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Abstract

The rapid increase in heat shock proteins upon exposure to damaging stresses and during plant development related to
desiccation events reveal their dual importance in plant development and stress tolerance. Genome-wide sequence survey
identified 20 non-redundant small heat shock proteins (sHsp) and 22 heat shock factor (Hsf) genes in barley. While all three
major classes (A, B, C) of Hsfs are localized in nucleus, the 20 sHsp gene family members are localized in different cell
organelles like cytoplasm, mitochondria, plastid and peroxisomes. Hsf and sHsp members are differentially regulated during
drought and at different seed developmental stages suggesting the importance of chaperone role under drought as well as
seed development. In silico cis-regulatory motif analysis of Hsf promoters showed an enrichment with abscisic acid
responsive cis-elements (ABRE), implying regulatory role of ABA in mediating transcriptional response of HvsHsf genes. Gene
regulatory network analysis identified HvHsfB2c as potential central regulator of the seed-specific expression of several
HvsHsps including 17.5CI sHsp. These results indicate that HvHsfB2c is co-expressed in the central hub of small Hsps and
therefore it may be regulating the expression of several HvsHsp subclasses HvHsp16.88-CI, HvHsp17.5-CI and HvHsp17.7-CI.
The in vivo relevance of binding specificity of HvHsfB2C transcription factor to HSE-element present in the promoter of
HvSHP17.5-CI under heat stress exposure is confirmed by gel shift and LUC-reporter assays. Further, we isolated 477 bp
cDNA from barley encoding a 17.5 sHsp polypeptide, which was predominantly upregulated under drought stress
treatments and also preferentially expressed in developing seeds. Recombinant HvsHsp17.5-CI protein was expressed in E.
coli and purified to homogeneity, which displayed in vitro chaperone activity. The predicted structural model of HvsHsp-
17.5-CI protein suggests that the a-crystallin domain is evolutionarily highly conserved.
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Introduction

When plants are challenged by drought and temperature

stresses, a wide array of interconnected cellular stress response

systems is triggered. These cellular responses helps in readjustment

of the growth of plants and its survival under abiotic stress

exposure. An understanding of the molecular basis of these

responses to stress adaptation is essential to make use of them in

breeding programs. Heat shock responses (HSR) are temperature-

related defense activities and include the induction of evolution-

arily conserved chaperone proteins known as heat shock proteins

(Hsps). Based on their molecular size, they are classified into

different classes i.e Hsp100, Hsp90, Hsp70/DnaK, Hsp60/GroE

and small heat shock proteins (sHsps) [1]. Generally, sHsps form

large oligomeric complexes [2], ranging in size from 200–

800 kDa, and are targeted to different cellular compartments.

Though sHsps have been studied in different plant systems [3]; it is

not completely known how different sHsps interact with their

target proteins and why so many paralogues evolved. Synthesis of

sHsps is not specific to heat stress response, but also expressed as

part of the developmental program. sHsps are highly expressed in

developmental stages like zygotic embryonic tissues, pollen

maturation, embryogenesis and during seed maturation [4–7].

How these large gene family members of sHsps are finely

regulated by a defined set of potential heat shock transcription

factors (Hsfs) to control many vital processes important during

plant development and stress response is largely obscure.
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Plant Hsfs have a major role to play in the modulation of

transcription during long-term heat shock response [8]. A typical

Hsf protein contains a modular structure with an N-terminal

DNA-binding domain (DBD), a nuclear localization signal (NLS),

a nuclear export signal (NES), and in many cases a less conserved

C-terminal activation domain rich in aromatic, hydrophobic and

acidic amino acids (AHA) that have been reported to be crucial for

activation function [8,9]. Based on sequence homology and

domain architecture, plant Hsfs have been divided into three

conserved classes. Several heat shock factor (Hsf) complexes could

be responsible for the developmental and stress inducible

transcription of Hsp genes [10]. Rojas et al. [11] demonstrated

transcriptional activation of a heat shock protein promoter by

ABI3 and Hsf complex. These analyses indicated that genes are

controlled by complex regulatory networks [12,13]. The expres-

sion of Hsps during different stages of plant ontogeny and its stress-

induction depend on the cis-motifs present in the respective genes;

bound by different transcription factors especially Hsfs as

demonstrated by transient reporter assays in Arabidopsis and

sunflower embryos [14,15]. The expression of particular isoforms

of Hsp genes during seed development suggests that they may have

distinct tissue and cell-specific functions during seed maturation

and are regulated by a set of defined developmental programs.

Though the importance of Hsfs as regulators of the heat shock

response is known, the Hsfs-sHsp interconnections in plant

development with special reference to developing seeds and stress

responses remain unknown in cereals.

The present study was taken up to find out the expression

profiles of sHsps and Hsfs in barley since that can ultimately help to

identify key regulators promoting developmental events under

stress. Here, we report a genome-wide survey of all non-redundant

sets of HvsHsp and Hsf genes in the complex genome of barley, a

model crop of tribe Triticeae. This survey provided first holistic

insights into the interconnected responses of 20 sHsps and 22 Hsfs

gene family members in drought stress response in vegetative

tissues and also emphasized its role in seed development of barley.

In silico motif analysis in the 59 upstream regions of sHsp and Hsf

genes revealed the presence of a distinct set of transcription factor

binding sites (cis-elements) interlinking the role of ABA in

mediating Hsf genes. This is the first comprehensive transcrip-

tomic study that identified the differentially expressed sHsp and Hsf

genes and the coexpressed gene networks involved in seed

development and drought stress adaptation in barley. Our gene

regulatory network analysis identified HvHsfB2c as central

regulatory hub of sHsps. Our in vivo binding assays confirm that

HvHsfB2c binds to HSE cis element in the HvHsp17.5CI

promoter, its transcript is preferentially regulated under desicca-

tion response. Further, we purified the recombinant HvsHsp17.5-

CI protein (expressed preferentially in developing seeds and

responsive to stress) to homogeneity and validated its chaperone

activity.

Materials and Methods

Identification and Annotation of sHsp and Hsf Family
Genes

The HarvEST Barley database (http://harvest.ucr.edu/) with

50,000 unigenes was searched for genes that encode proteins of

sHsp and Hsf genes, sequence similarity searches were performed

using Blastn and Blastx based on known rice and Arabidopsis

sequence annotations retrieved from TIGR database (http://rice.

plantbiology.msu.edu/) and TAIR database (http://www.

arabidopsis.org/Blast/). The corresponding cDNA sequences

were extracted from the database and subjected to a comparison

with recently available 24K full length barley cDNA database to

identify full-length clones [16]. cDNA sequences were translated

and searched for conserved domains known from the correspond-

ing rice proteins using NCBI database. Multiple sequence

alignment and phylogenetic trees comprising barley and rice sHsp

and Hsf full length protein sequences were generated by using

ClustalW (DNAstar) program. Accession numbers of all identified

genes are indexed in tables 1 and 2. Information about the number

of amino acids (AA), molecular weights (M.Wt) and theoretical

isoelectric point (pI) of all barley sHsps and Hsfs were predicted by

using DNAstar software. Organellar targeting of these proteins

were predicted by using pSORT (http://psort.nibb.ac.jp/) and

TargetP (http://www.cbs.dtu.dk/services/TargetP/) programs.

Information regarding ORF length and intron numbers was

confirmed by comparing the respective cDNA and genomic

clones. Conserved domains of the sHsp and Hsf proteins in barley

were determined by Pfam program and from the existing

literature.

Expression Analysis Using the Barley Genechip and Gene
Network Analysis

RNA isolation of flag leaf and developing seed tissue from

control and drought stress treatments was performed as described

previously [17]. Probe synthesis, labelling and hybridization were

performed according to manufacturer’s instructions (Affymetrix).

The purified labelled cRNA samples prepared from various

vegetative tissues, as well as flag leaf and developing grains

collected under control and terminal drought were hybridized to

Barley1 GeneChips as described by Close et al. [18]. Arrays were

scanned on a GeneChip Scanner 3000. The raw gene expression

data of flag leaf and developing grain under control and terminal

drought collected from this study were normalized together with

publicly available Affymetrix gene expression data obtained from

drought-challenged seedlings (series GSE3170), drought stressed

21-day-old plants (series GSE6990) and awn, lemma and palea

tissues collected during terminal drought (series GSE17669). The

fold change calculations (control versus drought stress) derived

from log transformed normalized expression data from every

individual stage of plant development were extracted for sHsp and

Hsf gene family members and shown in a heat map. Further, to

create gene expression atlas from plant ontogeny all the publicly

available gene expression covering various tissues and develop-

mental stages from seed germination, seedling establishment, plant

maturity, reproductive tissues and developing endosperm and

embryo tissue during seed development were normalized using the

CEL files in an R package. Log transformed quantile normalized

expression values of sHsp and Hsf gene family were shown in a

heat map. Using high throughput coexpression data covering the

entire plant ontogeny of barley, the gene regulatory networks have

been derived. Gene coexpression network of HsfB2c and

HvsHsp17.5 is derived from Plant Network database using

Heuristic Cluster Chiseling Algorithm [19]. The gene network

vicinity of HsfB2c and HvsHsp17.5 are enriched with various sHsp

genes as well other primary metabolism functional categories of

coexpressed genes. Further, we used cornet database to predict the

protein-protein interactions and coexpression network of

AT3G46230 (orthologue of HvsHsp17.5) [20].

In Silico Promoter Analysis
To analyze putative cis-elements in the promoter region of sHsp

and Hsf family genes, 1,500 bp DNA sequence up-stream of the 59

end of the cDNAs was extracted from Whole Genome Shotgun

sequencing of barley [21] using the viroblast database (http://

webblast.ipk-gatersleben.de/barley/index.php). The sequences
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were further analysed by different web based softwares like

PLACE [22] and PlantCARE [23] as well as motifs extracted from

the literature. To find out the regulatory cis elements, whole

promoter sequence was searched in both forward and reverse

strands.

Electrophoretic Mobility Shift Assay (EMSA)
The coding sequence of HvHsfB2c was amplified from barley cv.

Golden Promise leaf cDNA and transferred to pTOPO-cloning

vector (Primer used for amplification: Forward TACCATGGG-

CAGCAGCCATCATCATCATCATCACAGCAGCGGCCTG-

GTGCCGCGCGGCAGCCA, Reverse: TACCATGGGCCT-

CACCTCGAGTTGGACCTGTCCTG). After sequencing of

the transferred amplicon translation, HsfB2c protein was synthe-

sized using the PURExpress in vitro system from NEB according to

manufacturer’s protocol. EMSA has been performed as described

previously [24] in the presence of 100 ng pdIdC/rn.

The following Oligonucleotides, containing the HSE-binding

box were used for the binding reactions: HSE-1: TCGAA-

CAACCCAAAAT CCAAAAAATTCCACAACCCCAAAAAG-

GC, HSE-2: TCGAGCCTTTTTGGG GTTGTGGAATTTT-

TTGGATTTTGGGTTGT.

Transient expression of HvHsfB2c-derivatives
Arabidopsis Col-0 mesophyll protoplast isolation and transfor-

mation was carried out with plants grown in soil under controlled

conditions in a phytochamber for 4 weeks (8 h light/16 h dark at

20uC and 18uC, respectively) [25]. For microscopic localization

studies, HvHsfB2c was cloned into pENSG-/pEXSG vectors (N-/

C-terminal fusion with CFP, respectively) and 10 mg of DNA per

100 ml protoplasts was transformed. After 16 h incubation in the

dark, CFP fluorescence was evaluated using the LSM 710 Laser

Scanning System (Zeiss, Oberkochen, Germany). In case of the

luciferase reporter assay, a HvsHsp17.5-CI promoter-luciferase

construct, pUBQ10-GUS for normalization [26] and either

pEXSG-HvHsfB2c or pUGW15-CFP [27] as control were

transformed (10 mg total DNA per 100 ml protoplasts; ratio

1:1:1). Heat stress mimicking condition was applied by temporal

increase of the incubation temperature for 10 min to 35uC. The

used HvsHsp17.5-CI promoter fragment contained the region

700 bp upstream of the start ATG. Primer used for amplification

are Forward: pHsp17.5_BamHI CAGGATCCTGTTGAG-

GACTGACA, Reverse: pHsp17.5_NcoI CACCATGGC-

GATCGGGTACTCGG. The luciferase-assay was performed as

described in [28].

Homology Modeling of HvsHsp17.5-CI
HvsHsp17.5-CI molecular model was generated using the

homology modeling server SWISS-MODEL [29] utilizing Triticum

aestivum sHsp16.9 protein crystal structure as a template (PDB

No:1gmeA). Following PROCHECK analysis, the model with the

best Z-score 20.92 showed an RMSD of 2.70 Å and 70%

sequence identity with respect to the template. The modeled

residue range was taken from amino acids 2–158 by I-TASSER.

Dimeric structure was generated by aligning the monomeric

structure with the a-crystallin domain of TasHsp16.9 and

HvsHsp17.5-CI using the program I-TASSER server [30,31] with

the best C- score 0.897, an RMSD of 2.40 Å and 0.699 TM-score

with respect to the template.

Expression and Purification of HvsHsp17.5-CI
Recombinant Protein

HvsHsp17.5-CI specific oligonucleotide primers were designed

one for the N-terminus region (59-ATACTACATATGTCGCT-

GATCCGTCGCAGCAACGT-39) and the other for C-terminus

region (59-TAATGCGGCCGCCTAGCCGGAGATCTG-

GATGGAC-39). The 59 and 39 untranslated regions in the cDNA

were removed and an NdeI site at the translation initiation and a

NotI site just downstream of the translation termination codon

were introduced. HvsHsp17.5-CI PCR amplified cDNA product

was digested and cloned into NdeI and NotI sites of pET28a (+)

expression vector. The sequences adjoining the 59 and 39 ends of

the cloned segment were confirmed by sequencing. This construct

resulted in the expression of HvsHsp17.5-CI polypeptide with

additional extra 20 amino acids including hexa histidine tag at the

N-terminus. The recombinant pET28a-HvsHsp17.5-CI plasmid

was transformed into BL21 (DE3) cells and grown in LB-medium

supplemented with 50 mg/ml kanamycin at 37uC. As absorbance

at 600 nm (A600) reached a value of about 0.5–0.6, the expression

of recombinant HvsHsp17.5-CI was induced by adding IPTG

(isopropyl b-D-1-thiogalactopyranoside, 1 mM) and the cells were

allowed to grow for an additional period of 3 h at 37uC. After

induction of recombinant protein, E. coli cells were lysed by

sonication. Native recombinant HvsHsp17.5-CI protein was

purified from clarified E. coli lysate through Ni-NTA column

chromatography, following the manufacturer’s instructions (Qia-

gen, Germany) and protein samples were analyzed by SDS-PAGE.

Stress Tolerance of E. coli Overexpressing Recombinant
HvsHsp17.5-CI and its Chaperone Activity

E. coli BL21 (DE3) cells transformed with pET28a (+) (vector

control) or with pET28a-HvsHsp17.5-CI plasmids. Transformed

E. Coli were grown overnight in fresh LB medium containing

50 mg/ml kanamycin. When the absorbance at 600 nm reached a

value of 0.25, varying concentrations of NaCl (0–750 mM) for

salinity stress, and 0–25% of polyethylene glycol (PEG, molecular

weight of 3,350) were added to impose dehydration stress after the

addition of IPTG. For temperature stress, cultures were grown at

37 to 55uC after IPTG treatment. After induction with the

addition of IPTG (1 mM), cultures were kept at 37uC for 12 h in a

shaking incubator. Cell growth was monitored by measuring the

absorbance at 600 nm. Each experiment was repeated thrice and

average readings were taken. Recombinant HvsHsp17.5-CI

chaperone activity was assayed by using thermo labile restriction

enzyme, SwaI (New England Biolabs, Beverly, MA) as previously

described [32,33]. The heat-labile SwaI enzyme was pre-incubated

at a range of temperatures (25, 30, 35, 40, 45 and 50uC) for

60 min in the presence of either BSA (5 mg) or recombinant

HvsHsp17.5-CI (5 mg). After pre-incubation, the reaction mixture

was cooled to 25uC and plasmid DNA (500 ng) with a unique SwaI

recognition site was added and further incubated at 25uC for

60 min for restricting digestion of plasmid DNA. The restriction

digested plasmid DNA samples were separated by electrophoresis

on 1% agarose gel and stained with ethidium bromide. Plasmid

digestion profiles were compared with their respective controls.

Results

Identification of sHsp and Hsf Gene Families in Barley
The conserved amino acid sequence of a-crystallin domain

(ACD) for sHsps and DNA binding domain (DBD) for Hsfs was

adapted as a query to search possible homologs encoded in the

barley genome using HarvEST (http://harvest.ucr.edu/) and

NCBI databases. This resulted in the retrieval of 20 sHsp and 22

sHsps-Hsfs Role in Dessication & Seed Development
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Hsf encoding gene sequences. Further, functional annotations of

these sequences were verified by using BlastX, BlastN and BlastP

programmes of NCBI. Details of all the genes encoding for barley

sHsps and Hsfs are represented in the Tables 1 and 2 respectively.

Comparative sequence alignment of the genomic and cDNA

sequences of sHsp and Hsf genes revealed the predicted exons and

introns. Only certain classes of sHsps possess introns. HvsHsp

proteins showed variation in length (from 138 to 244 amino acids),

isoelectric point (pI) values (4.68 to 9.31) and molecular weights

(15.14 to 21.25 kDa). Prediction of subcellular localization of these

proteins using pSORT and TargetP programmes [34–36]

indicated that 13 sHsp proteins are located in the cytoplasm and

one each in the mitochondria, ER, plastid and peroxisome. In case

of Hsf family proteins, 21 are distributed in the nucleus and one in

the cytoplasm.

Phylogenetic Analysis of Hsf Gene Family Members
A phylogenetic tree was constructed for 22 barley and 25 rice

Hsf genes. All Hsfs clustered broadly into three major cluster

groups A, B and C, which included representative genes of barley

and rice (Figure 1A). The major cluster class A is further divided

into several subclasses based on its phylogenetic relationship and

designated as A1, A2, A3, A4, A5 and A9. HvHsfA3 and its rice

ortholog OsHsfA3 did not cluster with class A but grouped

separately (Figure 1A). This however appears to be closer to HsfC.

All class B Hsfs showed divergence from a common point but are

closer to HsfA class genes compared to class C (Figure 1A). The

motif distribution also followed the same scenario with the

phylogenetic analysis. Therefore, it looks from the phylogenetic

tree that one subgroup of class A Hsf gave rise to class B and C

(Figure 1A).

The detailed knowledge of tomato, rice, maize and Arabidopsis

Hsf functional domains and motifs enabled us to analyze similar

kind of domains for the 22 Hsfs identified in the barley genome

(Table 1 and Table S1). Motif analysis and sequence alignment of

HvHsfs showed a highly structurally conserved DBD domain

which contained 3 a-helix bundles and 4 b-strands in the N-

terminal region (Figure S1) as described earlier in other plant

species [37–39]. Hsfs function as transcriptional activators because

of AHA motif characterized by aromatic (W, F, Y), large

hydrophobic (L, I, V) and acidic (E, D) amino acid residues in

their C-terminus (Figure S1A). However, class B and C putative

AHA motifs could not be predicted in barley. Due to the absence

of AHA motif in class B and class C subfamilies, they probably lack

activator function. The C-terminal activation domain was found

only in HsfA, suggesting that only class A Hsfs can activate

autonomously.

Phylogenetic Analysis of HvsHsp Gene Family Members
We performed phylogenetic analysis using the deduced amino

acid sequences of different isoforms of barley and rice sHsps. The

sHsp sequences were clustered into different groups based on their

subcellular localization (Figure 1B). Most of the genes from barley

and rice fell into the same sub-clusters, which indicated that they

are highly conserved. Using rice sHsp family classification, we

identified sHsp subfamilies in barley and annotated 20 sequences.

These are distributed into 10 different classes, including cytoplas-

mic (CI, CII, CIII, CV, CIX and CX), mitochondrial (MI), ER,

plastidial (P) and peroxisomal (Px) proteins. While 6 proteins have

fallen into CI, 3 into CII and one each into the remaining classes

(Figure 1B). Furthermore, one sHsp gene named HvsHsp21.2 stood

apart and was not clustered with any of the sHsp genes from rice.

Its subcellular location is also not known. The CI gene family is

generally the largest sHsp subfamily in rice and A. thaliana, it has 7

and 6 gene members respectively. The phylogenetic relationships

within the cytosolic I subfamily deserves particular attention. In

barley, there are two sub-clusters of cytosolic I genes (Figure 1B).

One cluster comprising of HvsHsp16.9, HvsHsp16.86 and

HvsHsp16.88 members, closely related to O. sativa 16.9A, 16.9B

and 16.9C and the other cluster members HvsHsp17.7, HvsHsp17.5

and HvsHsp16.7 clustered to O. sativa 17.4, 17.7, 17.9A and 18.0.

While all the Os16.9 sHsps are located on chromosome 1, Os17.4 is

located on chromosome 3. The six sHsps of barley have been

analyzed for their chromosomal localization. While sHsps 17.5,

17.7, 16.7 are localized on chromosome 4 in barley, other sHsps

16.9, 16.86 and 16.88 are located on chromosome number 3

(Table 2). The number of sHsp gene family members in the cytosol

is larger compared to other cell organelles, indicating that cytosol

might be the primary site of action for the function of sHsps. The

pattern distribution among different classes also suggested that this

small Hsp gene family is highly conserved among cereals.

Sequence homology among these different classes ranged from

62 to 80%, but the functional relationships of these individual

subfamilies to each other is not clear.

Sequence alignment of sHsp subfamilies revealed some inter-

esting patterns of sequence conservation. The main characteristic

feature of all the sHsps is the presence of an evolutionarily

conserved central domain of 80–90 amino acids named a-

crystallin domain (ACD) but have divergent N- and C-terminal

extensions. N-terminal preceding the ACD region displayed

variability in length and amino acid composition that contributed

to a large extent for the structural diversity among subfamilies of

sHsps [40]. The ACD region further can be divided into consensus

I and II domains separated by a hydrophilic domain of variable

length. All HvsHsps shared a consensus region I, which is highly

conserved throughout the eukaryotes but the second consensus

region II is unique and conserved only in plants [40] (Figure S2).

The residues Pro-X (14)-Gly-Val-Leu in consensus region I are a

conserved signature motif present in almost all sHsps. A similar

motif Pro-X (14)-X-Val/Leu/Ile-Val/Leu/Ile also appeared in

the consensus region II [41]. Outside the a-crystallin domain, a

typical ‘‘I/V-X-I/V’’ motif in the C-terminal extension can be

recognized in most sHsps except in class V (Figure S2D). Arginine

residue present in ß7 strand among sHsps represented the most

conserved site in the eukaryotes. This arginine in barley is located

at the same position as in the case of a-crystallin structure of wheat

(Figure S2). The class I cytosolic proteins have a consensus region

of 15 amino acids at the N-terminus (Figure S2A), class II have 11

amino acids (Figure S2B) and class P proteins comprises 24 amino

acids which do not exist in other classes (Figure S2J). The amino

acid similarity between individual sHsps belonging to different

groups range from 62% to 80%, whereas the similarity between

individual sHsps within the groups ranged from 85% to 99%.

However, there are a number of secondary structural features that

are conserved across sub families irrespective of the species.

Differential Expression of sHsp and Hsf Genes During
Plant Development and Drought Stress Response

Unraveling the co-expression patterns can render important

clues regarding the gene function. To understand the potential

interlinking role of sHsp and Hsf genes, we monitored the

expression profile (a) during plant ontogeny and (b) in response

to drought stress. Microarray data revealed that sHsp17.7 (CI and

CII), 17.5 (CI), and 19 (CIII) are mostly expressed in developing

seed tissues like endosperm (25 DAF and ripe seed), embryo (25

DAF), pericarp (4 DAF) and in reproductive tissues such as mature

floral bracts (Figure 2). The expression of these genes was however,

less obvious during seedling establishment in tissues like coleoptile,
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root and crown. Among Hsfs, HsfA1a, HsfA2a, HsfB2c, HsfC2b and

HsfA4b were more preferentially expressed in endosperm and

embryo (25 DAF) than others (Figure 2), suggesting a tighter

coexpression with sHsp17.7 (CI and CII), 17.5 (CI), and 19 (CIII).

These specific gene family members of sHsp and Hsf genes are

regulated by a defined developmental program such as embryo-

genesis and seed maturation events.

Interestingly, many sHsps in barley which are highly expressed

in developing seed were also found to be preferentially upregulated

under drought in vegetative tissues. The clustering process

identified the genes that were highly up-regulated under drought

stress in different stages of the plant development (cluster-1) and

other gene sets were down regulated in majority of the stages with

different time points (cluster-2) (Figure 3). Genes included in the

cluster-1 are both sHsps (HvHsp17.5-CI, 17.7-CI, 17.7-CII, 19-

CIII, 17.3-CII, 17.77-CII, 16.7-CI, 16.9-CI, 16.8-CI and 26.8-P)

and Hsfs (HvHsfB2b, B2c, C1b and C2b). They are up-regulated

under drought in all the developmental stages (early seedlings, 21-

day-old seedlings, flag leaf, lemma and palea) and also abundantly

expressed in a range of organs (floral bracts, pistils before anthesis,

5-day-old caryopsis and 22 DAP embryo) under normal conditions

(Figs. 2 and 3). These genes perhaps have a protective chaperone

role both during critical stages of plant development as well under

drought. Thus, cluster 1 genes could be considered to represent as

a core set of drought responsive genes. Within cluster 2, several

sHsps (HvHsp17.1-CV, 17.76-CIX, 19.2-CX, 21.2, HvHsp-ER,

21.3 MI genes) and Hsf A1a, A2a, A2d, A4b, A4d, A5 and A9

members were either down-regulated or non-differential regula-

tion in most of the developmental stages of plant during water

stress or their expression was low.

In Silico Analysis of sHsp and Hsf Family Promoter
Regions

The regulatory cis-acting transcription factor binding sites in the

sHsp and Hsf promoters were identified using PlantCARE and

PLACE databases and details are depicted in Figure S3 and Figure

S4. The cis-motif ABRE [42] required for ABA response is present

in the promoters of all the Hsf genes except in HsfA2c, suggesting

that these Hsf genes are involved in ABA mediated signal

transduction. The HSE motifs responsible for the expression of

Hsp genes during high-temperature stress are present in the

promoter regions of many sHsps (HvHsp16.86-CI, 17.5-CI, 17.7-CI,

17.77-CI, 17.1-CV, 19.2-CX, 26.8-P), as well in HsfA class members

(HsfA1a, A2a and A2c genes). Besides, within barley promoter

sequences of sHsp and Hsf, many motifs which are associated with

abiotic stress responses (heat shock element, HSE; drought-

inducibility, MBS; low temperature responsive, LTR; anaerobic

induction, ARE), hormonal responses (MeJA-responsiveness,

TGACG-motif) and seed development (Skn-1 motif and GCN4

motif) are enriched (Figure S3 and Figure S4).

Among all, Hsp17.5-CI, 17.77-CII and HsfA2a have large

number of different cis-motifs, related to seed development and

drought stress. Thus, it is expected that many of these sHsp genes

are found to be regulated both under stress as well as during seed

Figure 1. Phylogenetic relationships between barley and rice sHsp and Hsf proteins. The phylogenetic tree was drawn from the deduced
amino acid sequences of sHsp (A) and Hsf (B) proteins from the barley and rice genome using the ClustalW (MegAlign, DNAStar). Subfamilies are
shaded in different colours.
doi:10.1371/journal.pone.0089125.g001
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development, perhaps due to common physiological cause of

desiccation related events. Notably, many HvsHsp and Hsf genes

containing Myb binding site (MBS) element in the upstream

region (Figure S3 and Figure S4), which has a role in desiccation

stress response, were found to be inducible by drought stress

treatment in a tissue specific manner (Figure 2, 3). Seed

development specific motifs such as Skn-1 and GCN4 conferring

endosperm specific expression were also found in many sHsp and

Hsfs. Seven Skn-1 motifs were noticed in HvsHsp17.1-CV, 4 in

17.7-CII, 5 in HsfC2a and 4 in A5 (Figure S3 and Figure S4) and

displayed the highest expression in endosperm and embryo

compared to other plant parts (Figure 2). In addition, cis-motifs

like CCGTCC, TGA and ARE/GC related to meristem

expression, salicylic acid and anaerobic inductions were observed

in most of the HvsHsp and Hsf genes. Such a tissue specific

expression of heat shock genes reveals important developmental

role in the reproductive tissues during development.

Gene Network of HvHsfb2c Based on Genome-Wide
Coexpression Data

In contrary to Arabidopsis, HvHsfB2c possess a nuclear signal and

was preferentially expressed in developing seeds as well promi-

nently upregulated under drought. Our genome-wide gene

expression data covering plant ontogeny suggest that HvHsfB2c is

the central hub in the derived gene network (Figure 4). Network

data also emphasize that HvHsfB2c is coexpressed in the central

hub of several small Hsp members (HvHsp16.9-CI, HvHsp16.88-CI,

HvHsp16.87-CI, HvHsp17.5-CI, and HvHsp17.7-CI), which are

Figure 2. Expression profiles of sHsp and Hsf family genes during various stages of plant ontogeny analyzed by the Affymetrix 22K
barley gene chip. Horizontal rows represent expression patterns of individual gene. Trivial names of genes as well as the corresponding Affymetrix
IDs are given. Vertical lines represent the developmental stages and investigated tissues. Signal intensities: red, high expression; yellow, moderate
expression; blue, low expression. Represented cultivars are named as M, ‘Morex’; Mo, ‘Morocco’, Ma ‘Martin’, B, ‘Barke’; GP, ‘Golden Promise’. Quantile
normalized expression values are given as log2.
doi:10.1371/journal.pone.0089125.g002
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preferentially expressed in developing and imbibed seeds (Figure 4

and Table S2). Also, HsfB2c is coexpressed under drought stress

together with several HvHsp CI, CII and CIII family members.

Thus, HsfB2c transcription factor is likely to play an important role

in both events (a) desiccation tolerance during seed maturation

and (b) drought tolerance in possibly regulating the expression of

several subclasses of HvHsp. Further, we performed cornet analysis

to unravel the potential protein interaction partners and

coexpressed gene regulatory networks of AT3G46230 (ortholo-

gous gene of sHsp17.5 in barley) in Arabidopsis. The predicted

protein-protein interaction analysis suggests that AT3G46230 is

likely to form protein complexes with several small heat shock

proteins Hsp17.4, Hsp17.6 class I, Hsp17.6 class II, Hsp 17.6A

and Hsp70 family (Figure 5).

Transcriptional Regulation of HvsHsp17.5-CI by HvHsfB2c
under heat stress

At first, the sub-cellular localisation of N- and C-terminal cyan

fluorescing protein (CFP)-tagged HvHsfB2c was tested in a

transient expression assay using Arabidopsis thaliana mesophyll

protoplasts. The protein sequence of HvHsfB2c contains two

signatures for nuclear localisation (pat4: HRRK at 131 amino acid

and bipartite: RRGEKRLLCDIHRRKVV at 120 amino acid). In

agreement with WoLFPSORT algorithm [43] the predominant

nuclear localisation of HvHsfB2c could be confirmed for the C-

terminal (Figure 6A) and the N-terminal CFP-fusion derivatives

(Figure S5). As HvHsfB2c was found predominantly in the

nucleus, regulation via heat stress induced translocation of the

protein is very unlikely. In order to verify the in silico predicted

binding of HvHsfB2c on HSE-box from the HvsHsp17.5-CI

promoter, Electrophoretic Mobility Shift Assay (EMSA) was

performed. For the analysis, a 44 bp DNA fragment was used

containing the HSE-Box (AAATTCC) as core element. The coding

region of HvHsfB2c was amplified from cDNA derived from barley

cv. Golden Promise leaf RNA. As indicated in Figure 6B, the

appearance of an additional band in the EMSA study refers to the

DNA binding ability of in vitro translated HvHsfB2c. For analysis

of the binding specificity, luciferase (LUC)-reporter assays were

Figure 3. Expression profiles of barley genes responsive to drought. Expression ratios (drought vs control) are calculated based 3
replications. Fold change values are colour-coded: dark yellow .6 fold up-regulated, black no change, violet .6 fold down-regulated. Horizontal
rows represent gene expression patterns. Vertical lines represent different stress treatments. Gene expression data refers to cvs. Brenda (B), Morex
(M), Morocco (Mo), Martin (Ma), Oregon Wolf Barley-Dominant (OWB-D), Oregon Wolf Barley-Recessive (OWB-R), Hs (H. spontaneum HS584).
doi:10.1371/journal.pone.0089125.g003
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performed (Figure 6C). The LUC-gene was fused to a fragment of

the HvsHsp17.5-CI promoter containing the region 700 bp

upstream of the start ATG including the HSE-element. As

indicated by the reporter gene assay no LUC-activity could be

detected under control conditions. The presence of the co-

transformed HvHsfB2c alone was not sufficient to increase the

LUC-reporter gene activity. A strong increase of LUC-activity

could be detected in the HvHsfB2c co-transformed mesophyll

protoplasts under heat stress conditions (Figure 6C).

In Silico Structural Analysis and Homology Modeling of
the HvsHsp17.5-CI Protein

The crystal structure of TaHsp16.9 protein (PDB No: 1gmeA)

was chosen in the present study as a template for homology

modeling of HvsHsp17.5-CI (Figure 7A) using the server SWISS-

MODEL [44]. It has been found that the two proteins have an

identity of 70% at the amino acid level and a similarity of 81%.

Our annotation revealed that the evolutionarily conserved a-

crystallin domain contains a compact ß-strand that was responsible

for dimer formation while the rest of the protein forms a conserved

secondary structure despite large levels of sequence diversity [45].

There are a number of secondary structural features that are

highly conserved across subfamilies, such as the ß3, ß4, ß5, ß8 and

ß9 (Figure 7A). We also generated dimeric structure alignment by

superimposing the monomeric structure with the a-crystallin of

barley and crystallin structure of TaHsp16.9, using the program I-

Tasser [30] and showed the dimer interface of both proteins is

virtually identical. HvsHsp17.5 and TaHsp16.9 differed in the

length of beta strands but they maintain same number in their

conserved ‘‘a-crystallin domains’’ (Figure 7B). Considering the

number of b-strands and their positions in the domain of a-

crystallin, it is expected that the structure of this domain is closer to

that of TaHsp16.9.

Prevention of High Temperature-Induced Thermal
Inactivation of Swa I Restriction Enzyme by Recombinant
HvsHsp17.5-CI

In order to obtain large quantity of highly purified HvsHsp17.5-

CI protein, a heterologous system was used to overexpress

recombinant HvsHsp17.5-CI protein in E. coli. The protein

profiles of the E. coli BL21 (DE3) strain carrying the

HvsHsp17.5-CI-pET28a construct revealed overexpression of an

approximately 20-kDa recombinant protein (Figure 8A), and most

of it was located in the soluble fraction of the E. coli lysate. The

recombinant HvsHsp17.5-CI protein was purified to near-homo-

geneity (Figure 8A) from clarified E. coli lysate by Ni-NTA column

chromatography. In contrast to Hsp60 and Hsp70 proteins, the

chaperone activity of sHsps is ATP-independent [46]. The

molecular chaperone activity of plant sHsps has been demonstrat-

ed both in vitro and in vivo [47]. Swa I restriction enzyme is thermo-

labile and loses its enzymatic activity by pre-incubating at 37uC
and above. We tested the protection of SwaI restriction enzyme

(sensitive to high temperature) against thermal inactivation by pre-

incubating 5 units of SwaI with 5 mg of either recombinant

HvsHsp17.5-CI or acetylated BSA at 25–50uC for 60 min before

assaying the residual activity of SwaI on plasmid DNA. The

restriction endonuclease SwaI completely lost its activity after

60 min of incubation at temperatures above 35uC. The pre-

incubated SwaI was tested at 25uC for 60 min using supercoiled

plasmid DNA (500 ng) containing a unique SwaI recognition site.

DNA digestion profiles (Figure 8B) suggested that the recombinant

protein and BSA were both able to protect SwaI activity up to

30uC (Figure 8B, lanes 6, 7). At temperatures above 35uC, BSA

failed to protect against thermal inactivation of SwaI (Figure 8B,

lanes 7, 9, 11, 13), whereas HvsHsp17.5-CI provided significant

protection (Figure 8B, lanes 6, 8, 10). Above 40uC, HvsHsp17.5-CI

provided only marginal protection. However, it was ineffective

against thermal inactivation of SwaI at or above 45uC (Figure 8B,

lanes 12, 14). These results suggest that the recombinant

HvsHsp17.5 keeps the Swa I restriction enzyme in folding

competent state at higher temperature and the N-terminus

hexahistidin tag is not interfering in this activity. The amount of

the residual activity of Swa I restriction enzyme can be quantified

by measuring the amount of DNA restricted.

Discussion

The structure and function of the sHsp and Hsf family genes

have been widely addressed in model plants like Arabidopsis, maize

and rice [8,13,37–39,48]. Most of the sHsps respond to a wide

range of environmental stresses like heat, cold, drought, high light,

Figure 4. Gene network analysis. Gene co-expression network of HvHsfB2c/HvHsp17.5-CI, is derived from Plant Network using Heuristic Cluster
Chiseling Algorithm based on genome-wide plant ontology high throughput gene expression data. Meta-network containing genes of HvHsfB2c
cluster are enriched for several sHsps (highlighted in yellow colour) and also enriched Hsp class in the MapMan functional categories are represented
(see table). For further details refer Table S1.
doi:10.1371/journal.pone.0089125.g004

Figure 5. Integrative view of protein-protein interactions and
coexpression networks of AT3G46230 (orthologous gene of
sHsp17.5 in barley) derived in Arabidopsis based on CORNET
correlation networks [20]. Predicted protein interactions are
highlighted in dotted black colour and also autoregulatory loops are
shown for several Hsp proteins. The embedded coexpression network
of AT3G46230 includes several direct and indirect targets identified
through microarray experiments from 256 experimental data sets
generated from abiotic stress treatments. Significance of coexpression
is measured by the Pearson correlation coefficient (dark blue lines
represent positive correlation of 0.9; light blue lines represent positive
correlation of 0.8).
doi:10.1371/journal.pone.0089125.g005
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salt, UV, oxidative stress and plant-pathogen interaction [5] and

their concentration may even go up to 1% of the total proteins

under high temperature stress. Proteins that are destabilized

during cellular stresses are reactivated in the presence of ATP-

dependent chaperones. We applied various bioinformatics ap-

proaches to analyze the phylogenetic relationship, conserved

domains, localization prediction of proteins, in silico promoter

analysis, transcript profiling and coexpression gene network

analysis in barley to unravel its expression divergence and

functional relevance of sHsps and Hsfs gene family members.

Specialized sHsp and Hsf members which are preferentially

expressed in specific organs/developmental stages (developing

and imbibed seeds) and also influenced by drought stress

conditions seem to suggest a conserved function of desiccation

tolerance both during seed maturation events as well as during

drought prone response in vegetative tissues.

The presence of HSE cis element is often correlated with the

expression of respective sHsp and Hsf genes under heat stress as

shown in the microarray analysis of Arabidopsis, rice and maize

[5,38,39,49]. The cis-motif ABRE [42] required for ABA response

is present in the promoters of all the Hsf genes except in HsfA2c,

suggesting that these Hsf genes are involved in ABA mediated

signal transduction. The role of ABA in seed development [50,51]

and drought responses [52] is well known. Thus, ABA may be

another important molecule in the regulation HSFs during seed

development or drought stress. Within HsfA class, developmental

expression of HsfA9 in Arabidopsis is regulated by the seed specific

transcription factor ABSCISIC ACID-INSENSITIVE3 (ABI3). ABI3

knock out lines lack HsfA9 transcript and also seed abundant heat

stress proteins like Hsp 17.4-CI, Hsp 17.7-CII and Hsp101 [15].

They concluded that HsfA9 acts as a potent activator for the seed

specific or developmental specific expression of Hsp genes in

Arabidopsis. Recently, functional analysis of rice heat shock factor

binding proteins OsHSBP1 and OsHSBP2 revealed their involve-

ment in heat shock response [53]. Both these genes have been

found important for seed development as their knockout lines are

associated with significant seed abortion. Further research is

required to clarify the expressions of sHsps and Hsf genes and their

interplay during specific sexual processes.

Figure 6. Transcriptional regulation of HvsHSP17.5-CI by HvHSF2c under heat stress. A. Subcellular localisation of HvHsfB2c-CFP in
transient transformed Arabidopsis thaliana mesophyll protoplasts, scale = 10 mM. B. EMSA with in vitro translated HvHsfB2c SFB2c on HSE-box from
the ProHvHsp17.5-CI. Extract of PURExpress without template DNA and translated DHFR (E.coli dihydrofolate reductase) were included as negative
controls. * indicates HsfB2c specific band. C. Luciferase reporter gene assay. ProHvHsp17.5::LUC was used as reporter gene in Arabidopsis thaliana Col-
0 protoplast co-transformation experiments with HvHsfB2c expression vector at 35uC (blue line, a: significant difference to controls), (b) CFP-control
vector at 21uC (black line), HvHsfB2c expression vector at 21uC (red line) and CFP-control vector at 35uC (green line). Results are depicted as LUC/GUS
ratios. The experiment was repeated twice in triplicates with similar results. Error bars indicate the standard error of the mean of 3 replicates.
doi:10.1371/journal.pone.0089125.g006

sHsps-Hsfs Role in Dessication & Seed Development

PLOS ONE | www.plosone.org 12 March 2014 | Volume 9 | Issue 3 | e89125



Figure 7. Structural organization of the HvsHsp17.5-CI protein. A. The a-helix and ß-strands held between the two surface loops are shown
in red and light blue colors. The N and C termini are indicated by NH2, COOH, letters respectively. B. Structural alignment of the crystallin domain of
TasHsp16.9 and HvsHsp17.5-CI proteins are labeled as blue and red respectively. Highly conserved arginine (R) residue is shown in green color. C.
Structural alignment of HvsHsp17.5-CI and TasHsp16.9. The conserved regions of HvsHsp17.5-CI and TasHsp16.9 are labeled with respective colors of
figure A and B.
doi:10.1371/journal.pone.0089125.g007

Figure 8. Expression, purification and chaperone activity of recombinant HvsHsp17.5-CI. A) Expression of recombinant HvsHsp17.5-CI in
E. coli. Lane M, molecular weight marker; lane 1, uninduced; lane 2, induced; lane 3, purified recombinant HvsHsp17.5-CI protein. Figures on the left
indicate molecular weight in kDa. B) Prevention of thermal inactivation of SwaI restriction enzyme by recombinant HvsHsp17.5-CI. The SwaI restriction
enzyme was preincubated at 25, 30, 35, 40, 45 or 50uC in the presence of either BSA or recombinant HvsHsp17.5-CI for 60 min. Residual activity of
SwaI was determined by incubation with 300 ng plasmid at 25uC for 60 min, followed by electrophoresis on a 1% agarose gel. Lane M, 1-Kb DNA
ladder; lane 1, plasmid DNA control (without SwaI digestion); lane 2, plasmid DNA digested with the SwaI restriction enzyme; lanes 3, 5, 7, 9, 11, and
13, plasmid DNA digested with SwaI after preincubation at 25, 30, 35, 40, 45 and 50uC, respectively, in the presence of BSA; lanes 4, 6, 8, 10, 12, and
14, plasmid DNA digested with SwaI after preincubation at 25, 30, 35, 40, 45 and 50uC, respectively, in the presence of recombinant HvsHsp17.5-CI.
SC, supercoiled plasmid; OC, open circular plasmid; L, linear plasmid. The numbers on the left represent the DNA markers in kb.
doi:10.1371/journal.pone.0089125.g008
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Among Hsfs, HsfA1a, HsfA2a, HsfB2c, HsfC2b and HsfA4b were

more preferentially expressed in endosperm and embryo (25 DAF)

than others (Figure 2), suggesting a tighter coexpression with

sHsp17.7 (CI and CII), 17.5 (CI), and 19 (CIII). These specific gene

family members of sHsp and Hsf genes are regulated by a defined

developmental program such as embryogenesis and seed matura-

tion events, a situation resembling with Arabidopsis and sunflower

[15,54]. Within this category, HsfB2c is identified as a putative

central regulator represented in the vicinity of gene network of

HvHsp CI, CII and CIII family members, and also the respective

promoters are enriched with HSE cis element. Thus, HsfB2c is

likely to mediate expression of these sHsp members. The analysis

also identified the importance of HsfB2c that has not been

previously implicated in plant stress responses and development

and therefore HsfB2c might be one of the primary regulators of the

HSR in barley. To prove the in vivo relevance of the in silico

identified gene network, the molecular interaction of HvHsfB2c

transcription factor on HSE-box cis element within the HvsHsp17.5-

CI promoter was analysed. These results suggest that HvHsfB2c is

responsible for the heat inducible transcriptional activation of

HvsHsp17.5-CI. This transcriptional activation is mostly achieved

by binding of HvHsfB2c to the HSE-box under heat stress

conditions. It is rather surprising to note that typical feature of

class A Hsfs which are known to possess transcriptional activator

domain [55] remains unregulated under drought, while HsfB

(HvHsfB2b, HvHsfB2c) and HsfC class (HvHsfC1b, HvHsfC2b)

transcription factors were upregulated under drought in barley

(Figure 3). While class B-Hsfs differ with class A not only in the lack

of transcriptional activator AHA-motif, but also differ within

oligomerization domain [56]. In this context, it is interesting to

note the first emerging evidence we have shown in barley that

HvHsfB2c as a central regulator mediates transcriptional response

of HvsHsp17.5-CI gene, which is preferentially regulated during

desiccation responses. Moreover, out of 5 reported class B-Hsfs in

Arabidopsis, B3 and B4 are expressed at low level and HsfB1,

HsfB2a and HsfB2b are significantly increased upon heat stress

treatment [57,58]. Similarly, the orthologue of HsfB2C in

Arabidopsis, AtHsf7 (AT4G11660) is expressed in developing seeds

and found to be induced under stress. Also, the coexpressed genes

depicted in the gene network of AtHsf7 show embryo arrest in

mutants and defective in thermo tolerance. These results suggest

that HvHsfB2c in barley and AtHsf7 are not only highly conserved

in sequence and expression specificity between monocot and dicot

lineages, but also seems to possess conserved function in seed

development and stress tolerance. While none of the HsfB class

members are characterized in monocots, studies from Ikeda et al.

[59] indicate that HsfB factors suppress the general heat shock

response under non-heat-stress conditions and in attenuating

period they appear to be necessary for the expression of heat

stress-inducible heat shock protein genes under heat stress

conditions, which is necessary for acquired thermotolerance.

The authors also mentioned that the heat stress response is finely

regulated by activation and repression activities of Hsfs in

Arabidopsis. Also, recent studies suggest that Arabidopsis HsfB4

possess regulatory function in root development [60].

Based on coexpression network, it appears that HvsHsp 17.5

plays a vital role in barley seed development (Figure 4). Also, a

strong interaction of a putative serine/threonine protein kinase, a

calcyclin binding protein, ATP dependent RNA helicase and a

metallothionein protein were observed in the gene network

generated with that of sHsp17.5 (Figure 4 and Table S2).

Serine/theronine protein kinase and calcyclin as a calcium

binding protein acts as second messenger associated with the

signal transduction. Metallothionins are not only associated with

drought stress, but also involved in regulating zinc ion mobiliza-

tion and metal homeostasis in late embryo developmental stages

[61]. Cornet analysis emphasized the potential protein interaction

partners as well the coexpressed gene regulatory networks of

AT3G46230 (orthologous gene of sHsp17.5 in barley) in

Arabidopsis. These results suggest that AT3G46230 is likely to

form protein complexes with several small heat shock proteins

Hsp17.4, Hsp17.6 class I, Hsp17.6 class II, Hsp 17.6A and Hsp70

family (Figure 5). The presence of sHsps in different cell organelles

indicate that potentially these genes might act as chaperones in

protecting the various cellular compartments under stress as

reported in case of mitochondrial Hsp22 of Drosophila [62].

Our results suggest that the 17.5CI sHsp that we isolated from

barley has chaperone activity and is able to protect the growth of

E. coli and the activity of a thermolabile chaperone enzyme under

heat stress. Based on our results, it is reasonable to speculate that

the recombinant HvsHsp17.5-CI protein might function as a

molecular chaperone that conferred a moderate protective

function against stress-induced protein damage in bacterial cells,

as mostly these class of proteins might be involved in stabilization

but not necessarily in refolding of denatured proteins under stress

[3,40]. This situation differs from high molecular weight Hsps

which could refold denatured proteins under stress but requires

ATP [33]. Cytosolic Hsp17.7 and Hsp17.3 of tomato have been

shown to act as molecular chaperones in vivo [63] and also an

overexpression of AtHSP17.6A lead to enhance osmotolerance

[64]. Chauhan et al. [49] showed that a chloroplastic TasHSP26 is

involved in seed maturation and germination and its heterologous

expression results in tolerance to heat stress in Arabidopsis. Thus, it

appears that some of these plant specific sHsps act not only as

molecular chaperones under stress, but also likely to possess similar

function in developmental programs especially in the seeds.

Supporting Information

Figure S1 Multiple sequence alignment of the Hsf
protein family in barley with corresponding members
of rice. Different classes of the HSF numbers correspond to the

order of the alignment. The multiple alignment results clearly

show the highly conserved DBD domains among all the Hsf genes

which are marked with dotted boxes. The secondary structure

elements of DBD (a1-b1- b2-a2-a3- b3-b4) are shown above the

alignment. These were predicted based on the PSIPRED protein

structure prediction server. The scheme at the top depicts the

locations and boundaries of the HR-A core, insert and HR-B

regions within the HR-A/B regions which are marked with thick

boxes. Positions of the other identified motifs nuclear localization

signals (NLS) are highlighted with yellow colour, nuclear export

signal (NES) highlighted in yellow colour with underline and

activator (AHA) motif sequences are shown in the red colour and

each motif name is mentioned above the alignment. Alignment

was performed by using ClustalW (DNAstar) program.

(PDF)

Figure S2 Multiple alignment of different sub-classes of
HvsHsps. The conserved a- crystallin domain was labeled with

dotted box. The defined consensus regions I and II are marked

with underline below the sequences. Highly conserved and semi-

conserved regions are shown in ‘‘*’’ and ‘‘.’’, respectively. Small

Hsp region specific to respective subclasses was labeled with thick

boxes. The chloroplast localized proteins have transit sequences

that are specific for organelle and is labeled with red colour. The

conserved Arg is displayed in red colour in the b7 strand. The

secondary structure assignments for all classes of HvsHsps were

labeled above the sequences. The predicted b-strands depicted by
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thick lines above the alignment are based on their position in

known secondary structure of Hsp16.9 from T. aestivum (van

Montfort et al. 2001). The IXI/V motif in the C-terminal

extension is shown in green. The SXXFD motif and interacting

residues in the conserved alpha crystallin domain are in pink

colour. Alignment was performed by using ClustalW (DNAstar)

program.

(PDF)

Figure S3 Position of putative cis-elements present in
the promoter regions of barley Hsf genes. The analysis was

performed using PlantCARE and PLACE databases. The

‘‘rectangle mark’’ shows the relative position of the different

motifs.

(PDF)

Figure S4 Position of putative cis-elements present in
the promoter regions of barley sHsp genes. The analysis

was performed using PlantCARE and PLACE databases. The

‘‘rectangle mark’’ shows the relative position of the different

motifs.

(PDF)

Figure S5 Subcellular localisation of HvHsfB2c in
transient transformed Arabidopsis thaliana mesophyll
protoplasts for the the N-terminal CFP-fusion deriva-
tives. scale = 10 mM. A, N-terminal CFP-fusion; B, C-terminal

CFP fusion.

(PDF)

Table S1 Barley sHsp and Hsf Orthologous genes in
Arabidopsis.

(PDF)

Table S2 Additional file 5: Detailed list of functional
annotations of genes represented in the network of
HvHsfB2c/HvHsp17.5-CI.

(PDF)
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