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Abstract Membrane nanodomains have been implicated in Ras signaling, but what these

domains are and how they interact with Ras remain obscure. Here, using single particle tracking

with photoactivated localization microscopy (spt-PALM) and detailed trajectory analysis, we show

that distinct membrane domains dictate KRasG12D (an active KRas mutant) diffusion and trafficking

in U2OS cells. KRasG12D exhibits an immobile state in ~70 nm domains, each embedded in a larger

domain (~200 nm) that confers intermediate mobility, while the rest of the membrane supports fast

diffusion. Moreover, KRasG12D is continuously removed from the membrane via the immobile state

and replenished to the fast state, reminiscent of Ras internalization and recycling. Importantly, both

the diffusion and trafficking properties of KRasG12D remain invariant over a broad range of protein

expression levels. Our results reveal how membrane organization dictates membrane diffusion and

trafficking of Ras and offer new insight into the spatial regulation of Ras signaling.

Introduction
The plasma membrane has a complex and dynamic landscape that helps shape how diverse mem-

brane-localized signaling molecules behave (Grecco et al., 2011; Staubach and Hanisch, 2011;

Simons and Toomre, 2000; Schmick and Bastiaens, 2014; Varma and Mayor, 1998; Garcia-

Parajo et al., 2014). Among others, the Ras small GTPases are prototypical examples of signaling

molecules whose biological activities are directly regulated by the membrane (Zhou and Hancock,

2015; Abankwa et al., 2010). While biochemical aspects of how Ras interacts with downstream

effectors such as Raf have been well studied (Simanshu et al., 2017; Cox and Der, 2010), the mech-

anisms through which the biological membrane defines the signaling activity and specificity of Ras

are still poorly understood. Recent studies by us and others suggest that Ras signaling may involve

the formation of multimers (dimers and/or clusters) in a membrane-dependent manner

(Güldenhaupt et al., 2012; Nan et al., 2015; Spencer-Smith et al., 2017; Ambrogio et al., 2018;

Prior et al., 2003; Inouye et al., 2000; Plowman et al., 2005), and that partitioning of Ras into

nanoscopic membrane domains and interactions with scaffold proteins or structures likely constitute

critical steps to Ras multimer formation and signaling (Zhou et al., 2015; Chung et al., 2018;

Belanis et al., 2008; Shalom-Feuerstein et al., 2008; Chen et al., 2016). While previous high-
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resolution imaging experiments using immuno-EM (Prior et al., 2003; Plowman et al., 2005) or

quantitative superresolution microscopy (Nan et al., 2015; Huang et al., 2015) were instrumental to

revealing the existence of Ras multimers, the resulting images were mostly static and provided lim-

ited information about the spatiotemporal dynamics of Ras – membrane domain interactions.

Live-cell single-particle tracking (SPT) (Schmidt et al., 1996; Kusumi et al., 2005; Saxton and

Jacobson, 1997) complements static imaging by providing information about molecular motions,

and it has been used to study Ras dynamics on the membrane (Lommerse et al., 2006;

Murakoshi et al., 2004; Lommerse et al., 2004). The underlying rationale is that interactions of Ras

with different membrane domains and signaling partners would manifest as varied diffusion behav-

ior. Indeed, using SPT, Murakoshi et al. observed transient events of Ras immobilization on the mem-

brane, which became more frequent upon epidermal growth factor stimulation, potentially reflecting

the formation of signaling complexes or interactions with raft domains (Murakoshi et al., 2004).

Lommerse and colleagues also used SPT to probe Ras diffusion and similarly observed transient and

context-dependent confinement of Ras in membrane regions not more than 200 nm in diameter

(Lommerse et al., 2006).

These prior studies offered important initial insight into the potential connections between Ras

diffusion, function, and membrane organization, but the technical constraints of traditional SPT lim-

ited the imaging throughput and depth of analysis in these studies. Typically, only a few tens of tra-

jectories could be obtained from each experiment, which precluded detailed and quantitative

characterization of the heterogeneous and stochastic nature of molecular diffusion. In consequence,

while the studies consistently reported two diffusion states – a ‘free’ diffusion state and another

‘immobile’ state, it remains to be seen whether a two-state model adequately recapitulates Ras

membrane dynamics (Lommerse et al., 2006; Murakoshi et al., 2004; Lommerse et al., 2004).

Thus, the nature of the membrane domains occupied by each of these states and how Ras molecules

transition between the states in connection with multimer formation and signaling remain unclear.

eLife digest The Ras family of proteins play an important role in relaying signals from the

outside to the inside of the cell. Ras proteins are attached by a fatty tail to the inner surface of the

cell membrane. When activated they transmit a burst of signal that controls critical behaviors like

growth, survival and movement. It has been suggested that to prevent these signals from being

accidently activated, Ras molecules must group together at specialized sites within the membrane

before passing on their message. However, visualizing how Ras molecules cluster together at these

domains has thus far been challenging. As a result, little is known about where these sites are

located and how Ras molecules come to a stop at these domains.

Now, Lee et al. have combined two microscopy techniques called ‘single-particle tracking’ and

‘photoactivated localization microscopy’ to track how individual molecules of activated Ras move in

human cells grown in the lab. This revealed that Ras molecules quickly diffuse along the inside of the

membrane until they arrive at certain locations that cause them to halt. However, computer models

consisting of just the ‘fast’ and ‘immobile’ state could not correctly re-capture the way Ras

molecules moved along the membrane. Lee et al. found that for these models to mimic the

movement of Ras, a third ‘intermediate’ state of Ras mobility needed to be included.

To investigate this further, Lee et al. created a fluorescent map that overlaid all the individual

paths taken by each Ras molecule. The map showed regions in the membrane where the Ras

molecules had stopped and possibly clustered together. Each of these ‘immobilization domains’

were then surrounded by an ‘intermediate domain’ where Ras molecules had begun to slow down

their movement. Although the intermediate domains did not last long, they seemed to guide Ras

molecules into the immobilization domains where they could cluster together with other molecules.

From there, the cell constantly removed Ras molecules from these membrane domains and returned

them back to their ‘fast’ diffusing state.

Mutations in Ras proteins occur in around a third of all cancers, so a better understanding of their

dynamics could help with future drug discovery. The methods used here could also be used to

investigate the movement of other signaling molecules.
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Recent years have seen significant advances in both experimental (Manley et al., 2008;

Benke et al., 2012; Huang et al., 2018; Basu et al., 2018; English, 2015; Cutler et al., 2013) and

data analysis strategies (Persson et al., 2013; Hansen et al., 2018; Liu et al., 2015; Jaqaman et al.,

2008; Chenouard et al., 2014; Shen et al., 2017; Monnier et al., 2015; Ito et al., 2017;

Lindén and Elf, 2018) of SPT, some of which have dramatically improved the information through-

put. Among others, spt-PALM combines SPT with photoactivated localization microscopy (PALM) to

enable single molecule tracking under dense labeling conditions through stochastic photoswitching

(Manley et al., 2008). With spt-PALM, it is routine to acquire thousands of diffusion trajectories

from a single cell. A growing list of software tools has also been developed to facilitate spt-PALM

data analysis (Persson et al., 2013; Hansen et al., 2018; Jaqaman et al., 2008; Ito et al., 2017;

Newby et al., 2018). For example, variational Bayes SPT (vbSPT) allows construction of a detailed

diffusion model from spt-PALM data with parameters such as the number of states, the diffusion

coefficient and the occupancy of each state, as well as the state transition rates even when the indi-

vidual trajectories are short (Persson et al., 2013). Additional methods have also been introduced

to quantitate various aspects of diffusion dynamics from SPT trajectories (Chenouard et al., 2014;

Ito et al., 2017; Manzo and Garcia-Parajo, 2015). These advances help overcome the limitations of

conventional SPT and make it possible to analyze Ras membrane dynamics in much greater depth.

Here, we report our efforts on combining spt-PALM with detailed trajectory analysis to reveal pre-

viously unknown aspects of Ras diffusion on the cell membrane. With carefully controlled expression

levels and photoactivation rate, spt-PALM trajectories of PAmCherry1-tagged KRasG12D (KRas with

an activating mutation and thus primarily GTP-bound) consistently reported three diffusion states,

including a fast diffusion state, an immobile state, and a previously unidentified diffusion state with

intermediate mobility. Leveraging the large number of trajectories, we were able to spatially map

the diffusion states to distinctive membrane domains, estimate the size and lifetime of each domain,

and define the spatial relationship between the domains. Moreover, in analyzing how KRasG12D tran-

sitions from one diffusion state to another, we discovered that KRasG12D diffusion follows a non-equi-

librium steady state (NESS) model with net mass flow from the fast state to the immobile state,

potentially coupled to the endocytic trafficking and membrane recycling of KRasG12D. Based on

these results, we propose a new model to describe the membrane dynamics of KRasG12D, where

nested membrane nanodomains dictate the diffusion and trafficking, with implications in Ras multi-

mer formation and signaling.

Results

KRasG12D diffuses on the membrane in three distinct states
To investigate the lateral diffusion properties of KRasG12D under controlled expression levels, we

established isogenic U2OS cells stably expressing PAmCherry1-KRasG12D under doxycycline (Dox)

regulation (Nan et al., 2015). The expression level of PAmCherry1-KRasG12D could be tuned from a

level below that of the endogenous KRas at <1 ng/mL Dox to highly over-expressed at 5–10 ng/mL

Dox (Figure 1A). Initially data were collected from cells expressing KRasG12D at a moderate level by

inducing at 2 ng/mL Dox. The photoactivatable fluorescent protein PAmCherry1 has been widely

used for quantitative PALM and spt-PALM (Subach et al., 2009). Owing to the good single-molecule

brightness of activated PAmCherry1, we were able to track individual PAmCherry1-KRasG12D mole-

cules at frame rates up to ~83 Hz (i.e.,~12 ms/frame) with a low excitation dose (~400 W/cm2 at 561

nm). The low spontaneous photoactivation rate of PAmCherry1 also permits clean single-molecule

imaging even at high expression levels, yielding as many as hundreds of thousands of trajectories

per cell via spt-PALM (Figure 1B and Video 1). Under these conditions, the average trajectory

lengths were ~4 and~5 frames for data acquired at 12 ms/frame and 35 ms/frame rates, respectively

(Figure 1—figure supplement 1). Despite the faster frame rate, data acquired at 12 ms/frame had a

lower signal-to-noise ratio, causing a more frequent loss of molecules during tracking to yield signifi-

cantly shorter trajectories (~50 ms average duration) than data acquired at 35 ms/frame (~175 ms

average duration). We therefore used both frame rates in this work for the benefit of better tempo-

ral resolution or spatial precision.

A close inspection of the individual trajectories clearly shows larger diffusive steps intermittent

with moments of transient entrapment, indicating the presence of multiple diffusion states and

Lee et al. eLife 2019;8:e46393. DOI: https://doi.org/10.7554/eLife.46393 3 of 23

Research article Physics of Living Systems Structural Biology and Molecular Biophysics

https://doi.org/10.7554/eLife.46393


frequent state transitions (Figure 1C and inset). Similar observations were reported for both HRas

and KRas in previous low throughput SPT experiments, where two diffusion states – a ‘fast’ state

and an ‘immobile’ diffusion state – were detected (Lommerse et al., 2006; Murakoshi et al., 2004).

Since spt-PALM offers a much larger number of trajectories, we first asked whether KRasG12D dif-

fusion on the cell membrane could indeed be described by a simple two-state model. To this end,

we used two methods to analyze the Ras diffusion trajectories. The first approach fits cumulative dis-

tribution function (CDF) for Brownian motion to the squared displacements of Ras trajectories to

extract diffusion coefficients and the respective occupancies of the diffusion states (Schütz et al.,

1997). The second method, vbSPT, treats particle diffusion and the associated state transitions with

a Hidden Markov Model and performs model selection through variational inference (Persson et al.,

2013). Of note, vbSPT is well suited for analyzing large numbers of short trajectories such as those

obtained via spt-PALM.

B

D E

Occupancy (fraction) 

vbSPT CDF fit 

State 1 0.13 ± 0.02 0.21 ± 0.14 

State 2 0.33 ± 0.07 0.39 ± 0.04 

State 3 0.53 ± 0.08 0.40 ± 0.11 

Diffusion Coefficients ( m
2
/s) 

vbSPT CDF fit 

State 1 0.08 ± 0.01 0.08 ± 0.02 

State 2 0.27 ± 0.02 0.28 ± 0.06 

State 3 0.81 ± 0.05 0.87 ± 0.08 

F

CA

Figure 1. Defining the membrane diffusion model of KRasG12D using spt-PALM and vbSPT. (A) Western blot showing the increasing expression level of

PAmCherry1-KRasG12D with increasing doxycycline (Dox) concentration; (B) Example trajectory map of membrane KRasG12D acquired at 12 ms frame

rate using total internal reflection fluorescence (TIRF) illumination. Each line represents an individual Ras molecule coordinate over time acquired for the

duration of the movie (20 min). Only a subset of all trajectories is plotted. Scale bar: 10 mm; (C) Expanded view of the boxed region in B). Only a subset

of all of the trajectories in the boxed region is shown to allow unhindered view of individual Ras trajectories. Inset shows a KRasG12D trajectory

displaying multiple diffusion states. Scale bars: main figure: 1 mm; inset: 200 nm; (D) Determining the optimal model size for KRasG12D membrane

diffusion using CDF fitting, with smaller root mean squared error indicating a better model (n = 8); (E) Determining the optimal model size for KRasG12D

membrane diffusion using vbSPT, with smaller absolute model score (i.e., score of zero being the best global model) indicating a better model (n = 5);

(F) Comparing the model parameters obtained from CDF fit and vbSPT, both using a three-state model for KRasG12D membrane diffusion. State

transition probabilities were not inferred from CDF fit and therefore not included in the comparison. Error bars are 95% confidence intervals (CIs).

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Source data 1. Excel sheet for data used for generating panels D, E, and F.

Figure supplement 1. Trajectory length histograms.

Figure supplement 2. Impact of particle density on diffusion model reconstruction.

Figure supplement 3. Impact of trajectory connection distance on vbSPT model output.

Figure supplement 4. Impact of localization error on vbSPT model output.

Figure supplement 5. vbSPT model output on experimental spt-PALM datasets acquired at high particle densities.

Figure supplement 6. Photon yield and localization accuracy at the different frame rates used in this work.
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We found that particle densities higher than

0.03 mm�2 per frame under our experimental

conditions (12 ms/frame with the fastest diffusion

rate at ~1 mm2/s) led to occasional misconnected

trajectories, and that even a small fraction of such

misconnected trajectories could lead to skewed

model outputs with vbSPT (Figure 1—figure sup-

plement 2). In addition, the threshold for maxi-

mum particle displacement between adjacent

frames also had an impact on trajectory miscon-

nection, although to a lesser extent as tested

with simulated trajectories (Figure 1—figure sup-

plements 2 and 3). Thus, for diffusion model con-

struction, we chose to use a high frame rate (12

ms/frame) and a low particle density (<0.03

mm�2) to eliminate misconnected trajectories

while maintaining a sufficient number of

trajectories.

Using trajectories acquired and analyzed with

the above precautions, both CDF fitting and

vbSPT yielded similar three-state models for

KRasG12D diffusion on the membrane of live U2OS cells. Specifically, CDF fitting to a three-state

model had significantly lower residual error compared to a single- or a two-state model and further

increasing the model size did not decrease the error (Figure 1D), indicating that a three-state model

is sufficient to describe the data. For vbSPT, a score equal to zero indicates the best model, a condi-

tion that was met with a three-state model but not with larger or smaller size models (Figure 1E). To

rule out the possibility of imprecise single-molecule localizations causing vbSPT to misinterpret two-

state spt-PALM data as three states, we performed vbSPT analysis on simulated trajectories based

on a two-state model with varying localizations errors (0, 20, 40, 80, 100 nm) added. Even at the

highest localization errors (100 nm), vbSPT correctly retrieved a two-state model (Figure 1—figure

supplement 4) from the simulated data, suggesting that the three-state model derived from experi-

mental spt-PALM data is unlikely a result of localization errors in SPT.

The diffusion coefficient and the occupancy for each of the diffusion states were in good agree-

ment between the two analysis methods and within each method when applied to different cells

under the same conditions, as evidenced by the small errors (Figure 1F). Datasets with high particle

densities can return models with different sizes, sometimes also with aberrant model parameters

(Figure 1—figure supplement 2B–D and Figure 1—figure supplement 5A–B); even so, the histo-

gram of all vbSPT-derived diffusion coefficients still showed three distinct clusters (Figure 1—figure

supplement 3C) corresponding to the three states listed in Figure 1F. Thus, we concluded that the

membrane diffusion of KRasG12D under our experimental conditions is best described by a three-

state model, demonstrating the existence of an intermediate state not detected in previous studies.

Between the two methods, vbSPT was used for most subsequent analyses in the remainder of this

work because it infers the transition probabilities and state identities for every time step whereas

CDF does not.

The diffusion coefficient of the slowest state in Figure 1F is comparable to that expected from

single-molecule localization error (~40 nm, Figure 1—figure supplement 6), which implied that the

actual diffusion of KRasG12D in this state may be even slower than it appeared. To test this hypothe-

sis, we acquired spt-PALM data at a slower frame rate (35 ms/frame) to improve the localization

accuracy of slowly moving molecules since more photons could now be collected for each PAm-

Cherry1 molecule in a single frame (Figure 1—figure supplement 6). Indeed, these datasets

reported a significantly smaller diffusion coefficient (0.02 mm2/s) for the slowest state than that

obtained earlier (0.08 mm2/s) using data taken at 12 ms/frame. This result suggests that the slowest

diffusion state of KRasG12D is essentially an immobile state, consistent with previous reports

(Lommerse et al., 2006; Murakoshi et al., 2004).

Video 1. Clip of a raw spt-PALM video showing

PAmCherry1-KRasG12D diffusion on U2OS cell

membrane. Data acquired at 35 ms/frame. Cells were

induced with 5 ng/mL doxycycline before imaging.

https://elifesciences.org/articles/46393#video1
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KRasG12D diffusion states correspond to distinct membrane domains
The diffusion model presented in Figure 2A summarizes the results from the spt-PALM trajectory

analyses using vbSPT. Each circle represents one of the diffusion states with arrows indicating the

transition probabilities between pairs of states. A notable feature of this model is that there appears

to be a defined state transition path: KRasG12D molecules always transition between the fast (F) and

the immobile (I) states by going through the intermediate (N) state, and direct transitions between

the fast and the immobile states almost never occur. In order to confirm this transition path, we com-

pared the distribution of step sizes relative to the immobile state steps, since different step sizes

reflect different diffusion coefficients. Consistent with the state transition path observed in

Figure 2A, the histogram of step sizes immediately adjacent to the immobile steps corresponded to

the intermediate diffusion state (Figure 2B, blue) while the distribution of the remaining steps had a

broader peak implying a mixture of both fast and intermediate diffusion steps (Figure 2B, where the

black color indicates a mixture of states). As expected, the step sizes assigned to the immobile

states (Figure 2B, red) are even smaller compared to that of the other two states. The clear separa-

tion of these three step size distributions confirms the above-mentioned transition path through the

intermediate state. The distinctions in step sizes among the three states were even more obvious on

data taken at 35 ms/frame, which had better single-molecule localization precision (Figure 2—figure

supplement 1). Thus, the intermediate state is not merely a state with intermediate mobility but

effectively an obligatory link between the immobile and the fast states of KRasG12D.

The observed state transition path may arise from at least two potential scenarios. In the first sce-

nario, fast diffusing KRasG12D may transition into the intermediate then the immobile state through

spontaneous conformational changes unrelated to slow or static membrane structures. Alternatively,

the immobile states could be caused by KRasG12D transiently binding to stationary molecules or

structures (termed ‘immobilization sites’ or ‘immobilization domains’) residing in membrane regions

(referred to as ‘intermediate domains’) that confer intermediate mobility to KRasG12D. Consequently,

these intermediate domains would act as transition zones between membrane regions where

KRasG12D exhibits fast diffusion and the sites of KRasG12D immobilization, yielding the observed state

transition path. In either case, the intermediate and the immobile states of KRasG12D would be tem-

porally and spatially correlated. It is only in the latter case, however, that we would observe multiple

visits to the same intermediate or immobilization domains by different KRasG12D molecules, provided

that both domains have lifetimes longer than our temporal resolution. Of note, even in the second

scenario, KRasG12D targeting to the intermediate or the immobilization domains may be accompa-

nied by changes in conformation.

To distinguish between the two scenarios, we performed auto- and cross-correlation analysis on

the locations of KRasG12D exhibiting a certain diffusion state (referred to hereafter as state coordi-

nates). We first visually examined the spatial distributions of the states by slicing each raw image

stack into one-minute time substacks and plotting the state coordinates on the same map, with each

color representing one of the states (Figure 2C, Figure 2—figure supplement 2, and Video 2).

Each diffusion trajectory typically contributes only a few points to the plots as limited by its short

duration, and the points from multiple trajectories accumulate over time (up to 1 min in this case) to

‘paint’ a map of the membrane regions associated with each diffusion state. Despite yielding rela-

tively short trajectories, the rapid turn-over of PAmCherry1 allowed more efficient sampling (‘paint-

ing’) of the membrane domains by KRasG12D in the field of view. As shown in Figure 2C, the

intermediate state locations and the immobile state locations not only co-clustered, but also each

appeared to self-cluster. Specifically, regions corresponding to the intermediate states (blue) often

connect to give rise to nanoscopic domains a few hundred nm in size, and the vast majority of the

immobilization sites (red) are surrounded by the intermediate domains. By contrast, regions corre-

sponding to the fast state occupy the majority of the membrane area. While both the intermediate

and the immobilization domains appeared to be dynamic, a time-lapse domain map (Video 2)

showed that at least some of these domains could last a few minutes (to be further addressed below

in Figure 3). Thus, spatial mapping of the KRasG12D state coordinates provided visual evidence for

the physical presence of nested, nanoscopic domains conferring the distinct KRasG12D diffusion

states.

We next used pair correlation function (g(r)) to quantitate the spatial relationship between the

KRasG12D diffusion states (Figure 2D–E). The function g(r) measures the ratio of the number of
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A C 

E F

B A 

D 

12 ms

35 ms

12 ms

35 ms

12 ms

35 ms

d 

d = largest distance between two 

points in the same consecutive state 

Figure 2. KRasG12D diffusion states are associated with distinct membrane domains. (A) The three-state model for KRasG12D diffusion with F, N, and I,

representing the fast, the intermediate, and the immobile states, respectively. Model parameters were inferred using vbSPT on spt-PALM datasets with

at least 30,000 trajectories obtained on cells induced with 2 ng/mL Dox. The arrows indicate state transitions (i.e. the probability of switching to a

different state in the next frame) and the area of the circle and the thickness of the arrows are both roughly scaled to reflect their relative values. All

parameters were derived from data acquired at 12 ms frame interval except for the diffusion coefficient of the immobile state, which was inferred from

data taken at 35 ms frame interval. Error bars are 95% CIs (n = 8); (B) Step size histograms for immobilization events (red), one step before or after the

immobilization event (blue), and all other steps (black). A diffusion step was part of an immobilization event if immobile state was assigned to that

trajectory segment by vbSPT (n = 14, see Materials and methods); (C) Map of the membrane locations where KRasG12D molecules exhibit specific

diffusion states (referred to as state coordinates) within a one-minute duration (taken from a spt-PALM dataset of ~20 min total duration). Red, blue,

and green dots represent locations of the immobile, the intermediate, and the fast states, respectively, with each rendered circles scaled proportionally

to the mean diffusion coefficient for the state; (D) Pair correlation analysis on the averaged state coordinates across multiple, one-minute segments of

longer spt-PALM datasets. The same color coding as in B) was used to distinguish the three states. For this analysis, molecules in the same diffusion

state in successive frames only contributed a single, averaged state coordinate. The average state coordinates of all molecules captured within a one-

minute segment were used for correlation analysis, and the results from multiple one-minute segments were averaged to yield the plot. The negative

control was generated through a 2D Markovian simulation, and the resulting trajectories were analyzed the same as the experiment (see

Materials and methods); (E) Cross correlation analysis between pairs of diffusion states. The state coordinates were processed the same way as in D)

prior to the correlation analysis, except that the correlation was performed between two different diffusion states. The negative control was generated

through a 2D Markovian simulation, and the resulting trajectories were analyzed the same as the experiment (see Materials and methods); (F)

Estimating the lower bound size for the immobile and the intermediate domains. The estimation was based on the maximum distance traveled by the

molecule while in the same diffusion state. *D-F) The main panel shows results inferred from data taken at 35 ms frame intervals for improved

localization precision. The inset shows the data taken at 12 ms/frame (n = 14 for 12 ms and n = 7 for 35 ms datasets).

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Source data 1. Excel sheet for data used for generating panels B, D, E, and F.

Figure supplement 1. Spatial analysis of KRasG12D membrane domain properties using data acquired at 35 ms per frame.

Figure supplement 2. Temporal evolution of the membrane domains associated with each KRasG12D diffusive state.
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particles located a distance (r) from a given parti-

cle to that expected from a complete spatial ran-

domness (see Materials and methods). Here, the

g(r) could be calculated for particles in the same

diffusion state (auto-correlation) or between two

different diffusion states (cross-correlation); in

either case, amplitudes of g(r) significantly

greater than that expected for a random distribu-

tion indicate spatial clustering. When multiple

KRasG12D molecules visit the same domain, each

at a different time point but exhibiting the same

diffusion state, g(r) would detect spatial auto-cor-

relation for the given state. To avoid false cluster-

ing due to the same molecule staying in the same

state across multiple frames, we used the aver-

aged state coordinate for each continuous trajec-

tory segment that stayed in the same state for

more than two consecutive time points (see

Materials and methods). Results from both data-

sets taken at 35 ms/frame (main panels) and

those at 12 ms/frame (inset) are shown for com-

parison (Figure 2D–E).

Consistent with the visual observation earlier

(Figure 2C), coordinates of the immobile and the

intermediate states each showed significant clus-

tering in the g(r) plots averaged across each 1

min raw image stacks, whereas g(r) of the fast state was barely above random across the full range

of r analyzed (Figure 2D). All g(r) negative controls were generated with a 2D Markovian simulation

of diffusing particles with no associated domains (see Materials and methods), and the simulated tra-

jectories were processed through the same analysis pipeline as the experimental data. As expected,

the averaged state coordinates of the simulated negative control had values close to one and

showed no peak in the g(r) plots. Furthermore, g(r) based on spatial cross-correlation analysis clearly

indicated co-clustering between the immobile and the intermediate state positions but not with the

fast diffusion state (Figure 2E).

Transient nanodomains mediate the intermediate and the immobile
states of KRasG12D

We also estimated the lower-bound size of the domains associated with the immobile and the inter-

mediate states of KRasG12D by calculating the maximum distance a molecule traveled while in a

domain (i.e., longest distance between two points within consecutive steps taken while in the same

state). Shown in the main panel of Figure 2F are the histograms of the estimated domain sizes

determined from data taken at 35 ms/frame, based on which we determined that the mean diame-

ters of the intermediate and the immobile membrane domains were approximately ~200 nm

and ~70 nm, respectively. This is consistent with the notion that most immobilization domains are

likely surrounded by intermediate domains. The distinction between the two domains became much

less significant with data taken at 12 ms/frame (Figure 2F, inset), which we attributed to the shorter

trajectory durations (~50 ms at 12 ms/frame compared to ~175 ms at 35 ms/frame; see Figure 1—

figure supplement 1), which in turn was due to the lower photon yield per frame from single PAm-

Cherry1 molecules at this fast frame rate. In essence, the molecules failed to sample a large enough

area within the short duration of the trajectories to report the domain size accurately. In addition,

the distribution of the minimum intermediate domain size appeared to have at least two peaks

at ~120 nm and ~230 nm, implying that there may potentially be multiple types of intermediate

domains (Figure 2F).

To understand the temporal behavior of the immobilization and the intermediate domains associ-

ated with KRasG12D, we extended g(r) calculations as in Figure 2 from one minute to longer time

intervals. The rationale was that, as the time interval for calculating g(r) increases beyond the lifetime

Video 2. Time-lapse (1 min/frame) video of the domain

map calculated from individual trajectories within each

substack. Red: immobilization domains (sites); blue:

intermediate domains; green: fast (free) domains. The

image area is around 10 � 10 mm2.

https://elifesciences.org/articles/46393#video2
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of a domain, the chance of observing KRasG12D molecules visiting the same domain (i.e., exhibiting

the same diffusion state in close proximity) should decrease, resulting in lower g(r) amplitudes.

Indeed, as shown in Figure 3A–C, for dataset acquired at 12 ms frame interval, the peak amplitudes

of g(r) for both the immobile (Figure 3A) and the intermediate (Figure 3B) states decreased signifi-

cantly after ~5 min with further decay at increasing time intervals, indicative of finite lifetimes for

both nanodomains, likely on the order of minutes on average (see also Figure 2—figure supple-

ment 1 for results with data taken at 35 ms/frame). For the limited temporal resolution of this analy-

sis, we likely only detected relatively stable domains with lifetimes longer than 1 min, and the

presence of more transient intermediate or immobilization domains should not be ruled out.

To gain insight into how KRasG12D interacts with the different membrane domains, we also ana-

lyzed the frame-to-frame deflection angle for the molecules within each domain. The deflection

angle measures the relationship between the current and the preceding step: a complete random

A B 

C D 

θ 

Figure 3. Temporal properties of the KRasG12D-associated immobile and intermediate domains. (A–C) Pair correlation analysis of the state coordinates

at different time intervals (1, 5, 10, and 20 min). The amplitude (maximal g(r) value) of the pair correlation function at each time interval was plotted in

the main panel with the raw pair correlation plots shown in the inset. A-C show pair correlation functions of averaged coordinates for the immobile, the

intermediate, and the fast states, respectively (see Materials and methods). The negative control in each case was generated through a 2D Markovian

simulation, and the resulting trajectories were analyzed the same as the experiment (see Materials and methods); D) Deflection angle analysis on

KRasG12D diffusion trajectories separated by diffusion states (red: immobile; blue: intermediate; green: fast). The deflection angle was calculated as the

angle between two successive segments of the trajectory while the molecule was in the same diffusion state. *Results shown for data acquired at 12

ms/frame (n = 14).

The online version of this article includes the following source data for figure 3:

Source data 1. Excel sheet for data used for generating all the panels.
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walk would yield a flat distribution of deflection angles, whereas a preference for acute angles indi-

cates more ‘returning’ steps. The measurement will likely be affected by localization error: for indi-

vidual angles, larger localization error (relative to the step sizes) would add significant noise to the

measured angles; for ensemble measurement of a large number of angles, however, the localization

error would affect all angles in an unbiased manner. Thus, despite the finite localization precision at

our frame rates, we expect that the measured step angles to reflect the interactions between

KRasG12D and the membrane domains. Indeed, as shown in Figure 3D, KRasG12D molecules trapped

in either the immobilization or the intermediate domains (the red and the blue lines) were more likely

to exhibit acute deflection angles, potentially due to backward movements at the domain bound-

aries. Between the two domains, the enrichment of acute angles was more significant for the immo-

bile state because the associated domains were smaller, such that KRasG12D molecules had a higher

chance of hitting the domain boundaries. In comparison, KRasG12D molecules in the fast state exhibit

(Figure 3D, the green line) equal probabilities of moving in all directions, consistent with Brownian

motion.

KRasG12D is constitutively depleted from the immobile state and
replenished to the fast state
The small variance in the estimated model parameters from data taken on different cells, be it from

the same or different samples (Figure 2A), led us to hypothesize that KRasG12D membrane diffusion

is in a steady state. To verify this, we divided each spt-PALM dataset with a minimum of 40,000 tra-

jectories into four quarters (each with ~10,000 trajectories and typically ~5 min long) and computed

the diffusion model for each quarter using vbSPT. As Figure 4A shows, the model parameters for all

four quarters were essentially identical, which is the case for all qualifying datasets, confirming that

KRasG12D diffusion is indeed in a steady state, at least in U2OS cells and at the investigated time

scales (up to ~20 min).

In contradiction to KRasG12D diffusion being in a steady state, however, we found that the diffu-

sion model as presented in Figure 2A cannot self-sustain. When using experimentally derived model

parameters to simulate how the three-state system evolves over time (see Materials and methods),

we observed that the system quickly deviated from its initial configuration and instead stabilized at

an entirely different set of state occupancies (Figure 4B). In the new, ‘equilibrated’ system configura-

tion, KRasG12D spends as much as ~50% of its time in the immobile state, significantly more than the

observed steady state occupancy of ~11%. The fast state is the opposite: the population residing in

this state is significantly reduced from ~58% to ~25%. By contrast, the intermediate state changes

only slightly (~31% vs ~24% for the experimental observations and the simulations, respectively). We

confirmed that the simulated equilibrium probabilities were consistent with the principle of detailed

balance (Zuckerman, 2010) (Figure 4C). Next, we also verified that the experimentally determined

state occupancies in Figure 2A were not an artifact of vbSPT, since vbSPT correctly retrieved the

steady state model parameters when applied to simulated trajectories from steady state models

with varying input parameters (Figure 4—figure supplement 1). Therefore, we concluded that the

model in Figure 2A represents a non-equilibrium steady state (NESS).

To further characterize the NESS, we calculated the mass flow for each of the three KRasG12D dif-

fusion states as the change in state occupancy per time interval. A positive net flow rate or a ratio of

in- vs out-flux greater than one indicates an accumulation of mass for the state, while a negative flow

rate or a ratio of flux less than one indicates the opposite. As shown in Figure 5A and B, within the

NESS there is a net influx of KRasG12D molecules to the immobile state and a net outflux of mole-

cules from the fast state, whereas the in- and out-fluxes for the intermediate state are comparable.

We also calculated the mass flow for each of the three arms in the diffusion model in Figure 2A – in

the clockwise direction, it would be the flow from the fast state to the intermediate state (F to N),

intermediate to immobile (N to I), and immobile to fast (I to F). The results of this calculation are

shown in Figure 5C, where a positive value in the y axis (net mass flow between a pair of states) indi-

cates mass flow in the designated direction, and a negative value indicates flow in the opposite

direction. Consistent with results in Figure 5A and B, the dominant net mass flow through the NESS

is unidirectional – from the fast state to the intermediate to the immobile state (Figure 5C) – with

minimal ‘leakage’ from the fast to the immobile state.

These results are consistent with the simulated system relaxation to equilibrium shown in

Figure 4B, where the immobile and the fast diffusion states changed occupancies the most. For the
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KRasG12D NESS system to be sustained over time as we observed experimentally, KRasG12D would

need to be replenished into the fast diffusion state and removed from the immobile state. Indeed,

KRasG12D has previously been shown to undergo a constant exchange between the plasma mem-

brane and the cytosol, and internalized KRasG12D is collected at recycling endosomes and trans-

ported back to the plasma membrane (Schmick et al., 2014; Schmick et al., 2015). Our analyses

suggest that the loss of KRasG12D from the membrane could be through the immobile state, and the

replenishment through the fast state. At present, it is unclear whether the intermediate state has no

exchange with the cytosol or has active exchange with equal gain and loss. Accordingly, the mem-

brane trafficking of KRasG12D should follow the model presented in Figure 5D, where the arrows

indicate the net mass flow between the connected states as well as between the states (F or I) and

the environment (such as the cytosol).

KRasG12D diffusion model is invariant over a range of expression levels
Next, we sought to investigate whether experimental conditions such as expression level would alter

the diffusion properties of KRasG12D. An important observation on Ras nanocluster (multimer) forma-

tion is that the fraction of clustered molecules remains constant over a broad range of expression

levels (Plowman et al., 2005). This unusual property has led to two hypothetical mechanisms of

A B 

C 

   Immobile Intermediate Fast 

 Calculated 

Equilibrium Occupancy 

 
0.53 ± 0.09 0.24 ± 0.04 0.23 ± 0.07 

 Simulated 

Equilibrium Occupancy 

 
0.50 ± 0.09 0.24 ± 0.04 0.25 ± 0.07 

 Observed Steady State 

Occupancy 

 
0.11 ± 0.02 0.31 ± 0.03 0.58 ± 0.05 

 

Figure 4. KRasG12D diffusion on the cell membrane is in a non-equilibrium steady state. (A) Time invariance of the KRasG12D diffusion model. A

single ~20 min spt-PALM dataset was segmented into four quarters with each quarter containing ~10,000 trajectories (in ~5 mins), each analyzed

separately using vbSPT to obtain the model parameters such as the diffusion coefficients (upper panel) and the state occupancies (lower panel). Results

from multiple spt-PALM datasets were grouped and plotted (n = 4); B) Temporal evolution of the KRasG12D diffusion model in simulated runs. The

system was setup according to the experimental model parameters (number of states, state occupancies, diffusion coefficients, and state transition

rates) as shown in Figure 2A. The system was then allowed to evolve based on the input, with the new state occupancies recorded every time step (12

ms) and plotted (see Materials and methods). Similar to Figure 2A, only movies with minimum of 30,000 trajectories were simulated (n = 8); C) Table

summarizing the calculated, simulated, and experimentally observed occupancies for each of the states. *All error represents 95% CIs.

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Excel sheet for data used for generating all the panels.

Figure supplement 1. Validating vbSPT output accuracy on simulated trajectories using different model parameter inputs.
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membrane nanocluster formation: one based on protein self-nucleation (Plowman et al., 2005) and

another involving actomyosin activity (Gowrishankar et al., 2012). These active mechanisms are in

contrast to passive localization of Ras to existing membrane nanodomains (e.g. via diffusion), which

was thought to result in concentration-dependent multimer formation and therefore be inconsistent

with the constant fraction of clustered Ras. To date, it remains controversial as to which mechanism

mediates Ras multimer formation, including the basic question of whether membrane nanodomains

are involved. We reasoned that, if KRasG12D multimers form in membrane nanodomains – for exam-

ple the intermediate and/or the immobilization domains in this case – then the observed fraction(s)

of KRasG12D in either or both the intermediate and the immobile states should also be independent

of expression level, as for the fraction of Ras molecules in multimers (clusters).

To address this question, we induced PAmCherry1-KRasG12D at a range of expression levels using

different Dox concentrations (Figure 1A). Similar to our previous report (Nan et al., 2015), the

expression level of PAmCherry1-KRasG12D responded well to varying Dox concentrations in the iso-

genic cells used in this study, with the protein expression at 0 ng/mL being extremely low (only due

to occasional leakage in tetR suppression) and that at 10 ng/mL about 5–10 fold higher than endog-

enous KRasG12D. When measured in terms of protein density at the membrane, the tuning range cor-

responds to <10 molecules per mm2 at 0 ng/mL Dox to >300 molecules per mm2 at 10 ng/mL Dox.

By comparing estimated model parameters using spt-PALM data of PAmCherry1-KRasG12D at dif-

ferent Dox concentrations, we found that KRasG12D diffusion properties remained essentially the

B A 

D C 

I N F 

BA

C

Figure 5. Directional mass flow between KRasG12D diffusion states. (A) Net mass flow per state, defined as the difference between the influx (positive)

and the outflux (negative) for each state and expressed as the fraction (of total KRasG12D population) entering (positive, flow in) or leaving (flow out,

negative) the state per time interval; (B) Ratio of in- and outflux for each state. A ratio of one (dashed line) represents equal in- and outflux for the state,

greater than one represents more influx than outflux, and less than one represents net outflux of mass from the state; (C) Net mass flow per arm (pair of

states) in the KRasG12D diffusion model (Figure 2A). F to N and N to I are not significantly different. The states were ordered in a clock-wise direction,

and the net mass flow in the direction was calculated as the difference between forward and backward mass flows, with a positive value indicating net

flow in the indicated direction and a negative value the opposite direction; (D) Model for KRasG12D trafficking between the diffusion states and between

the membrane system and the environment (cytosol). Arrows indicate the directional mass flow, and the dashed line represents unknown mechanisms

connecting the fast and the immobile states. *All error bars are 95% CIs (n = 22).

The online version of this article includes the following source data for figure 5:

Source data 1. Excel sheet for data used for generating panels A, B, and C.
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same across the range of expression levels investigated (Figure 6A–B and Figure 6—figure supple-

ment 1). This model invariance is reflected across all conditions: not only was a three-state model

optimal for describing the diffusion of KRasG12D as judged with vbSPT (not shown) and with CDF

(Figure 6—figure supplement 2), but the diffusion coefficients of each state, the state occupancies,

as well as the transition probabilities between each pair of states, were indistinguishable within the

error bars.

As expected, the net mass flow rates (expressed as the change in state occupancy per time inter-

val) of KRasG12D within the system also remained the same across all the Dox concentrations

(Figure 6C–D). A similar observation was made when we acquired the trajectories at 35 ms/frame

(Figure 6—figure supplement 3). Thus, we concluded that KRasG12D diffusion and trafficking on the

membrane remains constant over the range of tested KRasG12D expression levels. Equivalently, the

partitioning of KRasG12D in each of the three diffusive states – and the corresponding membrane

B A 

D C 

Figure 6. KRasG12D diffusion properties remain constant over a broad range of expression levels. Spt-PALM trajectories of KRasG12D were acquired at

12 ms/frame after inducing the cells at 0, 2, 5, and 10 ng/mL Dox for 36–48 hr, and the diffusion models were inferred as described previously using

vbSPT. All aspects of the diffusion model discussed earlier, including diffusion coefficients (A), state occupancies (B), net mass flow per state (C), and

net mass flow per arm (pair of states, (D) at the different Dox concentrations were analyzed and compared. Error bars represent 95% CIs (n = 12 for 0

ng/mL Dox, n = 22 for 2 ng/mL Dox, n = 30 for 5 ng/mL Dox, and n = 18 for 10 ng/mL Dox).

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Excel sheet for data used for generating all the panels.

Figure supplement 1. vbSPT model outputs from KRasG12D diffusion trajectories acquired at different conditions (frame rate, total number of

trajectories, and Dox concentration).

Figure supplement 2. A three-state model remains optimal for describing KRasG12D diffusion over a broad range of expression levels.

Figure supplement 3. Net mass flow between KRasG12D diffusion states is independent of expression level.
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domains – is stable and independent of KRasG12D protein density on the membrane. This result coin-

cides with the prior observation that the fraction of Ras in multimers remains constant at widely vary-

ing membrane densities (Plowman et al., 2005), implying that Ras multimer formation and

nanodomain localization may be correlated processes.

Discussion
Membrane nanodomains have been implicated in the regulation of many membrane-resident cellular

processes such as Ras signaling (Grecco et al., 2011; Staubach and Hanisch, 2011; Simons and

Toomre, 2000; Schmick and Bastiaens, 2014; Varma and Mayor, 1998; Garcia-Parajo et al.,

2014), but studying the complex and heterogeneous membrane compartments in a living cell has

remained a challenge. Using spt-PALM and detailed trajectory analysis, we were able to uncover rich

details of how KRasG12D localizes and interacts with the membrane. Our results suggest that

KRasG12D diffusion on the membrane is best recapitulated with a model that comprises three states

– a fast state, an immobile state, and a previously unknown intermediate state. Leveraging the large

number of diffusion trajectories, we were able to map the locations where KRasG12D exhibits specific

diffusion states. These maps revealed membrane nanodomains corresponding to the intermediate

and the immobile states of KRasG12D. The intermediate nanodomains encompass the immobilization

sites in a nested configuration, such that KRasG12D almost always transitions between the fast and

the immobile states through the intermediate state. We also found that KRasG12D membrane diffu-

sion is in a non-equilibrium steady state, with KRasG12D constitutively removed from the membrane

through the immobile sites and replenished as fast diffusing molecules, potentially coupled to

KRasG12D trafficking via endocytosis and recycling. Importantly, partitioning of KRasG12D into the

three states remains invariant over a wide range of KRasG12D expression levels, demonstrating that

KRasG12D diffusion and trafficking through the three mobility states and associated nanodomains is

in a maintained, homeostatic condition. Together, these data start to paint a clear picture of the spa-

tiotemporal dynamics of KRasG12D on the membrane, providing the basis for understanding the

mechanisms of Ras multimer formation and signaling.

Based on these findings, we propose a new model for Ras membrane diffusion and trafficking as

shown in Figure 7. In this model, Ras experiences at least three types of membrane environments: a

‘regular’ membrane region in which Ras freely diffuses with large step sizes, a ‘transition zone’ or

intermediate domain with increased viscous drag and reduced step size, and within the latter an

‘immobilization’ site where Ras interacts with relatively static structures or molecules. Both the transi-

tion zones and the immobilization sites have finite lifetimes, some up to minutes, during which freely

diffusing KRasG12D molecules could enter the transition zone, slow down, then either return to the

fast state or become trapped at the immobilization sites. During entrapment, a fraction of the

trapped KRasG12D molecules leaves the plasma membrane to enter the cycle of KRasG12D trafficking.

This is in agreement with the current understanding that the removal of KRas from the membrane

through endocytosis is concentration dependent and that the localization of KRas to the plasma

membrane is an energy driven, PDEd and Arl2-mediated enrichment process (Schmick et al., 2014;

Schmick et al., 2015). Our work adds important details to this trafficking model in that the removal

of KRasG12D from the plasma membrane likely occurs during the entrapment phase and its recycling

primarily takes place in membrane regions conferring fast mobility. Additionally, the transient

entrapment of KRasG12D could also provide an effective mechanism to locally concentrate Ras mole-

cules to facilitate multimer formation, which arguably is a critical step for signaling (Chen et al.,

2016; Tian et al., 2007; Nussinov et al., 2019). Thus, the various membrane nanodomains directly

influence the mobility, trafficking, and potentially multimer formation and signaling of KRasG12D,

although details of the trafficking and multimer formation processes are yet to be defined.

The three-state diffusion model proposed in this study refines existing models of KRasG12D mem-

brane diffusion by introducing a previously unresolved intermediate state and capturing the role of

membrane nanodomains in KRasG12D diffusion. While heterogeneous diffusion properties of

KRasG12D and other Ras isoforms have been reported, the prior studies lacked the throughput or

spatiotemporal resolutions to determine whether two states, namely a fast diffusion state and an

immobile state, are adequate to recapitulate KRasG12D diffusion on the membrane. With the diffu-

sion model defined, we were able to subsequently demonstrate that the intermediate and immobile

states of KRasG12D are each associated with a distinct membrane domain. The measured sizes of the
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immobilization and the intermediate domains of KRasG12D were ~70 nm and ~200 nm, respectively,

consistent with previous beliefs that nanoscopic membrane domains regulate Ras organization on

the membrane. We note that, although a three-state model best fits our data, the model could still

be an over-simplification. Among other possibilities, both endocytic and non-endocytic mechanisms

may contribute to the immobilization of Ras but cannot be distinguished based on diffusion proper-

ties since Ras is immobile in both cases. In fact, there are also indications of more than one type of

intermediate domains judging from the estimated domain size (Figure 2F and Figure 2—figure sup-

plement 1).

An important feature of the model in Figure 7 is that the membrane nanodomains associated

with the immobile state of KRasG12D are surrounded by those associated with the intermediate state,

creating a nested configuration between the two nanodomains. A plausible scenario is that the struc-

tures that trap KRasG12D preferentially form in the membrane regions enriched in certain proteins or

lipids and/or more densely packed. In this scenario, KRasG12D would have to travel through the inter-

mediate zone to access the immobilization structures, explaining the state transition pathway in

Figure 2A. This scenario is also consistent with the observation that the intermediate domains are

on average larger in size than the immobilization domains, and that the two nanodomains have simi-

lar lifetimes (to the extent of our temporal resolution). In support of this hypothetic scenario, a grow-

ing body of literature demonstrates the importance of phosphatidylserine in KRas clustering and

activation (Zhou et al., 2015; Cho et al., 2016; Zhou et al., 2017; Ariotti et al., 2014). In addition

to the KRas tail encoding for phosphatidylserine specificity, a significant fraction of phosphatidylser-

ine display slow motion on the membrane as well (Zhou et al., 2017; Kay et al., 2012).

Aside from the steady state partitioning of KRasG12D in the different membrane domains, our

data also offered important insight into the membrane dynamics of KRasG12D. We measured a con-

stant flow of KRasG12D from the fast state to the immobile state. Without exchanging KRasG12D with

Figure 7. Proposed model for membrane nanodomains regulating KRasG12D mobility and trafficking. For KRasG12D, the cell membrane comprises of at

least three different compartments conferring each of the three diffusion states , namely the fast (and free), the intermediate, and the immobile

diffusion states, depicted as green, blue, and red regions, respectively. The membrane compartments associated with the immobile and the

intermediate states of KRasG12D are nanoscopic membrane structures. KRasG12D is continuously removed from the immobile state, some of which may

be mediated via endocytosis. Internalized KRasG12D molecules are eventually transported back to the membrane as fast diffusing species through

incompletely understood recycling processes. KRasG12D immobilization domains could locally enrich KRasG12D molecules to facilitate KRasG12D multimer

formation and potentially signaling. The arrows in the inset (bottom right) indicate mass flows between each pair of states.
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the cytosol, this directional flow would have caused net loss of KRasG12D from the fast state and

accumulation in the immobile state as described in Figure 4B–C, yet the experimentally observed

state configuration (Figure 2A) remained stable over time (Figure 4A). We therefore reasoned that

KRasG12D needs to be constantly removed from the immobile state (‘sink’) and replenished via the

fast state (‘source’), potentially coupled to membrane trafficking such as endocytosis and recycling

(Schmick et al., 2014; Schmick et al., 2015; Roy et al., 2002; Rocks et al., 2005; Lu et al., 2009),

since previous studies have shown that endocytosis is a primary mechanism for KRasG12D removal

from the plasma membrane (Schmick et al., 2014). In support of this, the lifetime of the immobiliza-

tion domains was estimated to be on the order of 2–5 min on average (Figure 3A–B), which is typi-

cal of many endocytic systems (Mayor et al., 2014; Kaksonen et al., 2005). The exact mechanism

of KRasG12D internalization, however, remains incompletely understood at present.

It is noteworthy that the spatial partitioning of KRasG12D and more generally the diffusion model

were invariant over a broad range of KRasG12D expression levels, which coincides with previous

observations where the clustered fraction of KRas or HRas was independent of the protein expres-

sion level (Plowman et al., 2005; Tian et al., 2007). This corroborates the idea that membrane parti-

tioning of Ras and perhaps many other membrane resident molecules are in an actively maintained,

homeostatic condition. This intriguing property of certain membrane proteins (Plowman et al.,

2005; Sharma et al., 2004) has drawn much attention and led to at least two mechanistic models of

multimer formation, one based on self-nucleation (Plowman et al., 2005) and the other driven by

actomyosin (Gowrishankar et al., 2012). Both mechanisms assumed the different states of the pro-

tein on the plasma membrane to be in equilibrium. Our results argue that the mass exchange

between the plasma membrane and the cytosol breaks the equilibrium and has to be taken into

account in order to accurately model the partitioning behavior of membrane proteins. A clear, mech-

anistic understanding of this property is important to understand how Ras functions on the mem-

brane, since the Ras multimers have been strongly implicated in signaling. Further experimental and

computational work along this line is currently underway.

A fundamental albeit implicit result from the present study is the importance of experimental

parameters in accurately determining the diffusion model, a critical step for in-depth analysis of pro-

tein dynamics on the membrane. While there are many different software packages for analyzing

spt-PALM trajectories, the importance of controlling the particle density during image acquisition

has not previously been recognized to our knowledge. Imaging at a per frame particle density of

0.05–0.1 per mm2, which is typical for single-molecule localization microscopy, yielded varying esti-

mated model parameters in our early attempts to track KRasG12D with spt-PALM (Figure 1—figure

supplements 1–5). Using simulations, we found the source of variability to be a small fraction of mis-

connected trajectories mostly caused by fast moving molecules. In order to minimize the trajectory

misconnection, we kept the density of activated PAmCherry1 in each frame to below 0.03 per mm2

at an acquisition rate of 12 ms/frame (Figure 1—figure supplements 2 and 3). With this precaution,

we were able to yield a highly consistent diffusion model from trajectories acquired in different cells

and under different conditions. This was critical to defining a previously unresolved state with inter-

mediate mobility (D ~ 0.3 mm2/s) and to all subsequent analyses. We recommend the same precau-

tions to be taken for studies of other membrane molecules.

In summary, our work sheds new light on how complex nanodomains organize on the membrane

to dictate Ras diffusion and trafficking. The insights gained here offer useful guidance to future

experiments that aim at determining the molecular and structural identities of the Ras-associated

membrane nanodomains and defining the mechanisms of Ras multimer formation and signaling. The

results demonstrate the utility of high-throughput SPT and trajectory analysis in uncovering rich

details of the spatiotemporal dynamics of Ras on the membrane, which should be readily applicable

to studies of other membrane molecules or processes in cellular compartments.

Materials and methods

Key resources table

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Continued on next page
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Continued

Reagent type
(species) or resource Designation Source or reference Identifiers

Additional
information

Cell line
(Homo-sapiens)

U2OS ATCC RRID: CVCL_0042
ATCC Cat#:
HTB_96

Parent cell line for
generating U2OS-tetR

Cell line
(Homo-sapiens)

U2OS-tetR This paper. RRID: CVCL_XZ88 Single U2OS clone
stably expressing the
tet repressor (tetR).

Cell line
(Homo-sapiens)

U2OS-tetR
PA-mCherry1-
KRas G12D

This paper. RRID: CVCL_XZ89 Single U2OS cell clone
stably expressing
PAmCherry1-KRasG12D

under Doxycycline
regulation

Antibody anti-RAS
(mouse monoclonal)

Abcam RRID: AB_941040
Abcam Cat#: ab55391

Mouse monoclonal
antibody

Antibody anti-beta-Tubulin
(mouse monoclonal)

Thermo
Fisher

RRID: AB_86547
ThermoFisher
Cat#: 32–2600

Mouse monoclonal
antibody

Software,
algorithm

vbSPT Perssonet al. RRID: SCR_017554 Algorithm for extracting
diffusion parameters
from SPT data

Software,
algorithm

mManager Invitrogen RRID: SCR_000415 Micro-manager open
source microscopy
platform

Cell culture
KRasG12D was genetically fused to PAmCherry1, a red fluorescent protein, to ensure high labeling

specificity and efficiency. The PAmCherry1-KRasG12D coding sequence is placed under a CMV pro-

moter regulated by the TetOn operon. The construct was transduced via lentivirus into an isogenic

U2OS-tetR cell line (RRID:CVCL_XZ88) that constitutively expresses the tet repressor (tetR); the cell

line was derived from the parent U2OS (human osteosarcoma, ATCC; RRID:CVCL_0042; verified via

third party STR analysis). Single cell clones were subsequently isolated and screened to yield iso-

genic cell lines (RRID:CVCL_XZ89) that express the PAmCherry1-KRasG12D fusion protein under

doxycycline (Dox) regulation. Cell lines were tested for mycoplasma regularly using standard in-

house PCR test.

Western blotting
Cells were cultured in 6-well plates for 24–48 hr before lysing with a RIPA buffer (Thermo Scientific,

89901) supplemented with an inhibitor cocktail (ThermoFisher, 88668). Cell lysates were then har-

vested, sonicated, and centrifuged. The supernatant is assayed using BCA and analyzed using a Bris-

Tris gel (4–12%, ThermoFisher NP0323). Protein transfer was performed on a low fluorescence PVDF

membrane (EMD Millipore, IPFL10100). The membrane was then immunostained for fluorescence

detection using a Li-COR Odyssey. The antibodies used for this study were: KRas (mouse monoclo-

nal, Abcam ab55391, RRID:AB_941040, used at 1:200 dilution), Tubulin (mouse monoclonal, Thermo-

Fisher 32–2600, RRID:AB_86547, used at 1:500 dilution).

Cell treatment for single particle tracking
Cells were grown in fluorobrite DMEM (Thermo Fisher Scientific A1896701) with 10% FBS in 8-well

Lab-Tek chambers and Dox-induced for 1.5 days before imaging. Cells were serum starved for at

least 12 hr prior to data acquisition.

Single-particle tracking was performed on a custom single-molecule localization microscopy

setup, as previously described (Creech et al., 2017). Briefly, the setup was constructed around a

Nikon Ti-U microscope, equipped with a high numerical aperture (NA) objective lens (Nikon 60x,

NA = 1.49 oil immersion) for total internal reflection fluorescence (TIRF) imaging, lasers emitting at

405 nm (Coherent, OBIS) and 561 nm (Opto-Engine) for photoactivation and excitation, respectively,

and an electron-multiplied charge-coupled display (EM-CCD, Andor iXon+) for single molecule
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detection. All image acquisition was done using micro-manager (Edelstein et al., 2014) (RRID:SCR_

000415) and processed using in-house Matlab scripts (Creech et al., 2017).

Particle density optimization
We found that particle densities higher than 0.03 mm�2 per frame under our experimental conditions

(12 ms/frame with the fastest diffusion rate at ~1 mm2/s) led to occasionally misconnected trajecto-

ries, and that even a small fraction of such misconnected trajectories could lead to incorrect model

outputs with vbSPT (Figure 1—figure supplements 2 and 3, and 5). In addition, the threshold for

maximum displacement between adjacent frames also had an impact on trajectory misconnection,

although to a lesser extent for the values tested using simulated trajectories (Figure 1—figure sup-

plements 2 and 3). Thus, for diffusion model construction, we chose to use a high frame rate (12

ms/frame) and a low particle density (<0.03 mm�2) to eliminate misconnected trajectory segments

while maintaining a sufficient number of trajectories. However, it is beneficial to obtain more trajec-

tories to accurately infer the model parameters with vbSPT (RRID: SCR_017554), especially for the

transition probabilities (Persson et al., 2013). As demonstrated in Figure 6—figure supplement 1,

the diffusion coefficients and the occupancies typically converged with only a few thousand trajecto-

ries, but the transition probabilities required significantly more trajectories to converge. Thus, we

usually acquired spt-PALM data at higher particle densities once the model size has been defined;

for these datasets, we could safely enforce a three-state model during vbSPT data analysis, since the

diffusion model should not depend on the rates of frame acquisition rate and photoactivation. This

strategy allowed more flexibility in spt-PALM data acquisition and robustness in the subsequent

analyses.

Trajectory connection for single particle tracking
We constructed single-molecule diffusion trajectories of PAmCherry1-KRasG12D by connecting the

centroid positions of the same particles in successive frames. Particles in adjacent frames were

deemed to be the same particle if their centroids were within a certain threshold distance. To define

the threshold distance, we first constructed the trajectories using a large (~2,000 nm) distance, from

which a step size histogram could be obtained (see Figure 1—figure supplement 3). The step size

histogram from PAmCherry1-KRasG12D typically consists of two segments; signal and noise. The first

segment comprises the signal with the first peak around ~70 nm and extending to ~500 nm, and all

step sizes beyond ~500 nm was attributed to noise originating from misconnected trajectories gen-

erated by the unrealistically large threshold distance. Based on this histogram, we reconstructed the

diffusion trajectories using 500 nm as the threshold distance for 12 ms frame acquisition, and 800

nm for 35 ms frame rate movies (using the same method). A new step size histogram was then

obtained, which was essentially identical to the first segment of the original step size histogram, con-

firming that the new threshold distance eliminated most of the misconnected trajectories. The step

size histograms of trajectories obtained under the same conditions were also highly consistent,

allowing us to set the same threshold value for each condition. Trajectories were terminated if multi-

ple particles were found within the threshold distance in the next frame. Further, all movies acquired

at 12 ms frame rate had the additional constraint of having fewer than 0.03 particles/mm2 for every

frame to lower the chance of misconnecting two different particles in adjacent frames. Thus, all

resulting trajectories were constructed without ambiguity.

2D Markov simulation
We relied on 2D simulations that mimic experimental observations for both experiment optimization

and as controls for some of the analysis. Simulations were used to determine the thresholds used for

trajectory synthesis (particle density threshold as shown in Figure 1—figure supplement 2, and con-

nection distance threshold as shown in Figure 1—figure supplement 3), as well as a negative con-

trol to test the null hypothesis for spatial clustering (Figure 2 and 3) and equilibrium state analysis

(Figure 4).

The inputs to the simulations were experimentally derived diffusion parameters: number of trajec-

tories, diffusion coefficients, occupancies, transition matrix, frame rate, and the trajectory density.

The trajectory density and the number of trajectories are used to determine the width of the simula-

tion space. At the start of the simulation, every particle is randomly assigned a coordinate and a
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state based on the occupancies. Once a state is assigned, particles are assigned new coordinates by

drawing displacements for each dimension from the corresponding X ~ N(0, 2Dt), where each state

has a different diffusion coefficient. At the next time step, a new state is randomly assigned to every

particle based on its current state and the transition probability matrix. This process is repeated for

the total simulation time. When the simulation was used as the negative control (Figures 2, 3 and

4), the simulation was run for every single movie acquired and the results were compared to the

experiment.

State assignment and averaging
States for each trajectory segment were assigned using vbSPT (contained in field est2.sMaxP, refer

to the vbSPT manual). The state assignment is based on trajectory displacements, not the coordi-

nates (e.g. if a trajectory has three coordinates, then two states are returned for the two steps). In

order to prevent over counting for the pair correlation analysis (Figure 2 and 3), in the case of a sin-

gle molecule staying in the same domain for multiple frames, we averaged all of the coordinates

(including both ends) that were assigned the same state for consecutive time points in a single

trajectory.

Pair correlation function
Pair correlation function, or g(r), in general, measures the deviation of the particle density from the

expected value from a reference particle as a function of distance. More specifically, g(r) was calcu-

lated for each particle by counting the number of other particles within a circular shell at distance of

r and r + 10 nm and dividing by the expected number of particles assuming uniform distribution.

Therefore, when the observed number of particles for a given distance is equal to the expected

number of particles given complete spatial randomness, g(r)=1 and signifies random distribution of

particles. Accordingly, g(r)>1 indicates clustering behavior since there are more observed particles

around each particle than expected, and g(r)<1 represents cases where there are fewer particles

than expected. Every movie was sliced into non-overlapping time segments (1, 5, 10, 20 min) and

the average position for each state segment was extracted (as described in State Classification and

Averaging) such that every coordinate represented a continuous track for an individual particle in a

domain. Therefore, the coordinates used to calculate the pair correlation function represented either

different particles that visited the same domain or the same particle that left the domain and

returned at a later time. The resulting coordinates were separated into each of the three states, and

the g(r) was calculated for the coordinates of a given state within the given time slice. In cross pair

correlation function analysis, g(r) was calculated for a given pair of different states.

Statistical analysis
Sample size is shown for each figure in the figure captions as ‘n’ and was not predetermined. All

results on model parameters and subsequent quantifications such as mass-flow rates are shown as

arithmetic mean ±95% confidence interval. Spt-PALM datasets with insufficient number of trajecto-

ries to fully fit up to a 10-state model (e.g. Figure 1E) using vbSPT were discarded. The full raw data-

set, including an outlier with abnormally long average trajectory length and all the discarded

datasets are presented in Figure 6—figure supplement 1.
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