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Mechanisms of Neuronal Death in Synucleinopathy
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a-synuclein is a key molecule in the pathogenesis of synucleinopathy including Parkinson’s disease and multiple system atrophy.
In this mini-review, we mainly focus on recent data obtained from cellular models of synucleinopathy and discuss the possible
mechanisms of neurodegeneration. Recent progress suggests that the aggregate formation of a-synuclein is cytoprotective and that
its precursor oligomer (protofibril) may be cytotoxic. The catechol-derived quinones are the candidate molecules that facilitate the
oligomer formation of a-synuclein. Furthermore, the cellular membranes are shown to be the primary targets injured by mutant
a-synucleins, and the mitochondrial dysfunction seems to be an initial step in the neuronal death.
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INTRODUCTION

a-synuclein is a 140 amino acid brain protein, mainly local-
ized in presynaptic terminals [1, 2]. Although the detailed
physiological functions of a-synuclein are still elusive, recent
studies suggest that it plays a key role in synaptic functions
cooperated with cysteine-string protein-a (CSP «), which
contains a typical domain for HSP40-type molecular cochap-
erones [3]. In the subgroup of neurodegenerative disorders
termed “synucleinopathies,” a-synuclein is known to poly-
merize into fibrils and to accumulate in pathologic hallmark
inclusions, such as lewy body (LB), lewy neuritis (LN), and
glial cytoplasmic inclusions (GCls). The LB and LN are char-
acteristic of Parkinson’s disease (PD), and point mutations or
gene multiplications of a-synuclein are responsible for famil-
ial PD [4-6]. Moreover, transgenic flies overexpressing mu-
tated human a-synuclein showed progressive locomotor dis-
ability with dopaminergic neuronal cell death with intracy-
toplasmic inclusions [7]. These findings suggest that abnor-
mal a-synuclein metabolism plays a key role in neurodegen-
erative processes in PD and other synucleinopathies, but the
precise underlying mechanisms still remain unknown [8]. To
elucidate the possible roles of a-synuclein in neurodegener-
ation, we have developed cells that overexpress wild-type or
mutant a-synucleins in dopaminergic or inducible catechol-
quinone producing cell lines [9, 10].

Aggregate formation of a-synuclein and cell death

The inclusions in synucleinopathies were proved to be com-
posed of -sheet rich fibrils formed by nitrated species of
a-synuclein [11]. Several lines of evidence suggested that
reactive oxygen species (ROS) play a key role in the con-
formational change of a-synuclein and the following aggre-
gate formation [12-15]. We developed human dopaminer-
gic SH-SY5Y cells overexpressing wild-type or mutant a-
synucleins, and established experimental models of intra-
cellular aggregate formation following the exposure to var-
ious ROS [9]. The aggregates thus formed were immunopos-
itive for ubiquitin, nitrotyrosine, and dityrosine, and posi-
tive for thioflavin S staining, which was in good agreement
with the pathological features of inclusion bodies in synucle-
inopathies [9]. The y-tubulin and molecular chaperones co-
existed as well, suggesting that the aggregate formation was
associated with the intracellular transport system for protein
turnover responses against the toxic effects of misfolded pro-
teins. Such mechanisms are called “aggresome” and are sug-
gested to represent one of the cytoprotective responses [16—
18]. Interestingly, the recent study on huntingtin showed that
inclusion body formation reduced the risk of neuronal death
[18]. However, it is still controversial whether the aggregate
formation of a-synuclein has cytotoxicity in the neuronal cell
or sequesters toxic species.
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We established a cellular model in which intracellu-
lar a-synuclein aggregations were efficiently formed in re-
sponse to various types of ROS exposure [9, 19]. Under
these conditions, a significant number of cells showed cas-
pase 3 activation [19]. To explore possible relationships be-
tween the aggregate formation and apoptosis, first we inves-
tigated whether a-synuclein aggregates colocalized with ac-
tivated caspase-3 using a double immunostaining method.
Following the combined exposure of the cells to a no donor
and rotenone, a-synuclein aggregates were efficiently formed
in the cytoplasm as previously reported [9]. Surprisingly,
immunocytochemical analyses revealed that the aggregate
positive cells did not show any caspase 3 activations and,
conversely, that caspase 3 activated cells did not contain
any a-synuclein aggregates [19]. Iron was able to induce a-
synuclein aggregates more effectively than any other ROS in-
ducers and no donors, suggesting the iron plays a key role
in the aggregate formation [9]. When using both ROS and
no inducers, the addition of ferric iron triggered further ag-
gregate formation, but cells positive for activated caspase 3
were not coincident with aggregate positive cells. In quan-
tification experiments, it was revealed that caspase 3-positive
cells were decreased by the addition of ferric iron. On the
other hand, by chelating ferric iron, the aggregate formation
was decreased with concomitant increases of caspase 3 acti-
vation. These data suggest that the ferric iron plays a key role
in the a-synuclein aggregation [19]. Furthermore, these data
also imply that the aggregate formation may be cytoprotec-
tive against various cellular insults including oxidative stress
(19, 20].

Possible interaction between «-synuclein and
dopamine-quinone derivatives

Since a-synuclein is ubiquitously expressed at high levels in
all brain regions [21], the mechanisms responsible for the
preferential and selective neurodegeneration of dopamin-
ergic neurons in the substantia nigra remain to be deter-
mined. Previous studies suggested that the specific vulner-
ability of dopaminergic neurons may be linked to the cyto-
toxic oxidative potential of dopamine [22]. Highly reactive
oxygen species (ROS) are generated not only in dopamine
oxidation but also during the decay of catechol-derived or-
thoquinones which covalently incorporate into a variety of
molecules including proteins and nucleic acids [23]. On the
other hand, previous reports demonstrated that a-synuclein
might regulate dopamine metabolism by direct interaction
with the tyrosine hydroxylase [24], the dopamine trans-
porter [25] and vesicular monoamine transporter (VMAT?2),
key proteins in the regulation of the dopamine content
within nerve terminals [26, 27]. Therefore, the pathologi-
cal metabolism of a-synuclein may be closely linked to the
misregulation of dopamine, consequently leading to neu-
ronal death. In support of this notion, catechol-derived or-
thoquinones (eg, dopamine-quinone or DOPA-quinone) ac-
celerate and stabilize the formation of a-synuclein protofib-
rils by inhibiting the conversion of toxic protofibrils into fib-
rils [28, 29].

To shed light on the pathophysiological mechanisms
underlying a-synuclein-mediated neurodegeneration in
dopamine neurons, we developed novel neuronal cell lines
coexpressing a-synuclein (wild-type or A53T) and tyrosinase
that produces catecholamines and their oxidized metabolites
[30, 31]. Investigating the effects of wild-type or mutant
a-synuclein expression, we found that the coexpression
of wild-type and A53T mutant a-synuclein in tyrosinase-
overexpressing cells exacerbated DNA damage and successive
apoptotic cell death compared to the cells overexpressing
CAT or antisense a-synuclein. Both wild-type and A53T
mutant a-synucleins coexpressed with tyrosinase resulted
in the gradual accumulation of high-molecular weight
complexes immunopositive for a-synuclein. This band,
possibly representing oligomerized forms, corresponded to
the size of a-synuclein tetramer and was also detected by the
NBT/glycinate redox-cycling staining, suggesting that it was
modified by quinones [32].

Moreover, during these processes, the mitochondrial
membrane potential was specifically decreased without the
activation of MAP kinases [32]. Although the underlying
mechanism(s) of neuronal cell death following the coex-
pression of tyrosinase and a-synuclein are still elusive, it
is likely that a-synuclein modified by the oxidized catechol
metabolites forms cytotoxic intermediates, that is, “protofib-
rils”. Recent reports suggested that protofibrillar a-synuclein
tightly binds to lipid bilayers and increases the membrane
permeability by forming pore-like structures [33—35]. While
the membranous structures damaged by protofibrils in
dopaminergic nerve terminals remain unknown, intracellu-
lar organelles, such as synaptic vesicles and mitochondria,
are possible candidates. In this regard, disruption of synap-
tic vesicle membranes would result in an increase of the
cytoplasmic dopamine levels that would trigger the further
accumulation of dopamine-quinone and dopamine-derived
oxyradicals and thus lead to a vicious cycle. Likewise, mi-
tochondrial enzymes in the electron transport chain and
the functional permeability transition pores are impaired by
dopamine oxidation products [36] making it plausible that
the early damage of mitochondria observed in this cellular
model reflects the actions of a-synuclein protofibrils and the
subsequent increase of the membrane permeability in the
presence of oxidized catecholamine metabolites [27].

Membrane injuries may trigger neurodegeneration

We further analyzed the resting membrane potential and
whole-cell membrane conductance using the ramp voltage
in the cell lines expressing wild-type or mutant a-synuclein
[37]. Interestingly, the cells expressing A53T a-synuclein
have the most depolarized membrane potential. By the ap-
plication of the ramp voltage under the whole cell voltage-
clamp condition, we obtained an almost linear current-
voltage (I-V) relationship in each cell line. The slope of the
I-V relationship in the cells expressing mutant a-synuclein
was significantly steeper than that in the cells expressing
the vector alone or wild-type a-synuclein, indicating that
the expression of mutant a-synuclein results in higher ion
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FIGURE 1: Possible mechanisms of neurodegeneration in synucleinopathy.

permeability of the plasma membrane [37]. Because it has
been suggested that abnormal intracellular calcium home-
ostasis plays a crucial role in the pathogenesis of neurode-
generative disorders [38], the intracellular free calcium con-
centrations in a-synuclein-transfected cells were quantified
using a calcium indicator dye, fura-2 [39]. Notably, both the
intracellular calcium concentrations under basal conditions
and after depolarization induced by potassium chloride ap-
plication were significantly higher in the mutant a-synuclein
expressing cells than in cells expressing the empty vector or
wild-type a-synuclein [37]. These results suggest that mutant
a-synuclein is involved in the perturbation of the intracellu-
lar calcium homeostasis.

Taken together, our data from cellular models of synucle-
inopathy suggest that oligomer or protofibril, but not aggre-
gate or fibril, formation of a-synuclein plays a key role in the
pathomechanisms of synucleinopathy (Figure 1). The iron
specifically triggers the aggregate formation of a-synuclein,
but this seems to be a cytoprotective process [19]. The cy-
totoxic protofibril formation may be facilitated by not only
gene mutations, but also the modification of a-synuclein
by catechol-derived quinones [28, 32]. The cellular mem-
branes are the primary targets injured by protofibrils [37],
and the mitochondrial dysfunction seems to be an initial
step in the neurodegeneration of synucleinopathy [32]. Ob-
viously, protofibrils or oligomers of a-synuclein are hetero-
geneous in size and stability and exist as mixtures in the cy-
tosol. Therefore, at present it is difficult to specify the detailed
molecular structures that may be responsible for the cellu-
lar injuries. However, from these data, it is plausible that the
reduction of the protofibril pool may rescue neurons from
death (Figure 1). If this is the case, not only the acceleration
of degradation (C in Figure 1) but also the facilitation of ag-
gregate formation (D in Figure 1), may be a novel strategy for
the treatment of synucleinopathy. Of course, the most impor-
tant way would be to decrease the input (A in Figure 1) into
the protofibril pool.
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