peritoneum arise from the visceral
mesoderm – obsolete also called splanchnopleura. Initially the
extraembryonic and intraembryonic coelom are connected,
however, this connection is subsequently lost due to
craniocaudal and lateral folding.

Somitogenesis
Somitogenesis represents one of the earliest forms of
segmentation (47). The early paraxial mesoderm, also called
presomitic mesoderm, becomes temporo-spatially organized in
a periodic pattern into segmented tissue blocks called somites
(Figures 2, 3). Under the influence of oscillating cyclic gene
activities such as FGFs, Wnt, BMPs and Notch pathways, and
by the mesenchymal to epithelial transition, the paraxial
mesoderm begins to take the form of epithelial spheres which
could be demonstrated in mice and chicken (48–50). The
Frontiers in Surgery | www.frontiersin.org 5
rhythm of this segmentation process is species-specific, e.g.,
every two hours in mice and every 90 min in chicken (47, 51–
54). This evolutionary mechanism is described as the clock-
wavefront model: a “clock” determines the time of
differentiation of the somites and the “wavefront” determines
the locations of their segmentation (55).

The polarity of the somites in all body planes is established
early during embryogenesis. The somites are composed of
pseudostratified epithelium (ÓRahilly) surrounding a central
cavity called the somitocele (Figures 2, 3). Mature somites
consist of the sclerotome, which is the origin of the axial
skeleton, and the dermatomyotome, which gives rise to the
myotome and the dermatome. The myotome gives rise to the
muscles of the back, the thorax, the ventral body wall, and the
limbs. The dermatome is the anlage of the dermis of the back
(56–58).

Muscles that originate entirely in the somatic, paraxial
environment are called primaxial, whereas muscles cells
surrounded by the lateral plate mesoderm are called abaxial.
The dermatomyotome is divided into hypaxial and epaxial
parts: muscles of the ventral body wall originate in the
hypaxial part and are innervated by the ventral rami of the
spinal nerves. Epaxial muscles are located dorsally from the
base of the skull to the tail and are innervated by the dorsal
branches of the spinal nerves (59–61).

During the further course of development, the somites lose
their epithelial characteristics via epithelial to mesenchymal
transition and give rise to the above-mentioned structures (62).
2022 | Volume 9 | Article 891896

https://www.frontiersin.org/journals/behavioral-neuroscience
https://www.frontiersin.org


FIGURE 3 | (A,B) Embryo GV-2 (6 somites). Stage 10 (4–12 somites; 2–3.5 mm; 22 days). Collection Orts LLorca (Complutense University of Madrid) Photos
provided by Prof. J.F. Rodriguez-Vazquez. Oblique axial sections of the future thoracic segment. (A) (4X) and (B) (10X). Staining: H-E. The trilaminar disc is
located between the amniotic (ac) and yolk cavities (yc). In the ectoderm (ect) appears the neural tube (nt). The endoderm (end) is broken in segments. The
mesoderm is divided into three segments: paraxial or somites (s), intermediate (im) and lateral (lm) mesoderm. The lateral mesoderm is split into the visceral/
splacnopleural (spl) and parietal/somatopleural (sol) layers. The notochord (n) appears as a double structure due to the obliquity of the section.

Pechriggl et al. Embryology of the Abdominal Wall
Yolk Sac
The mammalian yolk sac originates in hypoblastic cells from the
inner cell mass also known as the primitive endoderm.
Mammals generate a transient primary yolk sac followed by a
secondary yolk sac, which in humans provides nourishment to
the embryo until the end of the first trimester (Figures 2–4).
The formation of the extraembryonic mesoderm, which is
essential for implementation of the amnion, chorion, and
allantois, coincides with establishment of the primary yolk sac.
Both the cuboidal visceral endoderm and the parietal
endoderm that lines the trophoblast contribute to forming the
primary yolk sac, establishment of which is approximately
complete at day 12 after fertilization (63, 64). Electron
microscopic studies indicate that the extraembryonic
mesodermal lining of the yolk sac comprises delaminated cells
of the parietal and visceral endoderm (65–67).
Frontiers in Surgery | www.frontiersin.org 6
The secondary yolk sac forms about day 13 by collapse of the
primary yolk sac (Figure 4) and subsequent constriction from it
(64, 68). The visceral endoderm now grows strongly while
delamination of the parietal endoderm continues.

There are two possible ways for nutrients to reach the
embryo: via the vessels in the yolk sac, or via the cavity of the
sac, which is the anlage for the future intestine.

Folding of the Embryo
Concurrently, the superficial and parietal lateral mesoderm
grows ventrally to form the lateral body folds. Through the
fusion of these folds in the median plane, the typical fetal
cylindrical position arises. The parietal layer of the LPM, the
surface ectoderm and the amnion become continuous with
their equivalents on the opposite side (Figure 4). Similarly,
the visceral mesoderm and the endoderm fold in from the
2022 | Volume 9 | Article 891896
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FIGURE 4 | Embryo GV-5 (4 mm). Stage 11 (13–20 somites; 2.5mm-4.5 mm; 24 days). Collection Orts LLorca (Complutense University of Madrid). Photo provided
by Prof. J.F. Rodriguez-Vazquez. Axial section of the thoracic segment (4X). Staining. H-E. The section shows the pericardic cavity (pc) surrounding the ventriculus (v)
and bulbus (b) cordis. Dorsal of this is the transverse septum (ts). The liver diverticula emerging from the anterior gut (ag) which are growing stringy into the the
transverse septum (arrows) are visible. The anterior gut is surrounded by the umbilical (uv) and vitelline veins (vv). pleuroperitoneal cavity (ppc), amniotic cavity
(ac), secondary yolk cavity (yc), duplicate aorta (ao), neural tube (nt) and the notochord (n)

Pechriggl et al. Embryology of the Abdominal Wall
lateral side and the endodermal sheet is everted into the inner
part of the embryo to form the anlage of the intestinal tube
(Figure 4). The right and left body wall are established
through this lateral folding, which occurs because of the rapid
growth of the somites and the LMP. The intestinal tube
remains in contact with the yolk sac via the omphaloenteric
or vitelline duct, which is obliterated physiologically during
the fifth month of gestation. In the region of this duct, the
visceral layer of the lateral plate mesoderm comes into direct
contact with the mesoderm of the body stalk with the
allantois. The connecting stalk subsequently builds the
mesenchymal core of the umbilical cord, which develops
around the omphaloenteric duct and allantois. The surface
layer of the umbilical cord is built from the amniotic
membrane. The main hypothesis regarding the pathogenesis
of gastroschisis is inadequate incorporation of the yolk sac
during the craniocaudal and mediolateral foldings of the
embryo (6, 48, 69). Due to the lack of suitable animal models
genetic work-up has become much more difficult here: in
mice bone morphogenetic proteins are key players in ventral
folding. In knock out mice BMP2 seems to play a significant
role in initiation and coordination of lateral folding of
embryos. However, here too the findings cannot be transferred
one-to-one to humans: Due to the flat shape of the human
epiblast - in contrast to the murine cylindrical shape – there
Frontiers in Surgery | www.frontiersin.org 7
is no need in the human embryo for a complete rotation to
internalize the intestines (70, 71)
Establishment of the Body Cavities and
First Body Wall Closure
The establishment of the primary body wall is mainly driven by
lateral folding of the embryo and is completed around the fifth
week. This fact makes distinction between insufficient folding
and secondar events, which lead to incomplete body wall
closure even more difficult.

Both the ectodermal layer and the somatopleura start to
elongate and finally fuse in the midline ventral to the
umbilicus. The primary ventral body wall is composed of
lateral plate mesoderm and the overlying ectoderm, which are
replaced during the further course of development by
functional and connective tissue (72). GATA 4 deficient mice
exhibit severe defects in the ventral body wall because of
disrupted cranio-caudal and ventro-lateral folding (73).

Through these folding processes in the course of the fourth
week of development, the intraembryonic coelom loses its
connection in large segments with the extraembryonic celom.
The former subsequently creates a uniform cavity - the
coelomic or pleuroperitoneal cavity – which extends from the
thorax to the later pelvis. The pericardial cavity which
2022 | Volume 9 | Article 891896
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FIGURE 5 | (A–C) Embryo A (13 mm). Stage 17 (41 days). Collection Javier
Puerta (Complutense University of Madrid). Axial sections of the upper
thoracic (A), lower toracic (B), upper abdominal level (C) segments (2X).
Staining: H-E. In this sections it is possible to see the course of the phrenic
nerves in the pericardial membranes until reach the diaphragm (arrows).
Moreover, it is possible to see the aorta (ao) as wells as the esophagus
accompanied by the vagus nerves (X). lungs (lu) and heart (h)

Pechriggl et al. Embryology of the Abdominal Wall
originates from the cranial part of the coelomic cavity surrounds
the anlage of the heart. During the folding processes the anlage
of the heart as well as the pericardial cavity are translocated in
ventro – caudal direction in front of the foregut (Figure 4).
The precursor of the pleural cavity – the narrow
pleuroperitoneal ducts, are initially located dorsally of the
pericardial cavity and provide connection between the
pericardial and peritoneal cavity. Around the fifth gestational
week the pleuroperitoneal ducts extend into the pleural
cavities because of enlargement of the pulmonary buds. Due
to further expansion of the pleural cavities two folds appear:
cranially the pleuropericardial fold and caudally the
pleuroperitoneal fold. In the pleuropericardial fold are the
phrenic nerve and the common cardinal vein located
(Figure 5). These folds increasingly constrain the connection
between the three cavities – the remaining passages are now
called pleuropericardial and pleuroperitoneal ducts (69). Due
to the continuously growth of the lungs and subsequently the
pleural cavities in medio-lateral direction the pleuropericardial
membrane develops in the midline between those. This
membrane ends dorso - cranially into the pleuropericardial
fold (Figure 4). By fusion of the pleuropericardial duct and
the pleuropericardial fold at their medial site, a complete
separation of the pleural and pericardial cavities occurs in the
seventh week.

Through expansion of gaps in the coelom and approximation
of them in the midline the peritoneal cavity arises with a small
tissue plate in-between, from which the dorsal (and ventral)
mesenterium originates. The peritoneal cavity is in contact
with the extraembryonic mesoderm via the omphaloenteric
duct and loses this connection not until the tenth week of
gestation with the return of the intestinal loops into the
abdominal cavity. Due to the rapidly progressing growth of
the liver the peritoneal cavity also enlarges and the
pleuroperitoneal fold now divides as pleuroperitoneal
membrane the pleural from the peritoneal cavity (Figure 3).
The connection of these two cavities, which is given by the
pleuroperitoneal ducts is maintained and remains until the
end of the second gestational month (Figures 6, 7) (74).

Septum Transversum
The transverse septum originates behind the base of the
pericardial cavity and the roof of the vitelline duct, bordered
ventrally by the extraembryonic celom and dorsally by the
back region of the embryo (Figure 4). It consists of
mesenchymal tissue and, as the name implies, is a separating
wall in the transverse plane. However, it does not completely
separate the thorax from the abdomen, since the
pleuroperitoneal ducts on both sides are continuous between
the two cavities. In the early organogenesis the endodermal
liver primordium is embedded into the mesenchyme of the
transverse septum and is rapidly gaining in size to account for
about 10% of the body weight in the ninth week (75)
(Figures 6–8). Subsequent studies indicated that with further
differentiation the transverse septum is incorporated as the
centrum tendineum of the diaphragm, though to date there
have been no lineage studies of its fate (76, 77).
Frontiers in Surgery | www.frontiersin.org 8
Diaphragm
The diaphragm is composed of the transverse septum, the
pleuroperitoneal folds, the dorsal mesentery of the esophagus
and parts of the body wall (78, 79). It is divided into the
costal part, which has respiratory and barrier functions, and
2022 | Volume 9 | Article 891896
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FIGURE 6 | (A,B) Embryo BI-8.5 (8.5 mm). Stage 15 (33 days). Collection Jvier Puerta (Complutense University of Madrid). Axial sections of the upper thoracic (A)
and lower toracic (B) segments (2X). Staining: H-E. This sections shows the liver cords (li) growing into the transverse septum (ts) with the consequence increase of
the liver size The diaphragm (arrows) is located between the pericardial cavity surrounding the heart and the primitive liver as a dense mesenchymal condensation. The
pleuroperitoneal cavity still remains continuous. anterior gut (ag), stomach (s), bulbus (b) and ventriculus (V) cordis, umbilical vein (uv), right primary bronchi (lu),
mesonephros (m).

FIGURE 7 | (A–C) Embryo A (13 mm). Stage 17 (41 days). Collection Javier Puerta (Complutense University of Madrid). Axial sections of the upper thoracic (A), lower
thoracic (B), upper abdominal (C) segments (all 2X). Staining: H-E. liver (li), sternal, costal, lumbar (arrows) and vertebral portions of the diaphragm (*). The
pleuroperitoneal cavity still remains continuous. heart (h) aorta (ao), right bronchi (lu).
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the crural part (Figure 7). The costal part has radially arranged
myofibers extending from the ribs to the central tendon with
interposed connective tissue (80, 81). Organogenesis of the
diaphragm is completed by week 12 of gestation. Its correct
muscularization requires a precisely choreographed sequence
of molecular pathways that enables the somitic precursor
cells to delaminate, migrate and invade the diaphragmatic
anlagen (82).
Frontiers in Surgery | www.frontiersin.org 9
Studies of knockout mice lacking diaphragm differentiation
have revealed that c-met and Pax3/7 are crucial for the
migration of muscular progenitor cells into the diaphragm
muscle (79, 83–85). These progenitor cells originate in cervical
somites 3–5 and migrate during embryogenesis into the
pleuroperitoneal membrane/folds.

The terminology has become confused: some authors have
also described a posthepatic mesenchymal plate (PHMP) (76,
2022 | Volume 9 | Article 891896
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FIGURE 8 | (A,B) Embryo DD-10 (10 mm). Stage 16 (37 days). Collection Javier Puerta (Complutense University of Madrid). Axial sections of the thoracic (A) and
upper abdominal (B) segments (2X). Staining: H-E. These sections show the liver cords (li) growing into the transverse septum (ts) with the consequence increase of
the liver size. The diaphragm (arrows) is located between the pericardial cavity surrounding the heart and the primitive liver as a dense mesenchymal condensation.
The pleuroperitoneal cavity continues to communicate. anterior gut (ag), stomach (s), bulbus (b) and ventriculus (V) cordis, umbilical vein (uv), right bronchi (lu),
mesonephros (m).

Pechriggl et al. Embryology of the Abdominal Wall
86, 87). This structure is located dorsal to the liver and ventral to
the pleuroperitoneal canal, grows in the dorsolateral direction
and closes the pleuroperitoneal canals to separate the thoracic
from the abdominal cavities. Iritani reported that incomplete
differentiation and growth of the PHMP with subsequent
failure of fusion with the pleuroperitoneal folds leads to
diaphragmatic defects (87). Morphological investigations of
mice using scanning electron microscopy showed that the
PHPM or its malformation plays a significant role in the
formation of a CDH. (76).

The pleuroperitoneal folds are described as pyramid-shaped
structures that form transiently between the pleural and
abdominal cavities (Figure 9). According to knockout studies,
they emerge from the lateral plate mesoderm (88, 89).
Subsequently, they extend medially and ventrally and give rise
to non–myogenic diaphragmatic connective tissue. Merrell
et al., studying mice carrying Prx1–cre (90), showed that the
pleuroperitoneal folds regulate diaphragmatic muscle
development and are also the source of the central tendon
(91). Interestingly, studies of mouse embryos showed that the
nascent diaphragm develops at the cervical level and migrates
during further development to the base of the thoracic cavity
(89). However, despite the agreement among embryology
textbooks about the organogenesis of the diaphragm, many of
the concepts are based on a single publication by Wells, which
was a morphological postmortem study of human embryos (92).
Frontiers in Surgery | www.frontiersin.org 10
The most widely accepted hypothesis is that congenital
diaphragmatic hernias are caused by morphogenetic defects in
the pleuroperitoneal folds (Figure 10). In consequence, proper
establishment of the costal muscle and its surrounding
connective tissue fails and deficiencies in the diaphragmatic
barrier result, with subsequent herniations of abdominal tissue
(82, 93, 94). Various genes potentially responsible for proper
diaphragm development have been identified in human
embryos affected by CDH, for example GATA 4, c-Met, Wt1,
and COUP-TFII (77, 95–101), but whether every genetic
defect result in a corresponding phenotype in humans is not
yet clear.

Another hypothesis about the pathogenesis of CDH is that
the pleuroperitoneal canals remain open, enabling the
abdominal organs to herniate (92, 102, 103). However, CDH
results from early failure of differentiation of the
pleuroperitoneal folds (94, 97). Impaired lung development
and subsequent alteration of the developing PHMP was also
suspected of being responsible for CDHs. However, studies
with FGF10–knockout mice disproved this hypothesis; mice
with absent lung development showed inconspicious
organogensis of the diaphragm (97, 104).

Furthermore, morphogenesis of the diaphragm is tightly
connected to the phrenic nerve, and vasculogenesis and
morphogenesis of the costal muscles (89). Appropriate axonal
outgrowth, targeting of the myoceptors and branching of the
2022 | Volume 9 | Article 891896
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FIGURE 9 | Embryo HA-24 (24 mm). Stage 22 (54 days). Collection Javier
Puerta (Complutense University of Madrid). Sagittal section of the trunk
(1X). Staining: Picro. The descensus of the diaphragm and its typical dome
shape, with the anterior sternal and posterior vertebral attachments is
shown (arrows). The hole in the phrenic center is visible with the inferior
vena cava (ivc) and behind these structures the descensus of the
esophagus (oe) and aorta (ao) for passing through their corresponding
hiatus. Clavicle (cl), mandible (ma), spine (sp), duodenum (d), pancreas (p),
gonad (g), liver (li), heart (h) lung (lu), trachea (t) and physiological hernia (ph)
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phrenic nerve are crucial for the proper development and
function of the diaphragm, but it remains to be elucidated
whether CDHs result from phrenic misgrowth, or whether the
malformation and mis-targeting is directly caused by CDHs
(Figure 5) (94, 105).

Most hernias of the diaphragm occur on its left side (106)
(Figure 10). According to some authors, this mainly left-sided
occurrence of CDHs could be attributed to the bigger contact
area on the right with the major part of the liver. The contact
area on the left side is smaller, so the diaphragm needs longer
for its closure (76).

Ribs
From an evolutionary point of view, the ribs evolved because the
stabilizing exoskeleton was lost (107, 108). The proximal and
distal parts of the ribs originate in the medial and lateral
sclerotomes of somites, and their outgrowth is coordinated by
conserved HOX-gene expression (109–113). The sternal parts of
Frontiers in Surgery | www.frontiersin.org 11
the ribs are of abaxial origin, as demonstrated by experiments in
which somatic cells were mechanically prevented from invading
the somatopleura; the vertebral parts of the ribs developed
adequately but the sternal parts were missing (114–117)
(Figures 7, 9). Furthermore, Wood et al. (113) showed that for
proper rib development, beyond the myogenic regulator gene
family, sufficient muscle organogenesis and muscle interactions
are required. Anatomically and functionally, the rib cage is
divided into upper and lower parts. The first to seventh ribs of
the upper section are referred to “true” ribs and are attached to
the articular surfaces of the sternum. The eighth to twelfth ribs
of the lower part are called floating or “false” ribs because they
have no articular connection to the sternum. Differentiation and
development of the rib cage differ between these parts in
signaling and rates, but the two sections are interdependent,
induced and influenced by each other (118).

The ribs are also subject to resegmentation; caput, collum and
the costal tubercles arise from the cranially located somite, while
the ventrally-located corpus originates from the caudally-located
somite. During embryogenesis the ribs are cartilaginous; they
ossify during the fetal period (Figures 9, 11B, 12).

Sternum
As a component of the appendicular skeleton, the sternum was
believed to emerge from the distal ends of the ribs (Figure 9).
However, explant studies have revealed that the paired sternal
anlagen originate in the lateral plate mesoderm located in the
lateral somitic frontier (110, 117, 119–123). The sternal
anlagen on the two sides migrate towards the midline and
finally merge there. In a fate map study, Bickely and Logan
demonstrated the crucial role of Tbx5 in sternal development,
as also apparent in Holt–Oram syndrome, which is
characterized by sternal defects (119).

Umbilical Cord and its Vessels
The prerequisite for forming an umbilical cord is the connecting
stalk, which secures the embryo in the chorionic cavity during
the third week. Because of cranial-caudal folding, the
connecting stalk approximates the yolk sac. From this
approximation emerges the rudimentary umbilical ring, which
is not covered by the rapidly-growing amnion (124). The
umbilical cord forms between the fourth and sixth weeks
when the vitelline duct and the connecting stalk become
wrapped in the amnion sheet; it contains the two umbilical
arteries and one umbilical vein surrounded by Wharton’s jelly.
The outer wrapping of the umbilical cord is formed by the
amnion. During the sixth week of gestation, the developing
intestines herniate via the umbilical ring into the tissue of the
cord to enable adequate gut rotation and repositioning
(Figure 10). The intestinal loop returns into the embryonic
body at about the tenth week after fertilization (Figure 12).
The umbilical ring is the transition between amnion and
ectoderm.

Physiological Umbilical Herniation
Herniation of the intestine into the extraembryonic celom
begins around week six after fertilization. The process is called
2022 | Volume 9 | Article 891896
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FIGURE 10 | (A,B) hernia of the intestine into the left pleural cavity (Bodaleck) of a neonate. After removing the intestinal contents the diaphragm (arrows) the
permanent defect of the pleuroperitoneal membrane (arrowheads) is visible. The left lung (lu) has been displaced leftwards.
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“physiological umbilical herniation” and is due to the rapid
elongation of the intestinal tube. It is accompanied by a 90°
clockwise rotation of the intestinal loop (125). The return
from the celom back into the intraembryonic cavity is again
connected with a counterclockwise rotation of 180°. These
rotations ensure the correct positioning of the intestine
(Figures 11, 12).

The return of the intestinal loops is the starting signal for
(secondary) closure of the ventral body wall, but the order of
return is not without controversy. Some authors state that the
cecum is the last segment to return (126, 127); others report
that the distal ileum is the final returning segment (128–130).
Studies of the return of the intestine loop into the embryonic
celom in human embryos/fetuses are rare (128, 131, 132).
Mall described the intestine as being “sucked back” into the
peritoneal cavity because of the rapid growth of the latter
(133). Another hypothesis proposed by Frazer and Robbins
(127) states that the intestine returns into the abdominal
cavity in a coordinated manner, proximally to distally, each
segment slipping back because of retraction forces; the so-
called rope model. According to the authors, this orderly
return of the intestine is driven by a narrow umbilical orifice
and the “amniotic pressure on the umbilical sac” (127). Soffers
et al. (132) support this model of orderly withdrawal in a
Frontiers in Surgery | www.frontiersin.org 12
proximal to distal direction, additionally describing secondary
and tertiary coil formation.

Second Body Wall Closure
The prerequisite for the second body wall closure is ventral
migration of the somitic cells.

Muscles in which the somitic cells originate entirely from one
somite or dermatomyotome are called primaxial (116), whereas
somitic cells that originate in the somitic frontiers, the border
area between the somite and the lateral plate mesoderm, are
termed abaxial. Anatomically, however, they are classified
according to the nerves involved: Ventral hypaxial and dorsal
epaxial. The hypaxial muscles, which are accompanied by
rami ventrales, are responsible for ventral body wall closure.
The rectus abdominis and the external and internal oblique
abdominis muscles develop before the return of the intestinal
loop into the abdominal cavity (Figure 12) (59). Therefore,
these muscles have not yet assumed their original positions,
and the rectus muscles clearly show a diastasis in the midline
(59, 134).

Formation of the Inguinal Canal
The dynamic development of the inguinal canal (IC) is closely
connected to differentiation of the gonads and their migration
2022 | Volume 9 | Article 891896
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FIGURE 11 | (A) Embryo ES20 (20), (Stage 20, 51 days), axial section (1X), Staining: H-EF. (B) Embryo VD-34 (34 mm), (57 days), axial section (1X), Staining:
Bielschowsky, Collection Javier Puerta (Complutense University of Madrid). Physiological hernia and its narrowing during the embryonic period (arrows). In these
sections, you can see the loops of intestine in the umbilicus and the narrowing umbilical orifice. gut (g), stomach (s), liver (li), umbilical vein (uv), umbilical artery
(ua), gonad (go), pancreas (p), vitelline vein (vv)
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into the extracorporal scrotum (Figures 13, 14). There have
been debates as to whether the formation of the IC underpins
a defect in the descending gonads, or whether the defect is
preformed and already present when gonadal migration starts
(135). In favor of the latter view, the IC is established in both
sexes even though descensus testis only occurs until the
scrotum in the male (Figures 13, 14), whereas in the female
the ovary remains inside the pelvis because of the Fallopian
tube whose presence act as a barrier. This in further
consequence in female the gubernaculum testis became the
round ligament that reaches the mons of venus (Figure 15).
In several morphological studies, the confines of the IC were
already identifiable from the tenth week onwards (136, 137),
as various researchers have proposed (138–141). The question
also arises as to whether the formation of the IC is oriented to
the growth and direction of the ilioinguinal nerve.

Descensus Testis
As the testis differentiates intraabdominally, its descent must be
through the IC guided by the gubernaculum testis (GT)
(Figure 13). The gubernaculum originates in two triangular
mesenchymal condensations, the inguinal plica dorsal to the
Wolffian duct and the inguinal crista opposite the plica (141).
The growth and differentiation of the GT is induced by
insulin-like 3, which secreted by Leydig cells (142, 143). The
Frontiers in Surgery | www.frontiersin.org 13
pelvic portion of the GT is created by merging the
mesonephric and inguinal portions. The inguinal portion
continues to extend as far as the superficial inguinal ring,
which is formed by the external oblique muscle. Condensation
of the mesenchyme progresses caudally to form the scrotal
part of the ligament. Notably, the GT is not connected to the
gonads at any time during embryogenesis. At the end of this
period the vaginal process appears, an protrusion and
evagination of the peritoneum that surrounds the pelvic and
inguinal portion of the GT (144). The GT and the processus
vaginalis herniate together through the abdominal wall
accompanied by the transversalis fascia and the internal and
external oblique abdominal muscles. During further
development, the vaginal process elongates and eventually
envelops the GT. At the end of the fetal period the process
has traversed the full length of the IC and reached the scrotal
sac. The IC acquires its adult morphology with anterior and
posterior ligaments as well as the oblique course during the
fetal period. This is due to the continuous growth of the
abdominal muscles and wall, with the accompanying
displacement of the inguinal rings (Figure 14). During their
growth and differentiation, the testes come to lie on the
anterior abdominal wall close to the inner inguinal ring. It is
controversial whether the GT acts to guide the testes through
the IC, or actively pulls them into the scrotum. In contrast to
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FIGURE 12 | Fetus F88 (88 mm), (12th weeks). Collection Javier Puerta (Complutense University of Madrid). Axial section of the trunk (1X). Staining: Azan.In this
section the umbilicus (umb) and the anterolateral abdominal muscles: rectus abdominis (ar), external oblique (eo), internal oblique (io) and transversus (t)
abdominal muscles are visible. M. psoas (ps) and M. quadratus lumbarum (ql). common iliac arteries (cia), ureter (u), intestinal loops (g) and the contents of the
umbilicus, the umbilical arteries (ua) and vein (uv)

Pechriggl et al. Embryology of the Abdominal Wall
the development of the GT in male specimen, the GT in female
is remodeled into the round ligament in female fetuses. Here the
vaginal process only reaches the initial section of the IC and the
ovaries do not reach the abdominal wall (Figure 15) (141).
FINAL REMARKS

For visceral surgeons who deal with congenital abdominal
malformations it is mandatory to be familiar with the
different pathological entities. This is not only important for
diagnosis but also for further treatment and therapies. It
makes a huge difference whether if it is for example a in most
cases self-limiting IUH, which needs consequent observation
or a life-threatening condition like gastroschisis. For finding
the correct diagnosis it is necessary to be familiar with the
physiological as well as pathophysiological embryogenesis. The
heterogeneity of disease patterns and varieties resulting from
dis – and interruption of developmental process underlines
the importance of embryology for clinicians starting with the
diagnosis up to the therapy. Furthermore, knowledge about of
the relationship between possibly asymptomatic variants and
potentially resulting pathologies enables surgeons to grant
Frontiers in Surgery | www.frontiersin.org 14
patients an adequate treatment. Keeping that in mind several
of the following malformations of the abdominal wall may
encounter surgeons in their professional career: Gastroschisis
is defined as congenital, structural defect of the abdominal
wall with a protrusion of the viscera through it. The
eviscerated intestine is not covered by the amnion und thus is
directly exposed to the amniotic fluid (145). Its etiology is
controversial discussed: some studies emphasize the role of
genetic factors and an increased familial risk (146–149),
whereas other research work did not support an increased
familial risk (150–152). In recent decades, several causes for
the development of gastroschisis have been discussed: failure
of mesodermal formation (12), rupture of the amnion around
or beside the umbilical ring (153), thrombosis of the umbilical
vein caused by estrogen (154), malformation of the right
vitelline artery (155), defective invagination of the secondary
yolk sac and omphalomesenteric duct – nevertheless with
regular abdominal wall formation (156). A significant
breakthrough in the study of gastroschisis was achieved in
2013 by Rittler and colleagues (157). They described
gastroschisis as a defect of the umbilical ring in five stillborn
neonates: the umbilical cord was “only attached to the left
side of the umbilical ring, while the right side remained
2022 | Volume 9 | Article 891896
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FIGURE 13 | Fetus F25 (60 mm), (10th weeks). Collection Javier Puerta (Complutense University of Madrid). Sagittal section of lower third of the abdominal cavity
(2X). Staining: Azan. The gubernaculum testis (gt) inside the inguinal canal and surrounded by the vaginal process (vp) is visible. The testicle (t) is located dorsally of the
internal ring of the inguinal canal. external oblique (eo) muscle, conjoint tendon (ct).
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uncovered allowing evisceration”. This account was
corroborated by Bargy and Beaudoin (158), who investigated
121 embryos and fetuses and proposed that gastroschisis is
due to “amniotic rupture along the umbilical cord in its pars
flaccida between weeks 8 and 11 of gestation”. They showed
that amniotic continuity, which is established around day
seven of gestation, is missing at the right side of the umbilical
cord in fetuses affected by gastroschisis, with consecutive
herniation of the midgut and the ascending colon.
Furthermore, they found that the peritoneal recess was open
on the right side of the umbilical cord, the right side of the
umbilical vein being covered by peritoneum but the left side
being “normal”. This right side dominance in the defect of the
amnion could, according to the authors, be due to the
predominance of the left umbilical vein.

Congenital diaphragmatic hernias occur in 1 in 25000 live
births and are life-threatening malformations with a mortality
rate of about 50%. Out of this total number of cases, only
5%–10% have a chromosomal abnormality (159–162). Each
hernia is named according to its location: posterolateral
hernias are referred to as Bochdalek and anterior-medial ones
as Morgagni–Larrey hernias. Bochdalek hernias are the most
common, with a prevalence of 70%–75%. Interestingly, the
defect occurs most frequently in the left postero-lateral
diaphragm. Disruptors of normal diaphragmatic organogenesis
such as Nitrofen and the teratogenic effect of vitamin A
deficiency are known from experimental animal studies (163,
Frontiers in Surgery | www.frontiersin.org 15
164). In humans, weeks 4–6 of gestation seem to be critical
for diaphragmatic malformations, which occur mainly on the
left side of the diaphragm, for still unexplained reasons.

Omphaloceles arise from the persistence of physiological
midgut herniation: the intestine that has been translocated
into the umbilical cord remains in the umbilical cord and
does not return to the abdominal cavity, which leads
subsequently leads to malrotation and mispositioning of the
intestine. This malformation is more common in children of
both older and younger primiparous mothers and also more
often affects male children (165). In contrast to gastroschisis,
omphaloceles are associated with such syndromes as trisomy
13, 18 and 21, Beckwith-Wiedemann syndrome, Carpenter
syndrome and others (166–170).

To be distinguished from omphaloceles are the congenital,
infantile umbilical hernias (IUH), which are associated with
low birth weight, meconium peritonitis and prematurity (171).
These hernias are very common in children with a prevalence
of up to 23% in neonates (172). In African cultures IUHs,
which are always covered with skin are thought to be a sign of
fertility and beauty (173). In most cases, they have no
pathological value and often close spontaneously (174).
Densler (1977) postulated that umbilical hernias are the result
of incomplete closure of the fascia of the umbilical ring (175).
More precisely the umbilical vessels failed to fuse with the
urachus and the margins of the umbilical skin (171). This
results in a persistent connection between the intraabdominal
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FIGURE 14 | Dissection of the lower abdominal wall and scrotum in a male
neonate (BOU; 30.2 cm; 28–32 weeks) with the testicle (t) inside the
peritoneal cavity located dorsally of the internal inguinal ring and the
Gubernaculum testis (gt) as an amorph substance; sc, scrotum; intestine
(g), p, penis; umb, umbilicus.
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cavity and the extraembryonal mesoderm. Spontaneous closure
of the IUHs up to the age of five years are possible (176).
However, there is a risk of incarceration of the IUH which is
an absolute indication for surgical repair.

A patent processus vaginalis (PPV) is due to an absent or
incomplete obliteration of the processus vaginalis. In male the
processus vaginalis is a funnel-shaped protrusion of the
peritoneum into the scrotum and arises from the denscensus
Frontiers in Surgery | www.frontiersin.org 16
testis. Under physiological conditions, this obliterates after the
descent of the testis is complete. However, if it remains open,
there is an open connection between the abdominal cavity and
the scrotum. In women, the processus vaginalis is also called
Nuck’s canal. This refers to the peritoneal fold that runs with
the Ligamentum teres uteri through the IC to the labia
majora. Similar to men, this normally obliterates postnatally.

PPV are protrusions of the peritoneal cavity into the scrotum
and labia majora respectively and are the leading risk factors for
development of indirect inguinal hernias (IIG) and hydroceles
(177). These inguinal, indirect hernias pass through the
internal aperture of the inguinal canal and follow the course
of the spermatic cord (178). However PVVs do not represent
pathology on their own and may remain asymptomatic and
may disappear with increasing growth (179). Although the
processus vaginalis may occur prenatally studies have
evaluated an incidence for PPVs in children of about 60% at
the age of seven months (144, 180, 181). Presence of a PPV
implies a four times higher risk of developing an inguinal
hernia within 5.3 years (182).

In surgical history postnatal surgical intervention serves as a
life-sustaining or at least a life-improving measure in most of
these malformations. But another point that will increase
significantly in importance is early intrauterine repair.
Fetoscopic surgery is a rapidly developing field that benefits
greatly from the technical advances of the last decades and
goes hand in hand with developments in medical imaging.
The postnatal morbidity rate in severe cases of lung
hypoplasia caused by CDH is similar to the postnatal survival
rate of patients with moderate lung hypoplasia after successful
intrauterine intervention. However, fetal surgery focuses on
pathophysiological conditions such as pulmonary hyperplasia,
not on anatomical conditions (183, 184).

Where there is light there is also shadow, and there are
problems with fetoscopic surgery: limited numbers of patients,
and lack of randomized trials. Therefore, many of the
procedures are still considered experimental. At this stage,
most procedures performed are directly life-sustaining for the
fetus. It should not be forgotten that the mother is also
exposed to risk during fetoscopy.

Taking the rising prevalence of abdominal cavity and wall
defects into account, the possibilities now opening regarding
surgical care and extended genetic clarification offer new
approaches to therapy. However, every path is only as good as
its foundation, which in this case is a solid understanding of
embryology.

The heterogeneity of disease patterns and varieties resulting
from dis – and interruption of developmental process
underlines the importance of embryology for clinicians
starting with the diagnosis up to the therapy. Therefore, this
review gives a comprehensive overview of the histological and
molecular processes during embryogenesis that are crucial for
the normal development of the abdominal wall and the two
body cavities. We focus first on gastrulation, the starting
signal for the development of the trilaminar germ disc,
followed by the organogenesis of specific structures in the
abdominal wall.
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FIGURE 15 | Fetus F14 (48 mm). (9th weeks). Collection Javier Puerta (Complutense University of Madrid). Sagittal sections (A and B) of the trunk (1X). Staining:
Azan. The inguinal canal (ic), inguinal ligament (il), the external oblique muscle (eo) and the transverse (t) and internal oblique muscles (io) are visible. Inside the inguinal
canal the gubernaculum testis is located which has become in this case of a female specimen the round ligament (rl) connected with the uterus (u). ovary (o), Fallopian
tube (Ft), ureter (ur), external iliac artery (eia), pubis bone (pu), intestinal loops (g) in the peritoneal cavity.
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