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Abstract

Introduction: Artificial-intelligence (AI)-based predictive analytics provide new oppor-

tunities to leverage rich sources of continuous data to improve patient care through

early warning of the risk of clinical deterioration and improved situational awareness.

Part of the success of predictive analytic implementation relies on integration of the

analytic within complex clinical workflows. Pharmaceutical interventions have off-

target uses where a drug indication has not been formally studied for a different indi-

cation but has potential for clinical benefit. An analog has not been described in the

context of AI-based predictive analytics, that is, when a predictive analytic has been

trained on one outcome of interest but is used for additional applications in clinical

practice.

Methods: In this manuscript we present three clinical vignettes describing off-target

use of AI-based predictive analytics that evolved organically through real-world

practice.

Results: Off-target uses included:real-time feedback about treatment effectiveness,

indication of readiness to discharge, and indication of the acuity of a hospital unit.

Conclusion: Such practice fits well with the learning health system goals to continu-

ously integrate data and experience to provide.
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1 | INTRODUCTION

Artificial intelligence (AI)-based predictive analytics provide new

opportunities to leverage rich sources of continuous data to improve

patient care.1-8 These approaches use machine learning and other

modern statistical techniques to provide early warning of events of

clinical deterioration such as sepsis, respiratory failure, hemorrhage,

and emergent intensive care unit (ICU) transfer.9-11 While AI-based

predictive analytics estimate the risk of specific clinical events, in

practice they can be used as a proxy for illness severity, or even as a

comprehensive biomarker or physiomarker.12 For example, after

implementation of a display of the risks of urgent unplanned intuba-

tion for acute respiratory failure and hemorrhage requiring large trans-

fusion in a surgical/trauma ICU,10 point-of-care clinicians describedJessica Keim-Malpass and Liza P. Moorman contributed equally to this study.
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the clinical utility of using the risk models in ways other than early

warning.13

Pharmaceutical interventions have off-target uses where a new

drug indication has not been formally studied, but has potential for

clinical benefit and is still prescribed. An analog has not been

described in the context of AI-based predictive analytics, that is,

when a predictive analytic has been trained on one outcome of inter-

est but is used for additional applications in clinical practice. In the

three cases we present in this manuscript, the AI model was trained

on events of clinical deterioration (the model outcomes included

events such as: sepsis, emergent intubation, hemorrhage, emergent

ICU transfer, etc.).12,14-16 Since 2015, these models have been

implemented as a visual risk analytic in several ICUs and acute care

wards. We discuss off-target uses where the score can be used as a

proxy for illness severity and point of care clinicians use this infor-

mation in a variety of ways, beyond just the early warning of immi-

nent deterioration.12 We specifically discuss clinical off-target uses

including: (1) use of the score as a treatment response physiomarker

(ie, is my patient responding to the antibiotic regimen appropriately?

In other words, is this treatment plan effective for this patient?);

(2) an ongoing low risk score indicating relative stability used to

assess patient readiness for discharge; (3) assessing all of the patient

scores on a unit together to get a sense of overall unit acuity (ie, is

there adequate nursing staffing? Which patient is the most acutely ill

on the unit? Where should rounding start?). In all of these examples,

the AI-derived risk score is used in ways that the model was not orig-

inally trained on, yet clinicians have developed off-target uses based

on their own role and needs.13 Additional off-target uses that point

of care clinicians described using include: the use of the score to

assess for adequate pain and sedation management, determining the

need for endotracheal tube suctioning, assessing when the patient is

stable enough to get out of bed for a walk or physical therapy,

etc.13,17

An extreme version of off-target use is a one-size-fits-all

approach, that is, a model trained on a specific event as a general tool

for deterioration throughout the hospital. Examples include the Roth-

man Index18 (trained on death in the next 12 months), eCART19,20

(trained on cardiac arrest on the wards), and TREWScore21 (trained on

septic shock in the ICU). Note that these are trained models rather

than scores such as SIRS, (q)SOFA and (x)EWS that are fashioned by

experts. We have argued against this one-size-fits-all approach, favor-

ing the use of predictive models tailored for specific patient popula-

tions and target illnesses.22 Because these models are specific to

clinical events and physiologic systems, we suggest that clinicians can

use them in ways that have the potential to promote optimal support-

ive care, responsiveness to therapy, and support overall resource allo-

cation of a unit or hospital.

Within an evolving learning health system, visual AI-based predic-

tive analytics utilize practices based on user-centered design and

ongoing stakeholder engagement for successful implementation and

adoption. Part of this process includes working with clinicians to have

them identify how the analytics can be successfully integrated within

their already complex workflow.17 Here, we present three clinical

vignettes describing off-target use of AI-based predictive analytics

that evolved organically through real-world practice. Such practice fits

well with the learning health system goals to continuously integrate

data and experience to provide a holistic view of the patient and to

deliver care safely.

1.1 | Brief orientation to AI-based predictive
analytics

The CoMET monitoring platform (Nihon Kohden Digital Health Solu-

tions, Irvine, CA) has been in use at the University of Virginia Health

System since 2015. It was first used in the surgical/trauma intensive

care unit (ICU) and later expanded to the surgical intermediate care unit,

medical ICU, Special Pathogens Unit (Covid-19) ICU, coronary care ICU,

cardiothoracic surgical ICU, and the acute care ward settings. CoMET

uses data from continuous cardiorespiratory monitoring23 and the EHR.

The inputs include signal processing calculations performed on wave-

forms (continuous chest impedance, electrocardiogram [ECG], and pleth-

ysmography) and vital signs (heart rate, respiratory rate, pulse oximetry,

non-invasive, and invasive blood pressures) from bedside monitoring;

laboratory data from the electronic medical record; patient age; and

nurse-entered vital signs. These inputs are used to calculate the fold-

increase in the risk of an event of clinical deterioration. These scores are

calculated every 15 min and displayed visually.15,24,25 The models for

risk score calculation are multivariable logistic regression expressions

adjusted for repeated measures and use a sample and hold strategy for

results like laboratory results or nurse-entered vital signs that are not

updated at the same frequency. They were trained and tested on clinical

deterioration events including sepsis, emergent intubation, emergent

ICU transfer, bleeding, and others.14-16,22,26-28 Unlike one-size-fits-all

models, they target specific clinical units and patient populations. The

approach of AI-based predictive analytics for early warning is based on

the premise that there are often subtle changes that represent signa-

tures of illness, or prodromes, that can be detected hours prior to an

adverse clinical event.10,15

2 | CLINICAL VIGNETTES DESCRIBING
USES OTHER THAN PREDICTION OF FUTURE
EVENTS

2.1 | Real-time feedback about treatment
effectiveness

A 44-year-old male with diabetes and solid organ transplants developed a

mycotic fluid collection around the pancreatic allograft. He developed sep-

tic shock requiring admission to the surgical/trauma ICU for vasopressor

support and mechanical ventilation with multiple abdominal washouts. He

was eventually transferred to the acute care ward where he had an

increase in fold-risk of deterioration on both the cardiorespiratory and car-

diovascular instability axes (Figure 1). The event specific models for both

axes in this unit include risk for sepsis, so an increase on both axes in this
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patient suggested increased instability and risk for sepsis. This led clinicians

to test the sensitivities of the infective organism, which was resistant to

his antibiotic regimen. Following an antibiotic change, the CoMET score

fell. The abrupt rise in the score indicated that he was not appropriately

responding to his treatment regimen. CoMET identified this treatment

issue prior to laboratory notification of culture sensitivity.

F IGURE 1 Patient with infection in the setting of end-stage renal disease and recent solid organ transplant in whom susceptibility testing
indicated resistance to current antibiotic regimen. The head of the CoMET plot indicates the fold-increase in risk and high degree of instability
(nearly 4-fold-increased risk of cardiovascular event and 4-fold-increased risk of cardiorespiratory event) over a 3 h period (tail of CoMET to
head). The trend window in the bottom right hand corner indicates increasing cardiovascular and cardiorespiratory instability over a period up to
72 h prior. In this and the following figures, the display is of Prediction Assistant: CoMET inside, Premier, Inc., Charlotte, NC

F IGURE 2 This patient remained at nearly a 6-fold increased risk of respiratory decompensation during his admission to the coronary care
unit following his surgical complication, despite treatment for working diagnosis of volume overload. Once the appropriate treatment was
initiated, the patient's score dropped to 1.5-fold risk and remained low until his successful discharge home
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2.2 | Indication of readiness for discharge

A 73-year-old male with atrial fibrillation had implantation of a left

atrial appendage occlusion device complicated by cardiac perforation

and tamponade. He was admitted to the coronary care unit following

pericardiocentesis and placement of a pericardial drain and remained

intubated. Throughout the course of his illness, his CoMET score

approached a 6-fold increased risk of an adverse cardiorespiratory

event (Figure 2). During this time, he had a significant oxygen require-

ment with no clinical improvement. He was diuresed and given antibi-

otics after a chest radiograph showed pneumonia. He improved

clinically, the CoMET score fell to less than 2, and he was discharged

to home 2 days later. Here, the rapid drop in CoMET score indicated

that his therapeutic regimen was working well.

2.3 | Indication of the acuity of a hospital unit

All of the CoMET scores of patients within a hospital unit can be

viewed simultaneously to indicate the overall acuity of the unit

(Figure 3). Unlike other acuity scores that are infrequently updated in

real-time, only calculated once, or are otherwise static, AI-based pre-

dictive analytics can be updated in real-time. This feature allows eval-

uation of resource utilization and nursing assignments as the overall

stability level within the unit changes. Different users will have differ-

ent perspectives and uses for this unit interface—for instance, a physi-

cian might use the leaderboard to determine where to begin bedside

rounds for the day, a charge nurse may use it to make appropriate

nursing assignments or to anticipate staffing needs for the next shift,

and an individual nurse may use it to offer help or check in on their

fellow nurse assigned to a less stable patient.

3 | CONCLUSION

As the Institute of Medicine report entitled “Digital Infrastructure for the

Learning Health System” suggests, predictive analytics, risk predictions,

and use of AI in healthcare are central to the future healthcare delivery.29

Clinicians at the point of care must engage with risk estimates in a way

that integrates within their already complex workflow. This is fundamen-

tal in the learning health system where informatics and care culture align

for continuous improvement.13,25,30-32

Off-target uses for AI-based predictive analytics can address mul-

tiple goals. A global estimate of the changing severity of illness can

direct the conversations of clinicians, patients, and families, give feed-

back on the success of therapies, and add to discharge decisions. They

allow clinicians and health systems to imagine the various ways ana-

lytics can be incorporated within a learning health system at the bed-

side and prioritizes the bedside clinicians' needs and priorities, which

often reflect patient and family concerns. Understanding that visual

AI-based predictive analytics can serve as a continuously updated

measure of severity of illness, or treatment response physiomarker

allows for their use beyond early warning of potential future events.

For example, as we show here, these analytics can assess the effec-

tiveness of treatment regimens or the relative stability of a patient

who may be ready for discharge.12,26,33 The many potential uses at

F IGURE 3 Beyond assessing only the individual patient, the entire hospital unit can be viewed to indicate the overall acuity. The top right
CoMET panel is used as a “leaderboard” and ranks the overall levels of instability along with a visual indication of greater (Bed 94), lesser (Bed
93), or unchanging (Bed 98) levels of instability
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the hospital unit or health system level have implications for resource

allocation in situations of scarcity such as during the Covid-19 pan-

demic, although it is critical to be mindful of the potential for alert

fatigue for bedside clinicians.25,34

The education of users can incorporate these ideas in a way that

does not detract from the original intention of the AI-based predictive

analytic to provide early warning of events of clinical deterioration.

Most of the current educational considerations of AI-based predictive

analytics for clinical deterioration within a learning health system

focus on the use of situational awareness as a means of incorporating

these scores into the continuous monitoring paradigm and moving the

clinical stance from reactive to proactive.13,17 Education and imple-

mentation can be diversified and tailored based on the user group and

their identified use for the analytics in the context of their specific

workflows and patient populations.17 These types of clinician-

centered perspectives can add to the successful implementation and

long-term adoption of AI-based predictive analytics within learning

health systems. In the three cases presented here, the visual AI-based

predictive analytic displays were in use, and we learned of the off-

target uses because of feedback elicitation and stakeholder engage-

ment following implementation.17

Model end-users, such as bedside clinicians, are rarely consulted

during the model development stage to offer suggestions on model

outcomes that would be useful for their workflow to improve patient

care delivery. We view this as a missed opportunity. In this case

series, we demonstrate how visual AI-based predictive analytics that

were trained on events of clinical deterioration can be used in off-

target ways when the score represents underlying physiological stabil-

ity.12,35 It is not feasible to develop and train AI-based models on

every possible event or model outcome that clinicians may view as

useful, but it is incredibly important to elicit feedback following imple-

mentation on how clinicians have incorporated the model output into

their workflows.13 It is critical to collect long-term data on uses, clini-

cal actions, and quality outcomes within a learning health system cycle

feedback to determine if further study or additional validations are

needed due to data reasons (data drift, missingness). Further, it is

imperative to compare model outputs and clinical outcomes associ-

ated with various sub-groups to formally assess for the risk of bias in

model development and implementation.36,37
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