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Marine nature products are unique compounds that are produced by the marine
environment including plants, animals, and microorganisms. The wide diversity of
marine natural products have great potential and are versatile in terms of drug
discovery. In this paper, we use state-of-the-art computational methods to discover
inhibitors from marine natural products to block the function of Fascin, an overexpressed
protein in various cancers. First, virtual screening (pharmacophore model and molecular
docking) was carried out based on a marine natural products database (12015 molecules)
and provided eighteen molecules that could potentially inhibit the function of Fascin. Next,
molecular mechanics generalized Born surface area (MM/GBSA) calculations were
conducted and indicated that four molecules have higher binding affinities than the
inhibitor NP-G2-029, which was validated experimentally. ADMET analyses of
pharmacokinetics demonstrated that one of the four molecules does not match the
criterion. Finally, ligand Gaussian accelerated molecular dynamics (LiGaMD) simulations
were carried out to validate the three inhibitors binding to Fascin stably. In addition,
dynamic interactions between protein and ligands were analyzed systematically. Our study
will accelerate the development of the cancer drugs targeting Fascin.
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INTRODUCTION

With a deeper understanding of the particularity of the marine environment and the diversity of
marine biology, researchers have developed many applications based on aquatic and marine
resources (Carroll et al., 2021). Extreme conditions in the ocean in terms of temperature,
salinity, pressure, and illumination promote marine organisms to evolve and create a unique
system with different processes of absorption and metabolism (Montaser and Luesch, 2011). In the
metabolism of marine organisms, enormous and innovative marine natural products (MNPs) are
produced, and those products can be exploited to develop new functional materials and drugs
(Barbosa and Roque, 2019). In recent years, many new compounds have been discovered from
marine life, which have also benefited from the rapid development of technology (Hu et al., 2011; Hu
et al., 2015; Greco and Cinquegrani, 2016; Ruiz et al., 2016; Blunt et al., 2017; Bilal et al., 2018; Blunt
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et al., 2018). To exploit the data of MNPs for the treatment of
diseases conveniently, some databases of MNPs are built for drug
screening and other research on ocean resources (Haroun et al.,
2019).

One of the applications of MNPs is drug discovery, e.g.,
drugs for cancer treatment, as tumor metastasis is the main

cause of cancer-related deaths (Chen et al., 2010). Cell
invasion and migration are essential features of tumor cells
and actin cytoskeleton reconstruction triggers the switch of
protrusive tissue, e.g., filopodia, lamellipodia, and
lamellipodia (Machesky and Li, 2010). Fascin is one of the
actin-binding proteins and it is overexpressed in various

FIGURE 1 | (A) The structure of the Fascin-inhibitor complex. Junctions between β-trefoils 1 and 2, β-trefoils 1 and 4 contain two actin-binding sites respectively,
and another actin-binding site locates on β-trefoils 3 (Figure 1A). (B) Inhibitor NP-G02-029 and the binding pocket. (C) Protein−NP-G2-029 interactions are represented
by an asteroid plot. The inner ring represents direct interactions. The outer ring represents indirect interactions. The size of the ball is the interaction-number proportion in
atomic scale. The colors of residues correspond to their secondary structures. (D) Secondary structure connection of Fascin. The bottom panel shows the
secondary structure (β-sheets and α helixes) with their respective colors. Arrows stand for β-sheets, rectangles stand for α helix. N-ter, N terminus; C-ter, C terminus.
PDB ID: 6B0T. Structure visualized by PyMOL (Rigsby and Parker, 2016).
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types of cancer. Fascin plays a key role in the formation of
filopodia, which leads to increased cell movability in multiple
transformed cells (Conesa-Zamora et al., 2013; Tan et al.,
2013). Some studies have indicated that Fascin can be used as
a diagnostic marker and therapeutic target for aggressive
tumors (Tan et al., 2013; Rodrigues et al., 2017).

Fascin was first found as a cross-linking protein in sea
urchin (Kane, 1975) and later identified in Drosophila,
Xenopus (Holthuis, Schoonderwoert, and Martens, 1994),
mice (Edwards et al., 1995), and human beings (Duh et al.,
1994; Yamashiro-Matsumura and Matsumura, 1985). Fascin
is one of the components of actin bundles, with 55 k Da and
four β-trefoil domains (Figures 1A,B) (Yamashiro-
Matsumura and Matsumura, 1985). There are six pairs of
two-stranded β-hairpins in each β-trefoil domain with 3-fold
symmetry (Murzin, Lesk, and Chothia, 1992; Ponting and
Russell, 2000). These four β-trefoils of Fascin form a
quadrilateral-like shape and each β-trefoil located in the
catercorner (Yamashiro-Matsumura and Matsumura,
1985). Fascin is a monomeric protein and functions by
bundling actin filament at its monomeric state. Previous
studies have suggested that Fascin has three individual
surfaces for its bunding activity to actin, i.e., binding site
1, 2, and 3 (Figure 1A) (Yang et al., 2013). The junction
between β-trefoils 1 and 2 of Fascin is suggested to be
essential for its actin-bunding activity, which is termed
actin-binding site 2. (Figure 1A) (Ono et al., 1997).

To block actin-Fascin interaction and inhibit filament
assembly, several small molecule inhibitors have been
developed from chemical libraries for biochemical and
pathological research (Chen et al., 2010; Huang et al., 2015;
Huang et al., 2018). However, the inhibitor exploration for
Fascin is still under development, due to the limitation of
current inhibitors on efficiency and specificity. NP-G2-029 and
NP-G2-044 are two inhibitors targeting Fascin, which show a

strong effect, weakening the migration ability of human breast
cancer cells (Han et al., 2016; Huang et al., 2018). The IC50 values
of NP-G2-029 and NP-G2-044 are 0.19 and 0.07 μm in the
F-actin-bundling assay. The crystal structure of the
Fascin−NP-G2-029 complex was solved by Huang et al.
(2018). Six hydrophobic residues surround the benzene ring of
NP-G2-029, i.e., Glu11, Phe14, Leu16, Gln50, Trp101, Leu103,
Trp132, Val134, and Phe216 (Figure 1B), and the benzene ring
also forms edge-to-face pi–pi stacking with Phe14 and Trp101.
Two hydrogen-bond interactions are formed between the
backbone of Phe216 and the pyrazole and amide groups of
NP-G2-029.

The second structure connections of Fascin (Figures 1C,D)
show the residues in the binding pocket of NP-G2-029, and the
connections of β-sheets and helixes in Fascin. It can be seen from
Figure 1D that interactions between secondary structures are
complex, indicating that the correlations between those structures
are strong. The bottom panel shows the secondary structure
(β-sheets and α helixes) with their respective colors
(Conducted by Protein Contacts Atlas server) (Kayikci et al.,
2018).

In recent years, computer-aided drug discovery (CADD)
methods are extensively used for new drug discovery. The
pharmacophore model is a ligand-based method to screen lead
compounds (Gupta et al., 2019; Wang et al., 2019; Fu et al., 2020;
Liu et al., 2020; Liu et al., 2020). It is a rapid and powerful method
for the first screening from a large chemical library. The
pharmacophore model is often used in combination with
structure-based methods, e.g., molecular docking (Saikia and
Bordoloi, 2019). Molecular docking programs can be used to
predict the bound poses of ligands and to rank them with scoring
functions. (Huang and Zou, 2010; Lopez-Vallejo et al., 2011;
Garcia-Sosa and Maran, 2021). With CADD approaches, the cost
of drug research and development can be reduced markedly
(Xiang et al., 2012). These approaches can provide a

FIGURE 2 | The workflow of inhibitors screening in this study. The pharmacophore model used LigandScout software; docking used the AutoDock Vina module of
LigandScout (Nguyen et al., 2020).
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comprehensive insight into biomolecule mechanisms and
improve the effectiveness of the drug development process
(Macalino et al., 2015).

It is noteworthy that molecule docking results still need
further evaluation and analyses (Rastelli and Pinzi, 2019), and
molecular dynamics (MD) simulation is an often-used
method to improve the accuracy of molecular docking.
Meanwhile, the dynamic properties of proteins can be
investigated in depth by MD simulations, which can
provide detailed information on the process of ligand
binding at an atomic level and this information is
significant for drug discovery (De Vivo et al., 2016).
Molecular mechanics generalized born surface area (MM/
GBSA) is an efficient method for binding free energy
calculation, which is used to assess docking poses,
determine structural stability and predict binding affinities
(Ylilauri and Pentikainen, 2013; Wang et al., 2019). On the
other hand, the free energy landscape can be calculated to
explore the intermediate states and global minimum of

biomolecule (Buckley et al., 2017). However, conformation
transition overcoming energy barrier usually needs a
millisecond time scale or even longer, depending on the
height of the barrier (Miao, Feher, and McCammon, 2015).
To overcome this challenge, many enhanced sampling
methods have been developed (Bernardi, Melo, and
Schulten, 2015). In addition, small molecules have various
conformations because of their flexibility in solvent, and the
dynamics of small molecules are significant for the induced-fit
process (Francis et al., 2019). Thus, exploring the binding
state of the inhibitor is important for drug design.

In this study, we use several CADD methods to screen small
molecules from an MNP library, as indicated by the workflow
in Figure 2. First, based on the marine natural products
database (12,015 molecules), virtual screening using the
pharmacophore model and molecular docking were carried
out to discover potential inhibitors of Fascin. Then, the top 18
compounds were selected for further MD simulations, and the
binding affinity of each inhibitor was calculated. ADMET

FIGURE 3 | 2D (A) and 3D (B) inhibitor NP-G2-029 with its abstract pharmacophore model generated by LigandScout. Hydrogen bond acceptor (red arrow),
hydrogen bond donor (green arrow), hydrophobic interaction, aromatic ring feature interaction (yellow sphere).

FIGURE 4 | (A) The binding pocket of Fascin with inhibitor NP-G2-029; (B) The molecular docking results for 18 small-molecules.
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TABLE 1 | Data collection of potential inhibitors for Fascin by molecular docking. Unit: kcal/mol.

No./Compound Library ID Structure Molecular weight Binding affinity

01a NP-G2-029 C20H15F3N4O2 No data 400.36 −10.80

02 C25H36O6 ZINC000238749885 432.56 −10.50

03 C28H22O7 ZINC000014693073 470.48 −9.90

04 C27H46O5 ZINC000044387599 450.66 −9.70

05 C25H35NO5 ZINC000014714664 429.56 −9.60

06 C25H34O6 ZINC000238761262 430.54 −9.50

07 C25H38O6 ZINC000040915743 434.57 −9.40

08 C27H34N2O5 ZINC000042851223 466.58 −9.40

09 C25H25NO6Cl No data 470.93 −9.30

10 C29H50O6 ZINC000255214715 494.71 −9.30

(Continued on following page)
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predictions were also performed to study pharmacokinetic
properties. Furthermore, Ligand Gaussian accelerated
Molecular Dynamics (LiGaMD) were carried out on the
three potential inhibitors to study low-energy states (Miao,

Bhattarai, and Wang, 2020). To validate the low-energy states
in LiGaMD, we performed an extended conventional MD.
Finally, we analyzed the binding pockets of Fascin with
different potential inhibitors.

TABLE 1 | (Continued) Data collection of potential inhibitors for Fascin by molecular docking. Unit: kcal/mol.

No./Compound Library ID Structure Molecular weight Binding affinity

11 C28H40O7 ZINC000042888842 488.62 −9.20

12 C20H28O4 ZINC000005890667 332.44 −9.10

13 C28H40O3 ZINC000014767734 424.62 −9.10

14 C27H48O4 ZINC000137671675 436.68 −9.10

15 C28H50O4 ZINC000137547990 450.70 −9.10

16 C30H52O4 No data 476.74 −9.10

17 C24H20Cl2N2O4 ZINC000085599962 471.34 −9.10

18 C27H39N3O2 No data 437.63 −9.00

19 C28H48O6 ZINC000044387005 480.69 −9.00

aActive controlled indicator.
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MATERIALS AND METHODS

Data Preparation
In terms of the target protein, the crystal structure of Fascin
was obtained from an online protein database (https://www.
rcsb.org), PDB: 6B0T, 2.80 Å resolution (Huang et al., 2018).

The crystal structure was solved with its inhibitor NP-G2-029,
which was set as an active controlled sample in our study.
In addition, NP-G2-044, another effective inhibitor, was used
as an active control (Han et al., 2016; Huang et al., 2018). On
the other hand, inhibitors NP-G2-112 and NP-G2-113
were used as an inactive control since they do not have

FIGURE 5 | The RMSF of residues in complex with NP-G2-029 and 18 inhibitors in conventional MD simulations. Different color lines stand for the different
inhibitors.

TABLE 2 | Binding affinity for each inhibitor by MM/GBSA (Unit: kcal/mol. Potential inhibitors those meet the criterion are highlighted as bold values.)

Receptor Ligand No. △EvdW △Eele △EPolar △Enon-polar ΔGbind SD

Fascin 01(NP-G02-029) −50.42 −20.92 35.29 −4.93 −40.97 0.28
Fascin 02 −43.71 −19.74 34.51 −4.98 −33.91 3.54
Fascin 03 −44.63 −28.99 51.13 −5.18 −27.66 3.07
Fascin 04 −47.44 −15.72 33.96 −5.04 −34.23 3.42
Fascin 05 −47.86 −11.60 27.43 −5.38 −37.41 2.51
Fascin 06 −45.80 −11.71 31.96 −5.03 −30.58 3.79
Fascin 07 −52.78 −10.03 27.01 −5.35 −41.14 2.53
Fascin 08 −42.05 −29.61 42.83 −4.60 −33.41 2.66
Fascin 09 −45.42 −16.57 36.71 −5.24 −30.52 2.62
Fascin 10 −40.84 −17.14 32.68 −4.80 −30.10 2.65
Fascin 11 −43.02 −19.21 33.22 −5.21 −34.22 3.07
Fascin 12 −38.20 −6.21 21.80 −4.28 −26.89 1.79
Fascin 13 −58.00 −15.99 32.75 −5.97 −47.20 3.94
Fascin 14 −47.53 −8.89 25.55 −5.01 −35.88 2.09
Fascin 15 −49.60 −18.33 32.55 −5.26 −40.64 0.69
Fascin 16 −46.01 −7.04 21.67 −5.06 −36.44 2.42
Fascin 17 −42.97 −32.28 45.93 −4.74 −34.06 2.59
Fascin 18 −56.03 −12.02 29.80 −5.55 −43.79 2.56
Fascin 19 −47.41 −9.60 31.15 −5.18 −31.04 2.86

Frontiers in Chemistry | www.frontiersin.org October 2021 | Volume 9 | Article 7199497

Lin et al. Potential Inhibitors for Fascin

https://www.rcsb.org
https://www.rcsb.org
https://www.frontiersin.org/journals/chemistry
www.frontiersin.org
https://www.frontiersin.org/journals/chemistry#articles


any effect on Fascin (Han et al., 2016). Because no complex
structures were solved for the NP-G2-044, -112, and -113,
complex structures were prepared by molecular docking.

For the ligand database, Marine Natural Products Library
(Marvin annotated) series (http://docking.umh.es) was used
(Bugni et al., 2008; Encinar et al., 2015; Galiano et al., 2016).
OMEGA was used for generating the conformations of all
compounds (Hawkins et al., 2010).

Pharmacophore Model
Ligand-based pharmacophore modeling is one of the widely used
methods in CADD (Leach et al., 2010). In this work, the
pharmacophore model was built by LigandScout V4.4.5, (Salam,
Nuti, and Sherman, 2009; Dixon et al., 2006; Maia et al., 2020).
Directed hydrogen-bond interactions, hydrophobic interactions,
charge interactions, and steric exclusions were detected directly.
In this work, the HypoGen algorithm was used to produce the
model, which contains three hydrophobic, one hydrogen-bond
donor, and one hydrogen-bond acceptor (Figure 3) (Koes and
Camacho, 2011). All features are added as 3D objects. It can be
seen from Figure 3A that there are three hydrophobic models for
this inhibitor, so the hydrophobic effect is the main
pharmacophore feature. In addition, two hydrogen-bond
interactions were formed between the inhibitor and Fascin,
and inhibitor acted as hydrogen acceptor and donor, respectively.

Molecular Docking
Molecular docking is a structure based virtual screening method
for drug discovery (Liu et al., 2020). It explores small ligand
binding to biomacromolecule by searching the possible degrees of
freedom of the whole system and finding the global energy

minimum. The binding sites of the ligand are evaluated by
different score functions. It is widely used for lead screening
and optimization (Saikia and Bordoloi, 2019). In this work, the
AutoDock Vina module of LigandScout was used for docking
(Roy, Srinivasan, and Skolnick, 2015; Nguyen et al., 2020). The
scoring function of Vina includes a finite repulsion term,
Gaussian steric interaction terms, Piecewise linear
hydrophobic, hydrogen-bond interaction terms, etc. (Gaillard,
2018). All docking calculations were performed with default
values in LigandScout.

Molecular Dynamics Simulation
In this paper, we performed molecular dynamic simulations on
Fascin with 19 inhibitors. The coordinate of Fascin for all systems
was taken from the 2.80 Å crystal structure of the Fascin-NP-
G02-029 complex (PDB code: 6B0T) (Huang et al., 2018).
Missing residues of structure (fragment 1–6) were modeled by
using Chimera (Pettersen et al., 2004). TIP3P water models were
used for solvating all systems (Jorgensen et al., 1983) in an
octahedral box with a minimum distance of 12 Å from protein
structures to box boundary (Gillan, Alfe, and Michaelides, 2016).
Each His residue protonation state was identified by the pKa
value from PROPKA (Olsson et al., 2011). All of the His residues
were protonated at NE2 atoms, except His96, His108, His154,
His198, His310 which are assumed to be doubly protonated, and
His135 is protonated at ND1 atoms.

For all ligands, AM1-BCC atomic charges were calculated by
the antechamber program (Wang and Kollman, 2001) (Jakalian
et al., 2000; Jakalian, Jack, and Bayly, 2002). The general AMBER
force field (GAFF) and Amber ff14sb force field were used for
inhibitors and Fascin, respectively (Wang et al., 2004; Maier et al.,
2015). In addition, an optimal amount of counterions was added
to generate a neutral system.

The conventional MD simulation of each Fascin-inhibitor
system was performed by using Amber 20 (Belfon et al.,
2020). Langevin dynamics (Wu and Brooks, 2003) were
performed at a constant temperature of 300 K. Collision
frequency was set to 2.0 ps−1. For NPT ensemble, pressure was
kept at 1 atm (Berendsen et al., 1984). Particle mesh Ewald
summation was used to handle the long-range electrostatics
(Darden, York, and Pedersen, 1993).

For all simulations, we first ran a 5000-step minimization. Then,
20 ps NVT and 20 ps NPT pre-equilibration were carried out with
restraints for heavy atoms of the protein. To further equilibrate the
system, we ran a 1 ns NPT simulation without any restraints. Finally,
20 ns NPT production simulations were performed and coordinates
were printed every 1 ps. For each inhibitor with Fascin, we
performed five replicates of production calculations. For all
systems, root mean square deviation (RMSD), root mean square
fluctuation (RMSF), and radius of gyration (Rg) were calculated by
using the cpptraj module in AMBER 20 (Belfon et al., 2020).

Ligand Gaussian Accelerated Molecular
Dynamics
Conformation transition of protein usually happens in a
millisecond time scale due to the high energy barrier between

FIGURE 6 | ADME evaluation result. Different color circles stand for each
inhibitor.
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different states. Thus, it is hard to capture the most stable state
of protein from the whole potential surface. To investigate the
conformational changes of Fascin with different inhibitors
effectively, we used Li-GaMD (Miao, Feher, and McCammon,

2015; Miao, Bhattarai, andWang, 2020) for simulation, which is
developed from the enhanced sampling method GaMD (Miao,
Feher, and McCammon, 2015), LiGaMD can accelerate
simulations of the receptor with ligand between binding and

FIGURE 7 | Toxicity evaluation result. Evaluation processed by ProTox-II server (https://tox-new.charite.de/) (Banerjee et al., 2018).
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FIGURE 8 | Free energy landscapes and low-energy conformational states of Fascin with inhibitors, whose wasmodeled with the GAFF force field by using LiGaMD
simulation: (A) PMF profile of inhibitor No. 07, collective variables (CVs) are backbone dihedrals (φ) and RMSD of inhibitor No.07. (B) PMF profiles of inhibitor No. 15, CVs
are the radius of gyration and RMSD. (C) PMF profiles of inhibitor No. 18, CVs are the same with inhibitor No.15.
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unbinding, explore protein conformational transition
efficiently.

In a system comprising ligand L, protein P, and environment
E, the system comprises N atoms with their coordinates
r ≡ {r1→, . . . , rN

�→} and momenta p ≡ {p1
�→

, . . . , pN
��→}. The system

Hamiltonian can be expressed as:

H(r, p) � K(p) + V(r) (1)

where K(p) and V(r) are the systems kinetic and total potential
energies, respectively. Then, the potential energy could be
decomposed into the following terms:

V(r) � VP,b(rP) + VL,b(rL) + VE,b(rE)
+VPP,nb(rP) + VLL,nb(rPL) + VEE,nb(rPL)
+VPL,nb(rPL) + VPE,nb(rPE) + VLE,nb(rLE) (2)

whereVP,b, VL,b, andVE,b are the bonded potential energies in protein
P, ligand L, and environment E, respectively. VPP,nb, VLL,nb, and
VEE,nb are the nonbonded potential energies. VPL,nb, VPE,nb, and
VLE,nb are the nonbonded interaction energies. Based on classical force
fields (Duan et al., 2003; Vanommeslaeghe and MacKerell, 2015), the
non-bonded potential energies are usually presented as:

Vnb � Velec + Vvdw (3)

Presumably, ligand binding mainly involves the nonbonded
interaction energies of the ligand,
VL,nb(r) � VLL,nb(rL) + VPL,nb(rPL) + VLE,nb(rLE). LiGaMD adds
a boost potential selectively to the ligand non-bonded
potential energy according to the GaMD algorithm:

ΔVL,nb(r) �
⎧⎪⎨
⎪⎩

1
2
kL,nb(EL,nb − VL,nb(r))2, VL,nb(r)<EL,nb

0, VL,nb(r)<EL,nb

(4)

where EL,nb is the threshold energy for applying boost potential
and kL,nb is the harmonic constant. These parameters in LiGaMD
are derived similarly as in the GaMD algorithm (Miao, Feher, and
McCammon, 2015).

In addition to optional boosting non-bonded potential energy
term of ligand, a second boost potential can be added on protein
to explore protein conformational changes. The second boost
potential is calculated using the total system potential energy as:

ΔVD(r) �
⎧⎪⎨
⎪⎩

1
2
kD(ED − VD(r))2, VD(r)<ED

0, VD(r)<ED

(5)

where VD is the total potential energy without the nonbonded
potential energy of ligand, ED is the threshold energy for applying
the second boost potential and kD is the harmonic constant. In
this study, we applied dual-boost LiGaMD and total boost
potential ΔV(r) � ΔVL,nb(r) + ΔVD(r) � ΔVL,nb(r) + ΔVD(r).
For the analysis of the results, we used the PyReweighting
program to calculate the free energy surface with different
collective variables (Miao et al., 2014).

Binding Affinity Calculation With MM/GBSA
In order to calculate the binding free energies for different
potential inhibitors, we used molecular mechanics MM/GBSA
methods. It is an end-point based free energy calculation method,

FIGURE 9 | The RMSD of inhibitor No. 07, 15, 18 in extended
conventional MD simulation. The line with black, red, green color is inhibitor
No. 07, 15, 18 respectively.

FIGURE 10 | Energy decomposition analysis and interaction networks
between Fascin and inhibitors No. 07, 15, and 18. Interaction networks
plotted by LIGPLOT Software (Laskowski and Thornton, 1995).
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i.e., the binding free energy is calculated by

ΔGbind �GRL –GR –GL (6)

whereGL, GR, andGL represent the free energy of the complex and the
receptor and ligand, respectively. Each free energy is calculated with

G � (Ebond) + (Eele) + (EvdW) + (Epol) + (Enp) − TS (7)

where Ebond is the energy of covalent interactions, Eele is the
electrostatic potential, EvdW is the energy of van der Waals
interactions, and Gpol and Gnp are the polar and nonpolar
contributions. The conformational entropy contribution (-TS)
is estimated by normal-mode analysis (Srinivasan et al., 1998),
but it is usually neglected from consideration due to its high
computational cost and low prediction accuracy (Hou and Yu,
2007; Sun et al., 2018). In this work, MMPBSA. py (Miller et al.,
2012) module in Amber20 (Belfon et al., 2020) was used to
calculate the MM/GBSA for each system based on the last
2,500 frames extracted from the 20 ns conventional MD
trajectory.

Pharmacokinetics Evaluation
ADMET evaluation is a comprehensive study of drug absorption,
distribution, metabolism, excretion, and toxicity properties (Acuna,
Hopper, and Yoder, 2020). Evaluation of ADMET properties at the
early stage of drug development can significantly improve the success
rate of drug discovery. It is used to efficiently and accurately calculate
the physicochemical properties, toxicity information, and
pharmacokinetic properties of candidate drug molecules, provide
the basis for prediction and improve the interpretability of
structure and drug credibility (Wenzel, Matter, and Schmidt,
2019). The small molecule hits were predicted by ADMET based
on the Swissadme server (http://www.swissadme.ch/) (Daina,
Michielin, and Zoete, 2017), and LogP and TPSA were pointed
out as the main reference indexes of the results.

Log P refers to the equilibrium distribution of the undissociated
molecules in the oil and water phases, which is an important indicator
in the passage of compounds through biofilm. TPSA refers to the
topological polar surface area. TPSA <60 indicates that it has good
membrane permeability and is completely absorbed. 60 <TPSA <140
indicates the molecular permeability decreases with the increase of
polar surface area. TPSA >140 indicates poor permeability of the
molecule. Lipid solubility is an important parameter of small
molecules in pharmaceutical chemistry. Log P is the logarithm of
the oil-water partition coefficient P of the compound, which refers to
the equilibrium of the distribution of the undissociated molecules in
the oil phase and water phase. When oral drugs are permeated by
passive diffusion, logP in the 0–3 range is the best. High logP
compounds have poor water solubility and low logP compounds
have poor lipid permeability.

RESULTS AND DISCUSSION

Pharmacophore Model
In this work, the pharmacophore model with three hydrophobic,
one hydrogen-bond donor, and one hydrogen-bond acceptor

(Figure 3) was used for virtual screening. First, the MNPs
database (14,064 compounds) was processed by Openbabel
V2.4.1 for 3D structure generation, hydrogenation, and charge
processing operation (O’Boyle et al., 2011), and 12,015
compounds were generated. Then, the pharmacophore virtual
screening was performed on the 12,015 compounds (Figure 3). In
total, 472 compounds with high fitness were found. Finally,
compounds that have a molecular weight larger than 500 were
removed with the Filter module, which provided 281 results for
further study.

Molecular Docking
In the crystal structure, inhibitor NP-G2-029 resides in the
pocket formed by the residues located in the junction of
domains 1 and 2 (Figure 4A). The surface volume of the
active site inherent is 1130 A3 calculated by the Proteins Plus
server (Schoning-Stierand et al., 2020). To rank the 281 ligands
from the screening based on the Pharmacophore model,
molecular docking was performed with the AutoDock Vina
module of the Ligandscout program (Wolber and Langer, 2005).
The top 18 ligands with binding energy ≤ −9 kcal/mol were
selected as the potential inhibitors for further calculations. The
molecular structures and molecular binding energy are shown
in Table 1 (For convenience, we have also provided the ZNIC ID
for those MNPs).

As is shown in Figure 4B, all the 18 small molecules that are
embedded in the binding pocket are approximately as same as
NP-G2-029. The residues of Fascin involved in the binding
pocket are mainly Leu48, Glu49, Gln50, Ile93, Trp101, Val
103, Glu215, Phe216, and Arg217. All the detailed interactions
between ligands and proteins are shown in Supplementary
Figure S1.

Conventional Molecular Dynamics for
Fascin-Inhibitor Complex
To find a better inhibitor than NP-G2-029, conventional MD
dynamics were carried for the Fascin with 18 inhibitors from
AutoDock Vina. For each system, we run 20 ns × 5 replicates.
RMSDs for all systems indicate that all simulations are
converged (Supplementary Figure S2). It can be seen from
RMSF data (Figure5) that the binding sites of inhibitor in
Fascin-inhibitor complexes are more dynamic with a range of
3–10 Å in β-trefoil 1, whereas other regions are relatively rigid,
compared to Fascin without inhibitor (Blue line in Figure 5).
These findings are consistent with a study by Huang et al.
(2018). Overall, the inhibitors affect the RMSF of Fascin
significantly.

Binding Free Energy by MM/GBSA
To improve the accuracy of ranking in molecular docking, we
calculated the binding affinities of inhibitors in each complex
using MM/GBSA with conventional MD trajectories. Binding
free energy results were obtained based on the five replicate (20 ns
× 5 replicas) simulations (Table 2). For inhibitor NP-G2-029 with
Fascin, the calculated binding affinity is −41 kcal/mol, indicating
the two objectives are favorable for binding, which is consistent
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with experimental data that NP-G2-029 inhibits Fascin (Huang
et al., 2018). For the other active inhibitor NP-G2-044, the
binding affinity is −42 kcal/mol (Supplementary Table S2).
For the inactive inhibitors NP-G2-112 and NP-G2-113, they
are −38 and −35 kcal/mol, respectively. Thus, −41 kcal/mol
was used as a threshold value, i.e., ligands with binding
affinity larger than −40 kcal/mol are thought of as potential
inhibitors. It can be found from Table 2, No. 07, 13, 15, 18
inhibitors have qualified binding affinities to Fascin with binding
free energies of −41, −47, −41, −44 kcal/mol, respectively.

Pharmacokinetics Evaluation
Pharmacokinetics prediction was performed for the 19
compounds (including NP-G2-029) on the ADMETlab server
(Dong et al., 2018), which is based on a comprehensive database
that includes 288,967 entries (Ferreira and Andricopulo, 2019).
There are four function modules for drug-likeness analysis,
ADME endpoint prediction, systematic evaluation, and
similarity searching, these results give an overall
understanding of compounds and can check the rapid
screening process.

For NP-G02-029 and the 18 small molecules, we perform
ADMET assessments, which include Lipid solubility (Dong et al.,
2018; Ferreira and Andricopulo, 2019). Lipid solubility is an
important parameter for small molecules in pharmaceutical
chemistry (Williams et al., 2013). When oral drugs are
permeated by passive diffusion, the logP 0–3 range is the best.
High logP compounds have poor water solubility, low logP
compounds have poor lipid permeability. TPSA <60 denotes
good membrane permeability and is completely absorbed. 60 <
TPSA <140 denotes that the molecular permeability decreases
with the increase of polar surface area. TPSA >140 denotes the
poor permeability of the molecule.

ADME results in Figure 6 show that TPSA of No. 02, 04, 05,
06, 07, 09, 10, 11, 12, 14, 15, 17, 18, 19 are in range of 60–120, and
whose logP are in a range of 3–5. Notable, No.13 inhibitor is out
of 60–120 TPSA and 3–5 logP, therefore, we exclude No.13
inhibitor for the next assessment.

Toxicity predictions are performed on the potential inhibitor
No. 07, 15, 18, and the NP-G2-029. Data in Figure 7 shows that
the toxicity score of NP-G2-029 is 5, the toxicity scores of
inhibitor No. 07, 15, 18 are 5, 2, 3 respectively, whose are
lower than NP-G2-029, signify that the potentials inhibitor are
less toxic than NP-G2-029.

Ligand GAMD Simulation
To confirm whether the docking pose of compounds 07, 15, and
18 are stable in the pocket of Fascin, we performed LiGaMD
simulations. The boost potential added in LiGaMD simulations is
according to Gaussian distribution, accurate reweighting and
recovery of the original biomolecular free energy landscapes
can be achieved by using cumulant expansion to the second order.

For No. 07 inhibitor (Figure 8A), 2D PMF with backbone
dihedrals (φ) and RMSD is calculated by reweighting 100 ns
LiGaMD simulations. One low-energy state (labeled as A) can be
found from the potential surface. The binding pocket in this state
includes Ile93, Trp101, Val134, Phe216, Leu48, Val60, Phe14,

Leu103, Leu16, and they contribute the binding free energy much
according to the energy decomposition in MM/GBSA
(Figure 10).

For No. 15 inhibitor (Figure 8B) 2D PMF with the radius of
gyration of protein and RMSD. The state with the lowest energy is
shown in Figure 8B. For this inhibitor, the binding pocket is
slightly modulated due to ligand binding. The pocket consists of
Glu215, Val134, Phe216, Arg217, Leu48, Ile93, Val60, Trp101,
Phe14, and Leu16.

For the No.18 inhibitor (Figure 8C), the 2D PMF was plotted
with the same collective variables as inhibitor No. 15. Again, the
binding pocket modulates slightly, including Ile93, Phe216,
Trp101, Val134, Leu48, Glu215, Val60, Phe14, and Leu103.

In addition, for binding poses of the ligands, AutoDock Vina
gives almost the same pose as LiGaMD simulations in this study.

Extended Conventional MD From
Low-Energy States
To confirm that whether the three inhibitors reside in the binding
pocket of Fascin in LiGaMD, we ran 100 ns conventional MD
simulations that start from the structures at A position in
Figure 8. As is shown in Figure 9, RMSD values for the three
potential inhibitors are mainly lower than 1 Å, indicating that all of
them stay at the binding position. On the other hand, our results
indicate that the docking structures can be trusted for this system.

Finally, we run the binding affinity and binding energy
decomposition analysis for the three systems (Figure 10A). The
binding affinities of inhibitor No. 07, 15, 18 are −42, −45, and
−41 kcal/mol, respectively. Our results indicate the three
compounds can bind to Fascin as well as NP-G2-029. The crucial
residues contributed to the binding affinity of the inhibitor and are
mainly in the binding pocket, as shown in Figure 10B. It can be seen
from the interaction network that the hydrophobic interactions have a
large contribution for binding, i.e., 7 hydrophobic interactions for
ligand No. 07, 11 hydrophobic interactions for ligand No. 15, and 24
hydrophobic interactions for ligand No. 18. In addition, 2 hydrogen
bonds are formed for ligandNo. 07 and one hydrogen bond is formed
for ligand No. 15.

CONCLUSION

Fascin is overexpressed in many cancers, e.g., esophageal cancer.
In this paper, we performed CADD methods to predict the
potential inhibitors for Fascin from a library of marine natural
products including 14,064 compounds, viz. pharmacophore
model, molecular docking, molecular dynamics, MM/GBSA,
and predictions of absorption, distribution, metabolism,
excretion and toxicity properties (AMDET).

First, we built the pharmacophore model for the inhibitor NP-
G02-029, which was confirmed experimentally (Huang et al., 2018).
With the pharmacophoremodel, we achieved 472 results. In addition,
compounds that have a molecular weight larger than 500 were kicked
out, which gives 281 hits for further study. Next, molecular docking
was carried out to rank all the 281 hits. The top 18 inhibitors with
binding affinity larger than 9 kcal/mol were selected for further study.
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To accurately assess the binding affinity, MM/GBSA
calculations are performed for the 19 compounds (including
NP-G02-029). Four compounds (No. 07, 13, 15, and 18) were
found to have larger affinities to Fascin than NP-G02-029 and
were deemed potential inhibitors.

To predict the AMDET, we used the web server ADMETlab
server (Dong et al., 2018) and ProTox-II server (Banerjee et al.,
2018). AMDET results indicate that compound No.13 does not
satisfy the criteria. Thus, three compounds (No. 07, 15, and 18)
potentially inhibit the function of Fascin.

Finally, we ran LiGaMD and other conventional MD
simulations to confirm whether the three potential inhibitors
reside in the binding site or not. Our results demonstrate that all
of them stay at the binding site stably.

Thus, we predict three potential inhibitors for Fascin from
marine natural products in this investigation. These
inhibitors could have higher binding affinities than the one
(NP-G02-029) found in the previous study (Huang et al.,
2018), and block the function of Fascin. All the
computational methods used in this study could accelerate
drug discovery dramatically.
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